Biology with a Year Abroad - BSc (Hons)

UCAS code C106


Biology is the study of living organisms and their interactions with the environment. This degree provides a broad survey of the various biological disciplines but with a focus on modern molecular techniques. You investigate life forms ranging from viruses and bacteria to complex animals and plants.



In the School of Biosciences, we have a community spirit and students learn with and from each other. We are also renowned for our innovative teaching methods, including:

  • new ways of using IT in lectures allow you to revisit the teaching at a later date
  • academic-developed animations to help explain tricky concepts
  • final year communication projects teaching you how to share scientific knowledge with the public.

Our Biology degree is accredited by the Royal Society of Biology (RSB).

Our degree programme

In your first year, you are introduced to a broad survey of the various biological disciplines, including biochemistry, biodiversity, cell and molecular biology, evolution, genetics, human physiology, and field study work. You also take a skills course to gain more expertise in laboratory practical work, and the analysis and presentation of biological data.

In your second year, you develop your knowledge of gene regulation, cell biology, microbiology, animal and plant physiology, and human health and disease. The modules at this stage go into greater depth and subjects can include animal form and function, plant physiology and adaptation, gene expression, infection and immunity, microbial physiology and skills for bioscientists 2.

The year abroad is taken between your second and final years. You can study at one of our partner universities in North America, Europe and South East Asia, where you are taught in English.

During the summer vacation after your second year, there are also opportunities to work in one of our research labs on an eight-week Summer Studentship. The School attracts a large research income (about £4.5 million per year) and is ranked 7th in the UK for research intensity (outperforming 19 of the 24 Russell Group universities).

In your final year, the range of optional modules increases to allow you to specialise in subjects that interest you, such as neuroscience, virology, immunology, bioinformatics, cell signaling, aging, cancer, primate biology or climate change and conservation. You also complete an eight-week research project, which may be laboratory, business, computing or communication based.

Sandwich year

On our related programme, you can work in the UK or abroad as part of your degree on our Biology with a Sandwich Year programme

Alternatively, you can take our three-year Biology degree, without a year abroad or a sandwich year. For details, see Biology.

Study resources

We recently spent £2 million on our laboratories to ensure that you develop your practical skills in a world-class environment. We give you extensive practical training and you spend up to three days a week in the laboratory during your final year project. 

Extra activities

You can join BioSoc, a student-run society. Previous activities have included research talks and social events.

We also encourage our students to attend outside conferences and events. In 2015, Kent students competed with 280 teams and won the gold medal at the International Genetically Engineered Machine (iGEM) Giant Jamboree in the USA.

Professional networks

Our school collaborates with research groups in industry and academia throughout the UK and Europe. It also has excellent links with local employers, such as:

  • NHS
  • GSK
  • MedImmune
  • Eli Lilly
  • Lonza
  • Aesica Pharmaceuticals
  • Sekisui Diagnostics
  • Cairn Research
  • Public Health England.

Independent rankings

In the National Student Survey 2016, 93% of our Biology students were satisfied with the quality of teaching. Of Biology students who graduated in 2015, 89% were in work or further study within six months (DLHE).

Teaching Excellence Framework

Based on the evidence available, the TEF Panel judged that the University of Kent delivers consistently outstanding teaching, learning and outcomes for its students. It is of the highest quality found in the UK.

Please see the University of Kent's Statement of Findings for more information.

TEF Gold logo

Course structure

The following modules are indicative of those offered on this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.  

On most programmes, you study a combination of compulsory and optional modules. You may also be able to take ‘wild’ modules from other programmes so you can customise your programme and explore other subjects that interest you.

Stage 1

Modules may include Credits

This course will provide an introduction to biomolecules in living matter. The simplicity of the building blocks of macromolecules (amino acids, monosaccharides, fatty acids and nucleotides) will be contrasted with the enormous variety and adaptability that is obtained with the different macromolecules (proteins, carbohydrates, lipids and nucleic acids). The molecular structure of macromolecules will be highlighted and linked with function of the macromolecules in living cells and organisms. Physical methods for purifying, characterising and further investigating macromolecules will be described including spectroscopy, chromatography and electrophoresis. The module will be delivered by lectures, laboratory sessions and a model-building workshop. Feedback will be given on the formative lab-based sessions to ensure students understand what is expected in the assessed practical. Short tests (formative only, on Moodle) will be used during the module to help students test their own knowledge and one summative (assessed) MCQ will monitor that the right material has been extracted from taught sessions.

Read more

This course aims to introduce the 'workers' present in all cells – enzymes, and their role in the chemical reactions that make life possible.

The fundamental characteristics of enzymes will be discussed – that they are types of protein that act as catalysts to speed up reactions, or make unlikely reactions more likely. Methods for analysis of enzymic reactions will be introduced (enzyme kinetics). Control of enzyme activity, and enzyme inhibition will be discussed.

Following on from this the pathways of intermediary metabolism will be introduced. Enzymes catalyse many biochemical transformations in living cells, of which some of the most fundamental are those which capture energy from nutrients. Energy capture by the breakdown (catabolism) of complex molecules and the corresponding formation of NADH, NADPH, FADH2 and ATP will be described. The central roles of the tricarboxylic acid cycle and oxidative phosphorylation in aerobic metabolism will be detailed. The pathways used in animals for catabolism and biosynthesis (anabolism) of some carbohydrates and fat will be covered, as well as their control. Finally how humans adapt their metabolism to survive starvation will be discussed.

Read more

This course will expose students to key themes and experimental techniques in molecular biology, genetics and eukaryotic cell biology illustrated by examples from a wide range of microbial and mammalian systems. It will cover basic cell structure, and organisation of cells into specialized cell types and complex multi-cellular organisms. The principles of cell cycle and cell division will be outlined. The control of all living processes by genetic mechanisms will be introduced and an opportunity to handle and manipulate genetic material provided in practicals. Lectures and practicals will run concurrently as far as possible and monitoring of students' knowledge and progress will be provided by multi-choice testing and feedback.

Functional Geography of Cells: Introduction to Cell Organisation, Variety and Cell Membranes. Molecular Traffic in Cells. Organelles involved in Energy and Metabolism. Eukaryotic Cell

Cycle. Chromosome Structure & Cell Division. Meiosis and Recombination.

Molecular biology: The structure and function of genetic material. Chromosomes, chromatin structure, mutations, DNA replication, DNA repair and recombination, basic mechanisms of transcription, mRNA processing and translation.

Techniques in Molecular and Cellular Biology: Methods in Cell Biology - light and electron microscopy; cell culture, fractionation and protein isolation/electrophoresis; antibodies, radiolabelling. Gene Cloning – vectors, enzymes, ligation, transformation, screening; hybridisation, probes and blots, PCR, DNA sequencing. Applications including recombinant protein expression, trangenics/knockouts, RNAi, genome projects, DNA typing, microarray and '…omics' studies (genome, proteome, interactome, metabolome etc).

Practical: Restriction digestion of DNA and gel analysis (whole day)

Read more

This module will consider the anatomy and function of normal tissues, organs and systems and then describe their major pathophysiological conditions. It will consider the etiology of the condition, its biochemistry and its manifestation at the level of cells, tissues and the whole patient. It will cover the diagnosis of the condition, available prognostic indicators and treatments.

It will include:

Cells and tissues

Membrane dynamics

Cell communication and homeostasis

Introduction to the nervous system

The cardiovascular system

The respiratory system

The immune system and inflammation

Blood cells and clotting

The digestive system, liver and pancreas

The Urinary system

Read more

Subject-based and communication skills are relevant to all the bioscience courses. This module allows you to become familiar with practical skills, the analysis and presentation of biological data and introduces some basic mathematical and statistical skills as applied to biological problems. It also introduces you to the computer network and its applications and covers essential skills such as note-taking and essay writing.

Topics covered in lectures/workshops:

How biosciences is taught at Kent - lectures, supervisions, problem solving classes, practicals. Effective study and listening skills, note taking and use of the library. Support networks.

General principles of analytical biochemistry - quantitative/qualitative analysis, making and recording measurements. The quality of data - random and systematic error, precision, accuracy, sensitivity and specificity.

The manipulation and presentation of data - SI units, prefixes and standard form

Molarities and dilutions -concentration (molarity) and amounts (moles), dilutions.

Acids, bases and buffers in aqueous solutions - Definition of pH, acid and bases (including a revision of logarithms). Acid-base titrations. Buffer mixtures, buffering capacity and the Henderson-Hasselbalch equation.Dissociation of polyprotic, weak acids. Biochemical relevance of pH e.g. pH dependant ionisation of amino acids.

Spectroscopy - The range of electromagnetic radiation. Absorption and emission of radiation. Molecular absorptiometry - the use of the Beer-Lambert relationship for quantitative measurements using absolute or comparative methods (molar and specific extinction coefficients).

Reaction Kinetics. Reactions and rates of change: Factors affecting the rate of a reaction. Zero, first and second order reactions. Rate constants and rate equations (including integration). Worked examples of rates of reactions.

Statistics Descriptive statistics: definition of statistics, sampling, measurement scales, data hierarchy, summarising data, averaging, mean, mode, median, quantiles, graphical methods, displaying proportions, charts and chart junk. Parametrising distributions: coefficient of variation, normal distribution, properties of the normal curve, skewness and kurtosis, accuracy and precision.

Probability: definition, events, exclusivity and conditional probability, throwing dice and tossing coins, independent and dependent events, permutations, multiplicative rule, binomial distribution, unequal probabilities, Pascal's triangle, factorials and combinations.

Hypothesis testing: null hypothesis, p-value, normal curve, z-score and t-score, t values and confidence interval, t-tables, comparing two samples, degrees of freedom, t-tests for same and different sample sizes, paired samples, difference between means.

Correlation and covariance: two-dimensional distributions, scatter diagram, degree and limits of correlation, spurious correlation, correlation and causality, time correlation, normalising the covariance, covariance in spreadsheet calculations.

Regression: the regression line, slope and intercept parameters, regression in spreadsheet calculations, history of regression, assumptions in regression, effect of outliers, how not to use statistics.


1. Introduction to basic laboratory techniques-

a) preparation of buffer solutions and

b) determination of accuracy

2. pH and buffers

3. Colorimetry and Spectrophotometry

Read more

The principles of chemistry are an essential foundation for biochemistry. Building up from the atomic level, this module introduces periodicity, functional groups, compounds and chemical bonding, molecular forces, molecular shape and isomerism, and chemical reactions and equilibria, enabling you to understand the importance of organic chemistry in a biological context.

Phase A: Autumn Term (5 lectures, 6 x 2 hr Workshops)

Basic chemical concepts for biology will be taught and applied through examples in a workshop atmosphere. The five workshop topics covered are: (i) Atoms and states of matter (ii) valence and bonding (iii) basic organic chemistry for biologists (iv) molecular shapes and isomerism in biology and (iv) chemical reactivity and chemical equations. Workshop (vi) is for revision before the assessment test.

Phase B: Autumn Term (9 lectures, 1 x 2 hr Workshop)

Chemical and biochemical thermodynamics (6 lectures, 1 workshop). Topics covered are: (i) energetic and work, (ii) enthalpy, entropy and the laws of thermodynamics (iii) Gibbs free energy, equilibrium and spontaneous reactions, (iv) Chemical and biochemical equilibrium (including activity versus concentration and Le Chatelier’s principle). The two hour workshop is designed to be delivered as small group sessions to cover the applications and practice of thermodynamics concepts.

Chemistry applied to biological concepts (3 lectures): bonding, valence, hybridisation as well as biological applied thermodynamic process (biomolecular association/dissociation).

Read more

This module is an introduction to Mendelian genetics and also includes human pedigrees, quantitative genetics, and mechanisms of evolution.



An introduction to the genetics of a variety of organisms including Mendelian inheritance (monohybrid and dihybrid) and exceptions to the predicted outcomes due to incomplete dominance, co-dominance, lethal alleles, epistasis and genetic linkage, the chromosomal basis of inheritance, organelle based inheritance and epistasis. The inheritance of human genetic disease and its investigation by human pedigree analysis will also be introduced. Bacterial genetics.


The nature of mutation, including molecular mechanisms leading to the mutation of DNA, and the role of both mutation and horizontal gene transfer in evolution. Historical views on evolution, Darwin’s observations, the fossil record to modern techniques. Microevolution, population genetics and analysis of the distribution of genes within populations and mechanisms of gene flow, genetic drift, selection and speciation.

Read more

Stage 2

Modules may include Credits

The module deals with the molecular mechanisms of gene expression and its regulation in organisms ranging from viruses to man. This involves descriptions of how genetic information is stored in DNA and RNA, how that information is decoded by the cell and how this flow of information is controlled in response to changes in environment or developmental stage. Throughout, the mechanisms in prokaryotes and eukaryotes will be compared and contrasted and will touch on the latest developments in how we can analyse gene expression, and what these developments have revealed.


A. The genome - Human genome, human chromosomes, mapping and cloning human genes, DNA testing and disease diagnosis, genome organisation, analysing genomes.

B. The gene - Gene organisation. Gene evolution. Gene transcription in prokaryotes and eukaryotes: RNA polymerases, promoters, regulatory sequences. mRNA processing in eukaryotes: intron splicing, the spliceosome, turnover pathways, catalytic RNA. mRNA translation: tRNA, the ribosome, mechanism (initiation, elongation, termination).

C. Gene regulation - Transcriptional regulation in prokaryotes: operons. Transcriptional regulation in eukaryotes: simple vs complex systems, promoters and enhancers. Post-transcriptional regulation: mRNA processing and turnover, translational control, non-coding RNAs. Epigenetic control.

Read more

The cell is the fundamental structural unit in living organisms. Eukaryotic cells are compartmentalized structures that like prokaryotic cells, must perform several vital functions such as energy production, cell division and DNA replication and also must respond to extracellular environmental cues. In multicellular organisms, certain cells have developed modified structures, allowing them to fulfil highly specialised roles. This module reviews the experimental approaches that have been taken to investigate the biology of the cell and highlights the similarities and differences between cells of complex multicellular organisms and microbial cells. Initially the functions of the cytoskeleton and certain cellular compartments, particularly the nucleus, are considered. Later in the unit, the mechanisms by which newly synthesised proteins are secreted or shuttled to their appropriate cellular compartments are examined.


Cell motility and the cytoskeleton. - types of cell movements. Actin-based mechanisms - actin/myosin systems in muscle and other cells in higher eukaryotes and the discovery of corresponding microbial systems. - microtubules and their role in intracellular transport: dynein and kinesin. Microtubules in cilia and flagella. ATP and GTP driven processes - the family of intermediate-sized filaments; their structure, cellular role. Concepts of the evolution of intermediate filaments between microbes and man.

Regulation of the mitotic cell cycle and the dynamic structure of the nucleus. – the

interphase nucleus - chromatin structure (histones, nucleosomes, higher order folding;

telomeres; kinetochore etc), nucleolus, nuclear envelope structure, biogenesis of ribosomes,

genetic approaches to analysis of regulation of mitosis, definition of yeast cdc genes;

comparison with biochemical approaches, regulation of progression from G1 ? S ? G2 ? M.

Cycle exit to G0 and return. Growth factor, signalling and apoptosis. Chromatin structure and

its regulation through the cycle, Dynamics of the nuclear envelope and chromosome/chromatid


Overview of membrane traffic in eukaryotic cells. - relationship of endocytotic and

exocytotic pathways, compartments and sorting.

Biogenesis of proteins destined for organelles or for secretion.- experimental approaches –

yeast and bacterial sec genes vs biochemical dissection of mammalian secretory tissue, signal

sequences targeting proteins to different organelles, folding and post-translational modification

of proteins in the secretory pathway, eukaryotic and prokaryotic secretory pathway –

biochemical and genetic dissection of compartments, transport mechanisms and targeting.


Actomyosin contraction in myofibrils using phase microscopy .


Reading and précis of a scientific paper in cell and molecular biology. Presentation of its chief findings and impact

Read more

Medically important microbial diseases

Gastrointestinal infections, Upper respiratory tract infections, Genital infections

Lower respiratory tract infections, CNS infections, Infections of the skin, Urinary tract infections, Ear and eye infections, Parasitic infections, Mycoses

Immunological Topics

Introduction to the basic concepts of innate and adaptive immunity to pathogens. Immune defence mechanisms against bacterial, viral and parasitic infections. Antibody classes, antigen processing, complement, cytotoxic cells, interferons, the generation of antibody diversity. Cell communication, and the regulation of immunity by T cell . Immunopathology, including autoimmunity, allergy and transplant rejection.

Read more

Reproductive System: Male and female reproductive systems; Endocrine control of reproduction; Fertilisation; Early embryogenesis; Pregnancy and Parturition; Reproductive disorders.

Muscle: Muscle types: skeletal, smooth and cardiac; Structure of muscle; Molecular basis of contraction; Regulation of contraction including neural control; Energy requirements of muscle; Types of movement: reflex, voluntary, rhythmic; Muscle disorders.

Nervous System Cells of the nervous system: neurons and glia; Electrical properties of neurons: action potential generation and conduction; Synaptic structure and function: transmitters and receptors; Structural organization of the central nervous system (CNS) and function of individual regions; Organization and function of the peripheral nervous system (PNS): somatic motor, autonomic (sympathetic and parasympathetic) and sensory; Sensory systems: vision, hearing, taste, smell, pain. Disorders of the nervous system.

Endocrine System: Endocrine glands; Classes of hormones; Mechanisms of hormone action; Regulation of hormone release; Endocrine disorders.

Read more

A. Communication Skills in Biosciences: Essay writing, oral presentations, laboratory reports, the scientific literature and literature reviews. Working in groups.

B. Techniques in Biomolecular Science: Immunochemistry. Monoclonal and polyclonal antibody production, immuno-chromatography, ELISA and RIA.

Electrophoresis, Immunoblotting, Protein Determination, Activity Assays, Purification

C. Computing for Biologists: Bioinformatics, phylogenetic trees, database searches for protein/DNA sequences

D. Mini-project – introduction to research skills: Students will work in groups of eight to undertake directed experimental work (Group Project) before extending the project further through self-directed experiments working as a pair (Mini Project).

E. Careers: The programme will be delivered by the Careers Advisory Service and will review the types of careers available for bioscience students. The sessions will incorporate personal skills, careers for bioscience graduates, records of achievement, curriculum vitae preparation, vacation work, postgraduate study, interview skills and action planning.

Read more

You study the diversity of animal life throughout evolution, including elements of functional anatomy and physiology such as circulation and gaseous exchange, the digestive system, the nervous system and reproduction.


a. Comparative physiology – in this section the diversity of different physiological systems will be studied including circulation, gaseous exchange, feeding and digestion, excretion, nervous tissue and the senses , reproduction and immunology.

b. Form and Function – in this section a diverse range of taxonomic groups and their characteristics will be studied to understand the relationship between structure and function. How these characteristics equip the animal to survive and succeed in its particular environment will be explored.

Read more

Nutrient acquisition - overview of water transport; nitrogen assimilation and mineral uptake mechanisms

Photosynthesis – mechanism and regulation of photosynthesis, photorespiration, C3, C4 and CAM

Plant hormones and signalling – eg. auxins, gibberellins, cytokinins etc and their roles in tropism, photoperiodism, thermoperiodism, fruiting and flowering

Adaptation and stress response – environmental stress, acclimatisation and adaptation, pathogens and herbicides, secondary metabolites, crop development.

Read more


Introduction: The ecological, medical, scientific and commercial importance of bacteria. Bacterial evolution and taxonomy.

Microbial biodiversity at the structural level: Composition of the average bacterial cell and basic bacterial cell structure. Gram positive and gram negative. Archea. Organisation of DNA. Membranes and the transport of small molecules into and out of the cell. Peptidoglycan and LPS and their importance in pathogenesis. The location and function of proteins. Capsule, flagella and adhesins.

Introduction to growth, fuelling and biosynthesis: Division by binary fission, including growth equations. Growth in batch and chemostat cultures; liquid vs. solid media. Nutritional and non-nutritional factors affecting growth (temperature, osmolarity, pH and antibiotics). Physiological state and balanced growth. Adaptation to extreme conditions.

Microbial biodiversity at the physiological and biochemical level: The diversity in bacterial metabolism (nutrient sources (particularly carbon and nitrogen)), photosynthesis, aerobic and anaerobic growth and alternative terminal electron acceptors. Fermentation. The inverse relationship between growth factor requirements and biochemical complexity. The ecological significance of bacteria.

Synthesis, localisation and assembly of macromolecular structures: DNA replication and transcription. Translational and protein localisation, assembly of flagella and adhesins. Membranes, including LPS. Peptidoglycan. Antibiotics that inhibit peptidoglycan biosynthesis. Capsules.

Microbial communities and ecology: growth and survival in the real world (e.g. soils and sediments), studying populations and individuals. Biofilms and complex communities. Diauxie and growth.

Signalling and physiological control: Introduction to bacterial genetics. The regulation of gene expression at the transcriptional and post-transcriptional level in response to environmental factors Chemotaxis.

Practical: "Antibiotics" in which students follow the growth of bacteria upon treatment with bacteriostatic and bactericidal antibiotics and answer questions about data concerning the mode of action of antibiotic resistance presented in the laboratory manual.

Workshop: "Growth and viable counts" in which the students are given numerical data + growth equations and have to define factors such as (i) dilutions needed to give specific cell numbers, (ii) generations of growth to achieve specific cells numbers (iii) growth rate/doubling time. Designed to give students the skills required to manipulate bacterial cells to achieve correct cell density and growth phase for practical work.

Read more

Year abroad

Going abroad as part of your degree is an amazing experience and a chance to develop personally, academically and professionally.  You experience a different culture, gain a new academic perspective, establish international contacts and enhance your employability.

Students on a four-year degree programme spend a year between Stages 2 and 3 at one of our partner universities in North America, Mainland Europe and South East Asia.  For a full list, please see Go Abroad. Places are subject to availability, language and degree programme.

Progression: To progress to stage 2 you must achieve an overall average of 65% in Stage 1 unless you applied through UCAS for the year abroad option and met the conditions of the entry offer made. If the 65% requirement is not met, you will be transferred to the equivalent three-year programme which is identical except for the year spent away from the University.


Modules may include Credits

To achieve the subject specific and generic learning outcomes students are expected to undertake a full academic year of approved study at one of the designated partner universities with whom we have a Memorandum of Understanding that allows the transfer of ECTS academic credit.

Material studied will be closely relevant to the student's needs (guided by their degree programme specification) and will be determined jointly by the student and the School and is subject to availability within agreements made between UoK and the host institution.

Students may elect to take courses to address areas of weakeness or areas of special interest, especially where there are recognised to be particular strengths or unique emphases in teaching practices or content at the host institution compared with those in the student's UoK modules

Read more

Stage 3

Modules may include Credits


1. Introduction: Outline of how physiological homeostasis and adaptation is achieved in the bacterial cell.

2. Experimental approaches used to study microbial physiology and genetics: "Classical" and "reverse" genetics as applied to the study of bacteria. The use of reporter fusions. Transcriptomic and proteomic analysis of gene expression. Deep sequencing and metagenomics. Protein-nucleic acid interactions.

3. Transcriptional and post-transcriptional regulation of gene expression in bacteria: Transcription and translation in bacteria and the diverse mechanisms by which they are controlled. Phase variation and quorum sensing as modes of gene regulation.

4. Complex signalling and physiological control: Selected examples of physiological control in microorganisms, including the Sigma E envelope stress response pathway, regulation in response to nitrogen availability and nitric oxide stress, sensing, and detoxification mechanisms.

5. Microbial biodiversity at the physiological and biochemical level: Diversity of respiratory adaptations. Light harvesting: purple bacteria & cyanobacteria. Photosynthetic electron transport in purple bacteria & cyanobacteria.


Practical on E. coli demonstrating how the envelope stress response factor Sigma E and it's sRNA-controlled target regulate gene expression at the post-transcriptional level using lacZ reporter fusions.


Group presentation of a research paper relating to topic areas in "Complex signalling and physiological control" or "Microbial biodiversity at the physiological and biochemical level"

Read more

The module introduces the student to cell cycle and teaches how its precise regulation is essential for all life. The course will introduce to the students the current understanding of cellular reproduction and how it emerged. The initial lectures will describe the important breakthroughs in cell cycle research in their historical and experimental context. The course will go on to give the students a detailed understanding of the key events that occur and how they are regulated by mechanisms conserved from yeast to man. Key topics that will be discussed include:

• Mitotic kinases (including Cdks, Polo, aurora).

• Microtubule reorganisation (including spindle formation and regulation).

• Actin reorganisation (including regulation of cell growth, endocytosis, and cell division)

• Checkpoints (including Spindle assembly checkpoint, DNA damage checkpoint).

• Meiosis.

• Apoptosis.

• Organelle reorganisation (e.g. nuclear and golgi reorganisation).

• Cancer and the cell cycle.

• Cell cycle related pathologies.

The final lectures will then introduce the students to how generating computer models of the cell cycle are playing a crucial role in defining novel avenues for research into therapies for cell cycle related diseases.

Read more

Early in the Autumn term, projects are assigned to students by the project co-ordinator (a member of academic staff), where possible in accordance with student choice. Students then meet with their project supervisor to discuss the objectives of the project and obtain guidance on background reading. During the Autumn term students write a brief formative literature review on the project topic providing them with a good background before embarking on the project work.

The main project activities take place in the Spring term. Students taking laboratory projects spend 192 hours (24 hours per week for 8 weeks) in the lab planning, carrying out and documenting experiments. A further 108 hours are allowed for background reading and report writing. There are informal opportunities to discuss the project work and relevant literature with the supervisor and other laboratory staff. Formal meetings may be arranged at the discretion of the student and supervisor. Students undertaking non-laboratory projects are based in the library or, occasionally, in the laboratory; they are expected to dedicate 300 hours to their project work. Non-laboratory students are strongly encouraged to meet with the supervisor at least once a week to discuss progress and ideas and to resolve problems. At the end of the formal project time, students are allowed time to complete the final project report, although they are encouraged to start writing as early as possible during the Spring term. The supervisor provides feedback on content and style of a draft of the report. In addition, students are expected to deliver their findings in presentation lasting 10 minutes with 5 minutes of questions.

Organisation and Content:

Projects are designed by individual members of staff in keeping with their research interests and fall into one of four categories:

• Wet/Dry Laboratory and Computing: practical research undertaken in the teaching laboratories, or on computers followed by preparation of a written report

• Dissertation: library-based research leading to production of a report in the style of a scientific review

• Business: development of a biotechnology business plan

• Communication: similar to dissertation projects but with an emphasis on presenting the scientific topic to a general, non-scientist audience

Read more

The module begins by overviewing the diverse mechanisms used by cells to communicate, considering the main modes of cell-cell communication, the major classes of signalling molecules and the receptor types upon which they act. It then focuses on nuclear, G-protein coupled, and enzyme linked receptors covering in molecular detail these receptors and their associated signal transduction pathways.


Principles of Cell Signalling

Cell Adhesion and Cell Communication (adhesion and gap junctions)

Signalling Molecules: hormones, neurotransmitters, growth factors

Receptor Types: Nuclear, G-protein coupled, Ion-channel linked, Enzyme-linked

Nuclear Receptors:

Cellular location and molecular organisation of receptors. Structure/function/activity relationships. Receptors as sequence-specific DNA binding proteins.

G-Protein Coupled Receptors:

Receptors coupled to heterotrimeric guanine nucleotide binding proteins (G proteins). Composition and classification of G-proteins, their activation and modulation by toxins and disease.

Second Messengers and Protein Phosphorylation (kinases and phosphatases).

Cyclic Nucleotide-Dependent Systems: G proteins in regulation of adenylyl cyclase-cAMP-protein kinase A (PKA) and guanylyl cyclase-cGMP pathways. Physiological roles e.g. in visual transduction and glycogen metabolism.

Inositol lipids in signal transduction: Regulation of phospholipase C. Inositol polyphosphates (e.g. IP3) and diacylglycerol (DAG) in regulation of Ca++-dependent kinases. Roles in specific cellular responses e.g. regulation of protein kinase C.

Interactions of Signalling Pathways:

'Cross-Talk' between different pathways and messenger molecules.

Enzyme Linked Receptors:

Receptor tyrosine kinases (RTKs), e.g. epidermal growth factor receptor (EGF) family and insulin receptor, and their varied roles in cellular metabolism, cell behaviour, development and disease.

Molecular organisation of receptors, autophosphorylation of intracellular domains

Intracellular signalling pathways: activation of monomeric G-protein Ras, leading to activation of the mitogen activated protein (MAP) kinase cascade.

Integration of signalling components: Role of adapter proteins (e.g. GRB2) and their protein-protein interaction domains (SH2, SH3 etc.) in linking ligand-receptor complexes to intracellular proteins.

Practical: Characterisation of G-protein coupled receptors using a cAMP-linked reporter gene assay.

Workshop: Overview of the module in preparation for revision/exam.

Read more

Cells and subcellular compartments are separated from the external milieu by lipid membranes with protein molecules inserted into the lipid layer. The aim of this module is to develop understanding of both the lipid and protein components of membranes as dynamic structures whose functions are integrated in cellular processes.


1. Review of the fluid mosaic model for membrane organisation

a. Experimental evidence for fluidity – lateral/rotational/flip-flop

2. Membrane proteins

a. Types: integral vs peripheral, and their experimental definition. Asymmetry and sidedness. Overview of types of transmembrane proteins, and lessons on prevalence and functions from genome analysis

b. Transmembrane protein function exemplified through transporters. Structures of channel proteins and carrier proteins, their mechanisms and disease links

c. Monotopic membrane proteins: exposed on one side of the membrane examples and structures

d. Generation of bitopic and monotopic proteins by differential exon usage in a single gene, e.g. NCAM.

e. Peripheral membrane proteins. Domains that allowInteraction with the lipid bilayer

2. Membrane lipids

a. Types: phospholipids, sphingolipids and sterols; in vivo distributions.

b. Formation of bilayers: evidence for bilayer structures.

c. Sidedness and asymmetry of lipids: dynamics and phases.

d. Pointers to membrane lipid metabolism: phospholipases and signalling; metabolic defects and disease.

3. The in vivo structure of a mammalian plasma membrane

a. The red cell membrane: observation of the requirements of such a membrane and how those requirements are not met in certain disease states (spherocytosis, elliptocytosis and pyropiokilocytosis). The putative CO2 metabolon. Structure of the red cell membrane and its associated cytoskeleton: the spectrin/ankyrin/actin system.

b. The membrane skeleton as a mechanism for restricting the mobility of membrane proteins in the plane of a membrane: evolutionary considerations and disease states in other cell types e.g. ankyrin-linked dysfunction of cardiac ion transport in heart diseases.


An exploration of the red cell membrane focusing on the anion transporter. The practical will include computer analysis of the sequence of the anion transporter to predict its structure in relation to experimental data from the practical. An additional aspect of this practical will be recapitulation of the use of some techniques widely used in final year projects (SDS gel and blotting).

Workshop: exam preparation

Supervisions: Problem solving based on past exam papers.

Read more

Bacterial pathogens:

1. Microbial pathogenicity: variations on a common theme.

2. Methodology of studying bacterial pathogenesis.

3. Virulence factors including toxins and adhesins.

4. Mechanisms of Pathogenesis.

5. Applications of virulence factors in the treatment and prevention of disease.

Viral pathogens:

1. Viruses and Human Disease - transmission and spread, overview of important human virus infections, mechanisms of transmission (Aerosol, Oro-fecal, Sexual etc.), epidemiology - patterns of endemic and epidemic disease.

2. Mechanisms of Pathogenesis - spread in the body, disease mechanisms, mechanisms of cell killing (Herpes simplex and Polio), immunopathology and auto-immune disease.

3. Virus infection – long term consequences for the host, escape through mutation and natural selection, disabling the immune system, avoidance mechanisms.

4. Viruses and Cancer - mechanisms of virus transformation (EBV, Retroviruses & Papilloma), viruses and human cancer (Cervical carcinoma, Hepatocellular Carcinoma & Burkitt Lymphoma).

Human fungal pathogens:

1. Fungi and Human Disease - overview of major human fungal infections, clinical picture, diagnosis and mechanisms of transmission, epidemiological aspects of fungal infections.

2. Mechanisms of Pathogenesis - adherence, invasion of eukaryotic cells, morphogenesis, virulence factors: Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, Histoplasma capsulatum.

3. Whole genome analysis of fungal pathogens

4. Host resistance to infection and antifungal chemotherapy - host defense mechanisms to fungal infections, role of the humoral and cellular immune response, antifungal chemotherapy: azoles, polyenes, echinocandines and antimetabolites, future developments for the treatment of fungal infections.

Eukaryotic pathogens (parasites):

1. Parasites and pathogenicity, transmission and diversity.

2. Definitions on parasitic lifestyle.

3. Investigations on worldwide parasitic outbreaks (e.g. malaria, trypanosomiasis, cryptosporidiosis)

and their socio-economical effects.

Read more

Since the discovery of HIV, astonishing progress has been made in our understanding of how the immune system functions. The aim of this Advanced Immunology module is to review topical aspects of this fascinating subject, placing emphasis on the regulation of the immune response, and the role of dysfunctional immune systems in the aetiology of a variety of disease states. Students will be expected to devote time to private study, consulting course texts, reviews and primary literature.

Topics to include –

Antigen processing and presentation - Role of antigen presenting cells; dendritic cells;

processing and presentation of endogenous and exogenous antigens

Transplantation immunology - Basis of tolerance and graft rejection; clinical applications of transplantation; general and specific immunosuppressive therapy

Hypersensitivity - Type I (IgE-mediated); type II (antibody-mediated cytotoxic); type III (immune-complex mediated) and type IV hypersensitivity; clinical manifestations and therapies for hypersensitivity

Autoimmune disease - Organ-specific autoimmune diseases; systemic autoimmune diseases; induction of autoimmunity; treatment of autoimmune disease

Role of cytokines in the immune system - Properties of cytokines; cytokine receptors; cytokine-related diseases, including inherited immunodeficiencies; therapeutic applications of cytokines and their receptors

Cell migration and inflammation - Lymphocyte recirculation; role of adhesion molecules; neutrophil and lymphocyte extravasation; the inflammatory process; chronic inflammatory diseases

Tumour immunology - Tumour-specific and associated antigens; immune response to tumours; tumour evasion of immune responses; cancer immunotherapy,

Applied Immunology - appears throughout the lecture series

Autophagy and the Microbiome

Read more

This module focuses on the endocrine system, which in conjunction with the nervous system, is responsible for monitoring changes in an animal's internal and external environments, and directing the body to make any necessary adjustments to its activities so that it adapts itself to these environmental changes.

The emphasis will be on understanding the underlying principles of endocrinology, the mechanisms involved in regulating hormone levels within tight parameters in an integrated manner and the central importance of the hypothalamic-pituitary axis.

During the lectures each major endocrine gland or functional group of glands will be explored in turn and specific clinical disorders will be used to illustrate the role of the endocrine organs in the maintenance of whole body homeostasis. The systems studied will include the following: thyroid gland, parathyroid gland and bone metabolism, adrenal gland, renal hormones (water and salt balance), pancreatic hormones, gut hormones and multiple endocrine neoplasia, gonadal function and infertility.

Consideration will be given to the methods available for the diagnosis of specific endocrine diseases, including the measurement of electrolyte and hormone levels, and the role of dynamic testing.

The role of the endocrine system in integrating metabolic pathways will be emphasised throughout the module and particular scenarios such as infertility, diabetes mellitus

Read more

A. Bioinformatics Data sources & Sequence analysis:

Databases and data availability. Using sequence data for analysis – sequence searching methods, multiple sequence alignments, residue conservation, Phylogenetics, Protein domains and families (e.g. Pfam, Interpro).

B. Protein Bioinformatics Methods

Protein structure and function prediction. Prediction of binding sites/interfaces with small ligands and with other proteins. Bioinformatics analyses using protein data.

C. Genomics

An introduction to DNA analysis methods moving onto omics approaches, primarily focussing on the data available from DNA sequencing – how it can be used to compare genomes (comparative and functional genomics). Metagenomics and transcriptomics will also be covered.

Read more

BI639 Frontiers in Oncology

This module introduces the basic principles of cancer biology and cancer therapy. It will explain the characteristics of cancer and why the development of more effective anti-cancer therapies is so extremely challenging. The module includes interactive discussions on a number of recent scientific publications that highlight the relevant and important issues at the frontiers of cancer research today.

Part A: survey of the leading issues in oncology

origin of cancer

cancer biology

cancer therapies

Part B: fundamental methods applied in oncological research

Key historical methods

Current standard techniques

Novel methods

Part C: oncology research design

Grant writing

Oral presentation

Research review and evaluation

Read more

The Molecular Biology of Cancer: Regulation of gene expression; Growth factor signalling and oncogenes; Growth inhibition and tumour suppressor genes; the Cell Cycle and apoptosis.

Cancer stem cells and differentiation; chemo-resistance and metastasis.

DNA structure and stability: mutations versus repair.

Tumour immunology; targeted cancer therapies and clinical trial design.

Read more

The module is divided into three roughly equal sized units, each dealing with a specific aspect of neurobiology. Throughout, both the normal system and diseases and disorders that arise as a consequence of abnormalities will be covered.

Unit 1: Development of the Nervous System

Looks at how the complex and intricately wired nervous system develops from a simple sheet of neuroepithelial cells by addressing the cellular and molecular basis of:

1. Neurulation (formation of the brain and spinal cord)

2. Nerve cell proliferation (Neurogenesis)

3. Differentiation and survival of nerve cells

4. Axon growth and guidance

5. Synapse formation (Synaptogenesis)

Unit 2: Signalling at the Synapse

Considers the molecules and mechanisms involved in transmission of signals between nerve cells:

1. Neurotransmitters and neuromodulators

2. Molecular mechanisms of transmitter release

3. Neurotransmitter receptors and transporters

Unit 3: The Brain and Behaviour

Explores how the nervous system controls a variety of behaviours including:

1. Learning and memory

2. Sleep and dreaming

Read more

The module overviews the importance of studying ageing, the organisms and methods used to do so. It considers how organisms age, together with providing a detailed understanding of the processes and molecular mechanisms that govern ageing.


1. Importance and principles of ageing research

2. Why do organisms age and theories of ageing: e.g. Damage theory, telomeres, genetics and trade off theories.

3. How ageing and lifespan is measured.

4. Overview of processes and pathways controlling ageing.

Methods in ageing research

1. Model Organisms: Benefits and problems associated with studying ageing in model organisms, including: yeast, worms, flies, mice, primates.

2. Systems approaches to studying ageing: e.g. high throughput DNA/RNA sequencing, high throughput proteomics and, metabolomics. Pros and cons of these methods, what we have learned from them?

Signalling pathways that control ageing

1. Insulin signalling pathway and Target of Rapamycin (ToR) pathway.

2. Organisation of pathways and the molecules involved, how they were discovered to be implicated in lifespan and ageing, ways of modelling and studying their molecular detail in animals e.g. genetic/ epistasis analysis.

3. The processes downstream of these pathways that allow them to control lifespan/ageing e.g. stress resistance, autophagy, reduced translation, enhanced immunity etc.

4. Cross-talk between pathways.

5. Dietary restriction, lifespan and ageing.

6. How dietary restriction works in different organisms, what signalling pathways and processes it affects.

Diseases of ageing

1. What these are e.g. Alzheimer's, Huntington's.

2. Overview of 'normal ageing' associated processes e.g. muscle weakening.

3. How they can be studied in model organisms and the importance of ageing research for treating these disorders.

Ethics of ageing research

1. Pros and cons of studying ageing with a goal of extending human lifespan e.g. insurance, health system, social, psychological implications.

Read more

This module is designed to provide students across the university with access to knowledge, skill development and training in the field of entrepreneurship with a special emphasis on developing a business plan in order to exploit identified opportunities. Hence, the module will be of value for students who aspire to establishing their own business and/or introducing innovation through new product, service, process, project or business development in an established organisation. The module complements students' final year projects in Computing, Law, Biosciences, Electronics, Multimedia, and Drama etc.

The curriculum is based on the business model canvas and lean start up principles (Osterwalder and Pigneur 2010) on designing a business plan for starting a new venture or introducing innovation in an established organisation. It includes the following areas of study:

• The new business planning process and format, developing and evaluating the business idea, producing a business plan, which includes four main sections, namely, business concept, marketing plan, operational plan and financial plan.

• Researching internal and external environment – market research, value co-creation with customers, company’s macro (i.e. PESTEL) and industry (Porter’s five forces) environment analysis, internal company analysis (Resource Based View), external collaborator analysis, and SWOT

• Developing the business concept – Identifying/developing the value proposition, specifying the business offer (i.e. use product anatomy analysis for presentation), deciding an appropriate ownership structure, laying out mission, aims and objectives (i.e. using SMART), and identifying legal formalities including intellectual property strategies.

• Developing the marketing plan – Identifying target customer groups, designing customer relationship management strategies and distribution channels, planning the sales and marketing processes, customer perceptions and customer care, developing quality standards for the business (i.e. using 7 Ps analysis for presentation).

• Developing the operation plan – Identifying key activities to be carried out, matching key activities with resources for an effective and efficient use of resources, planning and employing staff, planning and obtaining premises, physical and financial resources; phased implementation of the business plan.

• Developing the financial plan – Identifying appropriate sources of finance, and evaluating and managing the financial viability of a business by developing Forecast cash flow statement, Sales and Profit account and Profit and Loss Account, a description of the composition of the balance sheet, financial indicator- Breakeven analysis, by highlighting underlying assumptions.

Read more

This module will inform students how climate has influenced the diversity of life on Earth, from past to present, and its likely future impacts. We will begin with a summary of the physical science basis of contemporary climate change and the role that anthropogenic factors have played since the commencement of the industrial era. We will then explore the biological and ecological impacts of climate change on individual organisms, populations and communities, with particular emphasis given to understanding how species are responding. The module will then explore how conservation biologists are using particular interventions to ameliorate the most harmful and destabilising effects of climate change. From a more general perspective, the social, economic and political ways in which climate change can be mitigated will be assessed

Read more

Genetics forms the basis of the diversity of life on earth, and is fundamental to biodiversity, speciation, evolutionary ecology, and has become recognized to be vital to the successful restoration of endangered species. An understanding of the evolutionary processes that foster biodiversity and genetic diversity is essential for modern conservation biologists, across timescales ranging from a few generations to millions of years. Students will gain an understanding of the importance of genetic processes and evolutionary mechanisms within the context of conservation.

Read more

The module is designed as a bridging module between more biological elements of the BSc programme and the more socio-cultural anthropology courses students take as part of that programme. Being largely a broad survey of human evolutionary biology and identity, it will serve to introduce the more biological students to arguments and materials that will place their biological understanding within a broader framework of ideas about what makes people who and what they are and encourage them to explore the socio-cultural aspects of biological science. For the more socio-cultural BA students the module provides an opportunity to consolidate biological understanding from the Foundations of Biological Anthropology module and learn how to assess the assumptions and limitations of biology in the understanding of human behaviour. We will cover topics such as the human fossil record, human variation, what makes us human and ecological adaptation. By the end of the module the student should have knowledge of the basic principles of biological anthropology, an understanding of human identity, and be able to relate those ideas to wider concepts in biology. The student will be given an overview of the hominin fossil record and its interpretation, and receive in depth study of the different biological and social aspects that define us as human and the evolution of human life histories. The student will be introduced to the genetic and phenotypic variation of the modern human species, how humans have adapted to particular environments, and the importance diet played in human evolution. The student will also acquire some of the practical skills of data collection currently used by biological anthropologists.

Read more

This module will provide the fundamental theoretical and comparative perspective that lies at heart of biology, with a particular focus on the order Primates. Particular attention will be paid to the evolutionary history of the primates and comparative primate (skeletal) anatomy, both placed in an evolutionary ecological context (e.g. a consideration of dentition in relation to diet and feeding; post-cranial anatomy in relation to locomotion and phylogenetic trends). Extensive use of casts of primate skeletal material will provide hands-on ‘experiential’ learning. The module will provide a detailed treatment of natural and sexual selection as key components of evolutionary theory that shape the adaptations of organisms, and the way adaptations are used to make sense of the diversity of organisms with particular reference to the primates. It complements, and is complemented by, SE580 Primate Behaviour and Ecology.

Read more

Teaching and assessment

Teaching includes lectures, laboratory classes, workshops, problem-solving sessions and tutorials. You have an Academic Adviser who you meet with at regular intervals to discuss your progress, and most importantly, to identify ways in which you can improve your work further so that you reach your full potential.

Most modules are assessed by a combination of continuous assessment and end-of-year exams. Exams take place at the end of the academic year and count for 50% or more of the module mark. Stage 1 assessments do not contribute to the final degree classification, but all stage 2 and 3 assessments do, meaning that your final degree award is an average of many different components. On average, 29% of your time is spent in an activity lead by an academic; the rest of your time is for independent study.

Programme aims

The programme aims to:

  • instil a sense of enthusiasm for the application of different methods and disciplines to biology, confront the scientific, moral and ethical issues raised and engage in critical assessment of the subject material covered
  • provide a broad and balanced foundation of the science that underpins general biology and methodology in a modern society. This includes a detailed knowledge of the biological techniques and methods of assay, analysis and examination used by biologists, together with the biomolecular and organismal knowledge required to understand life at all levels of complexity
  • provide a stimulating, research-active environment in which you are supported and motivated to achieve your academic and personal potential
  • educate you in the theoretical and practical aspects of biology
  • facilitate learning through a variety of teaching and assessment methods
  • give you the ability to undertake an independent research project
  • prepare you for further study, or training, and employment in biology and non-biology based careers, by developing your transferable and cognitive skills
  • develop the qualities needed for employment in situations requiring the exercise of professionalism, independent thought, personal responsibility and decision making in complex and unpredictable circumstances
  • allow you to study biology at a university abroad
  • experience and gain knowledge of the scientific working practices and culture of another country
  • provide access to as wide a range of students as practicable.

Learning outcomes

Knowledge and understanding

You gain knowledge and understanding of:

  • the chemistry that underlies biochemical reactions and the techniques used to investigate them
  • the principles that determine the three-dimensional structure of biological macromolecules and be able to explain detailed examples of how structure enables function
  • the molecular basis of genetics, and be able to explain some detailed examples
  • gene expression, with a detailed knowledge of specific examples: the structure, arrangement, expression, and regulation of genes and relevant experimental methods
  • a wide range of cells (prokaryotic and eukaryotic) and be able to explain critically how they develop, how their properties suit them for their biological function, and how they could be investigated experimentally
  • experimental methods for the investigation of relevant areas of biochemistry, organismal biology, ecology and molecular biology
  • the chemical and thermodynamic principles underlying biological catalysis and the role of enzymes and other proteins in determining the function and fate of cells and organisms
  • the analysis of the impact of external influences on growth, development and reproduction, and explain reproductive strategies
  • the interactions of structure and metabolic function at cellular and organismal levels
  • the significance of internal and external influences on the integration of metabolism for survival and health
  • the methods and principles underlying taxonomy and classification
  • the principles and processes governing interactions of organisms and their environment.

Intellectual skills

You gain the following intellectual abilities:

  • recognise and apply subject-specific theories, paradigms, concepts or principles. For example, the relationship between genes and proteins, or the nature of essential nutrients in microbes, cells, plants and animals
  • analyse, synthesise and summarise information critically, including published research or reports
  • obtain and integrate several lines of subject-specific evidence to formulate and test hypotheses
  • apply subject knowledge and understanding to address familiar and unfamiliar problems
  • recognise the moral and ethical issues of investigations and appreciate the need for ethical standards and professional codes of conduct.

Subject-specific skills

You gain subject-specific skills in the following:

  • designing, planning, conducting and reporting on investigations, which may involve primary or secondary data such as from a survey database. Data may be obtained through individual or group projects; obtaining, recording, collating and analysing data using appropriate techniques in the field and/or laboratory, working independently or in a group in a responsible, safe and ethical manner. For example, students must pay due attention to risk assessment and procedures for obtaining informed consent
  • an appreciation of the complexity and diversity of life processes through the study of organisms, their molecular, cellular and physiological processes, their genetics and evolution, and the interrelationships between them and their environment
  • the ability to handle biological material and chemicals in a safe way, thus being able to assess any potential hazards associated with biological experimentation
  • to perform risk assessments prior to the execution of an experimental protocol
  • to be able to use basic and advanced experimental equipment in executing the core practical techniques used by biologists
  • to find information on biological topics from a wide range of information sources and maintain an effective information retrieval strategy
  • to plan, execute and assess the results from experiments
  • to identify the best method for presenting and reporting on biological investigations using written, data manipulation/presentation and computer skills
  • to be aware of the employment opportunities for biology graduates who have experience of a year abroad.

Transferable skills

You gain transferable skills in the following:

  • identifying individual and collective goals and responsibilities and performing in a manner appropriate to these roles
  • recognising and respecting the views and opinions of other team members and negotiating skills
  • evaluating performance as an individual and a team member, and evaluating the performance of others
  • receiving and responding to a variety of sources of information: textual, numerical, verbal and graphical
  • communicating to a variety of audiences using a range of formats and approaches
  • citing and referencing work in an appropriate manner
  • sample selection, recording and analysing data in the field and/or the laboratory; validity, accuracy, calibration, precision, replicability and uncertainty during collection
  • preparing, processing, interpreting and presenting data, using appropriate qualitative and quantitative techniques, statistical programmes, spreadsheets and programs for presenting data visually
  • solving problems by a variety of methods including the use of computers
  • using the internet and other electronic sources critically as a means of communication and a source of information
  • the ability to work independently, time management and organisation skills
  • identifying and working towards targets for personal, academic and career development
  • developing an adaptable, flexible, and effective approach to study and work
  • be able to work and  communicate effectively within a different cultural setting.


Graduate destinations

Our graduates have gone on to work in:

  • commercial, government and hospital laboratories
  • scientific publishing
  • science writing
  • event management
  • science communication.

Recent graduates have also worked in a wide range of non-scientific careers including teaching, marketing, sales, banking, accountancy, the police force and social work.

Help finding a job

The School of Biosciences runs employability events with talks from alumni outlining their career paths since graduation.

The University has a friendly Careers and Employability Service, which can give you advice on how to:

  • apply for jobs
  • write a good CV
  • perform well in interviews.

Career-enhancing skills

You graduate with an excellent grounding in scientific knowledge and extensive laboratory experience. In addition, you also develop the key transferable skills sought by employers, such as:

  • excellent communication skills
  • work independently or as part of a team
  • the ability to solve problems and think analytically
  • time management.

You can also gain new skills by signing up for one of our Kent Extra activities, such as learning a language or volunteering.

Independent rankings

Of Biology students who graduated in 2015, 89% were in work or further study within six months (DLHE).

According to Which? University (2017), the average starting salary for graduates of this degree is £18,000.

95% of our final year biology students were either satisfied or very satisfied with the overall quality of their degree programme (NSS 2016). This results ranks us 13th out of 81 UK universities.

Professional recognition

All of our Biology degrees are accredited by the Royal Society of Biology (RSB), and our four-year Biology with a Sandwich Year programme has Advanced Accreditation. Students graduating from Society of Biology recognised courses are eligible for Associate Membership and are entitled to two years’ Associate Membership at half price.

Entry requirements

Home/EU students

The University will consider applications from students offering a wide range of qualifications, typical requirements are listed below. Students offering alternative qualifications should contact the Admissions Office for further advice. It is not possible to offer places to all students who meet this typical offer/minimum requirement.

Qualification Typical offer/minimum requirement
A level

ABB including Biology or Human Biology grade B or Double Award Applied Science at grade BB including the practical endorsement of any science qualifications taken.


Mathematics grade C

Access to HE Diploma

The University will not necessarily make conditional offers to all access candidates but will continue to assess them on an individual basis. If an offer is made candidates will be required to pass the Access to Higher Education Diploma with 36 level 3 credits at distinction and 9 at merit, and to obtain a proportion of the total level 3 credits in particular subjects at distinction or merit grade.

BTEC Level 3 Extended Diploma (formerly BTEC National Diploma)

The university will consider applicants holding BTEC National Diploma and Extended National Diploma Qualifications (QCF; NQF;OCR) on a case by case basis. Typical offers when made are Distinction*, Distinction, Distinction. Please contact us via the enquiries tab for further advice on your individual circumstances.

International Baccalaureate

34 points overall or 16 points at HL including Biology 5 at HL or 6 at SL and Mathematics 4 at HL or SL

International students

The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country.

If you need to increase your level of qualification ready for undergraduate study, we offer a number of International Foundation Programmes.

Meet our staff in your country

For more advice about applying to Kent, you can meet our staff at a range of international events.

English Language Requirements

Please see our English language entry requirements web page.

Please note that if you are required to meet an English language condition, we offer a number of 'pre-sessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme. 

General entry requirements

Please also see our general entry requirements.


The 2018/19 annual tuition fees for this programme are:

UK/EU Overseas
Full-time £9250 £18400

For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* 

Your fee status

The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.

Fees for Year in Industry

For 2018/19 entrants, the standard year in industry fee for home, EU and international students is £1,385

Fees for Year Abroad

UK, EU and international students on an approved year abroad for the full 2018/19 academic year pay £1,385 for that year. 

Students studying abroad for less than one academic year will pay full fees according to their fee status. 

General additional costs

Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.


University funding

Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details. 

Government funding

You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.


General scholarships

Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.

The Kent Scholarship for Academic Excellence

At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence. 

For 2018/19 entry, the scholarship will be awarded to any applicant who achieves a minimum of AAA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages

The scholarship is also extended to those who achieve AAB at A level (or specified equivalents) where one of the subjects is either Mathematics or a Modern Foreign Language. Please review the eligibility criteria.

I’d love to be able to do a PhD at some point, I know I’ve still got a long way to go but my studies at Kent have given me a great start.

The Key Information Set (KIS) data is compiled by UNISTATS and draws from a variety of sources which includes the National Student Survey and the Higher Education Statistical Agency. The data for assessment and contact hours is compiled from the most populous modules (to the total of 120 credits for an academic session) for this particular degree programme. 

Depending on module selection, there may be some variation between the KIS data and an individual's experience. For further information on how the KIS data is compiled please see the UNISTATS website.

If you have any queries about a particular programme, please contact information@kent.ac.uk.