Kent Business School

Contact Information

Address

Room 303
Sibson
Kent Business School
Canterbury
CT2 7FS

11:00 - 12:00 Monday 11:00 - 12:00 Friday

back to top

Publications

Also view these in the Kent Academic Repository

Article
Zhou, Z. et al. (2017). Estimation of cardinality constrained portfolio efficiency via segmented DEA. Omega [Online]. Available at: https://doi.org/10.1016/j.omega.2017.03.006.
Gong, B. et al. (2017). Stochastic Spline-Collocation Method for Constrained Optimal Control Problem Governed by Random Elliptic PDE. International Journal of Numerical Analysis and Modeling [Online] 14:627-645. Available at: http://www.math.ualberta.ca/ijnam/Volume-14-2017/No-4-17/2017-45-09.pdf.
ZHOU, Z. et al. (2017). DEA Frontier Improvement and Portfolio Rebalancing: An Application of China Mutual Funds on Considering Sustainability Information Disclosure. European Journal of Operational Research [Online]. Available at: https://doi.org/10.1016/j.ejor.2017.07.010.
Zhou, Z. et al. (2017). Carbon emission performance evaluation and allocation in Chinese cities. Journal of Cleaner Production [Online] 172:1254-1272. Available at: http://dx.doi.org/10.1016/j.jclepro.2017.10.208.
Shen, W. et al. (2016). Increasing discrimination of DEA evaluation by utilizing distances to anti-efficient frontiers. Computers and Operations Research [Online] 75:163-173. Available at: http://dx.doi.org/10.1016/j.cor.2016.05.017.
Gong, B. et al. (2016). A Priori Error Estimate of Stochastic Galerkin Method for Optimal Control Problem Governed by Random Parabolic PDE with Constrained Control. International Journal of Computational Methods [Online] 13. Available at: http://dx.doi.org/10.1142/S0219876216500286.
Wang, W., Liu, W. and Mingers, J. (2015). A Systemic Method for Organisational Stakeholder Identification and Analysis Using Soft Systems Methodology (SSM). European Journal of Operational Research [Online] 246:562-574. Available at: http://dx.doi.org/10.1016/j.ejor.2015.05.014.
Liu, W., Xu, F. and Mingers, J. (2015). New Journal Classification Methods Based on the Global h-Index. Information Processing and Management [Online] 51:50-61. Available at: http://dx.doi.org/10.1016/j.ipm.2014.10.011.
Simper, R. et al. (2015). How relevant is the choice of risk management control variable to non-parametric bank profit efficiency analysis? The case of South Korean banks. Annals of Operations Research [Online] 250:105-127. Available at: https://doi.org/10.1007/s10479-015-1946-x.
Du, N., Wang, H. and Liu, W. (2015). A Fast Gradient Projection Method for a Constrained Fractional Optimal Control. Journal of Scientific Computing [Online] 68:1-20. Available at: https://doi.org/10.1007/s10915-015-0125-1.
Ning, D., Liang, G. and Liu, W. (2014). Adaptive Finite Element Approximation for an Elliptic Optimal Control Problem with Both Pointwise and Integral Control Constraints. Journal of Scientific Computing [Online] 60:160-183. Available at: http://dx.doi.org/10.1007/s10915-013-9790-0.
Yang, G. et al. (2014). Extended Utility and DEA Models without Explicit Input. Journal of the Operational Research Society [Online] 65:1212-1220. Available at: https://doi.org/10.1057/jors.2013.68.
Xu, F., Liu, W. and Rousseau, R. (2014). Introducing sub-impact factor (SIF-) sequences and an aggregated SIF-indicator for journal ranking. Scientometrics [Online] 102:1577-1593. Available at: http://dx.doi.org/10.1007/s11192-014-1401-9.
Ma, C. et al. (2014). Game cross efficiency for systems with two-stage structures. Journal of Applied Mathematics [Online] 2014. Available at: http://dx.doi.org/10.1155/2014/747596.
Xu, F. et al. (2013). Game perspectives of DEA models and their duals. Journal of Applied Mathematics [Online] 2013. Available at: http://dx.doi.org/10.1155/2013/879325.
Zhou, Z. et al. (2013). A bargaining game model for efficiency decomposition in the centralized model of two-stage systems. Computers and Industrial Engineering [Online] 64:103-108. Available at: http://dx.doi.org/10.1016/j.cie.2012.09.014.
Zhou, Z. et al. (2013). Further study of production possibility set and performance evaluation model in supply chain in DEA. Annals of Operations Research [Online] 206:585-592. Available at: http://dx.doi.org/10.1007/s10479-013-1365-9.
Yang, G. et al. (2013). Cross-efficiency aggregation in DEA models using the evidential-reasoning approach. European Journal of Operational Research [Online] 231:393-404. Available at: http://dx.doi.org/10.1016/j.ejor.2013.05.017.
Du, N., Shi, J. and Liu, W. (2013). An effective gradient projection method for stochastic optimal control. International Journal of Numerical Analysis and Modeling [Online] 10:757-774. Available at: http://www.math.ualberta.ca/ijnam/Volume-10-2013/No-4-13/2013-04-01.pdf.
Liu, W. et al. (2012). Developing a Performance Management System Using Soft Systems Methodology: A Chinese Case Study. European Journal of Operational Research [Online] 223:529-540. Available at: http://dx.doi.org/10.1016/j.ejor.2012.06.029.
Zhang, D. et al. (2011). Performance Impact of Research Policy at the Chinese Academy of Sciences. Research Policy [Online] 40:875-885. Available at: http://dx.doi.org/10.1016/j.respol.2011.03.010.
Chen, Y. et al. (2011). A Legendre–Galerkin Spectral Method for Optimal Control Problems Governed by Stokes Equations . SIAM Journal on Numerical Analysis [Online] 49:1625-1648. Available at: http://dx.doi.org/10.1137/080726057.
Liu, W. et al. (2011). A Study of DEA Models without Explicit Inputs. Omega [Online] 39:472-480. Available at: http://dx.doi.org/10.1016/j.omega.2010.10.005.
Liu, W. et al. (2010). The 3E Methodology for Developing Performance Indicators for Public Sector Organizations. Public Money & Management [Online] 30 :305-312. Available at: http://dx.doi.org/10.1080/09540962.2010.509180.
Xu, F., Liu, W. and Mingers, J. (2010). Modifications of the g-index to improve its discriminatory power. Geomatics and Information Science of Wuhan University 35:23-28.
Liu, W., Gong, W. and Yan, N. (2009). A new finite element approximation of a state-constrained optimal control problem. Journal of Computational Mathematics 27:97-114.
Mingers, J., Liu, W. and Meng, W. (2009). Using SSM to Structure the Identification of Inputs and Outputs in DEA. Journal of the Operational Research Society [Online] 60:168-179. Available at: http://dx.doi.org/10.1057/palgrave.jors.2602542 .
Liu, W. and Yan, N. (2009). LOCAL A POSTERIORI ERROR ESTIMATES FOR CONVEX BOUNDARY CONTROL PROBLEMS. SIAM Journal on Numerical Analysis [Online] 47:1886-1908. Available at: http://dx.doi.org/10.2307/27862714.
Liu, W., Meng, W. and Zhang, D. (2008). A study of Multi-level DEA Models and Applications . Chinese Journal of Management Science 16:148-154.
Ebmeyer, C. and Liu, W. (2008). Finite Element Approximation of the Fast Diffusion and the Porous Medium Equations. SIAM Journal on Numerical Analysis [Online] 46:2393-2410. Available at: http://dx.doi.org/10.1137/060657728.
Chen, Y. and Liu, W. (2008). A posteriori error estimates for mixed finite element solutions of convex optimal control problems. Journal of Computational and Applied Mathematics [Online] 211:76-89. Available at: http://dx.doi.org/10.1016/j.cam.2006.11.015.
Liu, W., Meng, W. and Zhang, D. (2008). Two-Level DEA Approaches in Research Institute Evaluation. Omega [Online] 36:950-957. Available at: http://dx.doi.org/10.1016/j.omega.2007.12.005 .
Yang, D., Chang, Y. and Liu, W. (2008). A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type. Journal of Computational Mathematics 26:471-487.
Chen, Y. and Liu, W. (2008). A posteriori error estimates of mixed methods for miscible displacement problems. International Journal for Numerical Methods in Engineering [Online] 73:331-343. Available at: http://dx.doi.org/10.1002/nme.2075.
Feng, T., Yan, N. and Liu, W. (2008). Adaptive Finite Element Methods for the Identification of Distribution Parameters in Elliptic Equation. Advances in Computational Mathematics [Online] 29:27-53. Available at: http://dx.doi.org/10.1007/s10444-007-9035-6.
Chen, Y., Yi, N. and Liu, W. (2008). Legendre-Galerkin Spectral Method for Optimal Control Problems Governed by Elliptic Equations. SIAM Journal on Numerical Analysis [Online] 46:2254-2275. Available at: http://dx.doi.org/10.1137/070679703 .
Huang, Y., Li, R. and Liu, W. (2007). Preconditioned descent algorithms for p-Laplacian. Journal of Scientific Computing [Online] 32:343-371. Available at: http://dx.doi.org/10.1007/s10915-007-9134-z.
Liu, W., Meng, W. and Mingers, J. (2007). On framework of research evaluation. Scientific Research Management 28:1-8.
Liu, W., Meng, W. and Li, Q. (2007). 3E Index System for Research Institute Evaluation. Studies in Science of Science 25:908-914.
Li, R., Liu, W. and Yan, N. (2007). A posteriori error estimates of recovery type for distributed convex optimal control problems . Journal of Scientific Computing [Online] 33:155-182. Available at: http://www.springerlink.com/content/mwx7583j79514311/.
Mingers, J., Liu, W. and Meng, W. (2007). Studies on a framework for science-technology evaluation using soft system methodology. Journal of Science Research Management 28:1-8.
Liu, W., Meng, W. and Sharp, J. (2007). A Modified Slacks-Based Measure Model for Data Envelopment Analysis with 'Natural' Negative Outputs and Inputs. Journal of the Operational Research Society [Online] 58:1672-1677. Available at: http://dx.doi.org/10.1057/palgrave.jors.2602318.
Liu, W., Sharp, J. and Wu, Z. (2006). Preference, Production, and Performance in Data Envelopment Analysis. Annals of Operation Research, Performance Evaluation and Beyond: Data Envelopment Analysis Research Frontiers 145:105 - 127.
Liu, W. and Meng, W. (2006). Scale Efficiency Analysis of Research Institutes Using DEA. Scientific Research Management 27:20-25.
Liu, W., Chen, N. and Feng, J. (2006). Sufficient and necessary condition for the convergence of stochastic approximation algorithms. Statistics and Probability Letters 76:203-210.
Liu, W. and Chen, Y. (2006). Error Estimates and Superconvergence of Mixed Finite Element for Quadratic Optimal Control. International Journal of Numerical Analysis and Modeling 3:311-321.
Liu, W., Chen, N. and Feng, J. (2006). Necessary and Sufficient Conditions for Convergence of Stochastic Approximation Algorithms. Probability and Statistics Letter 76:203-210.
Liu, W., Meng, W. and Hu, Z. (2006). Efficiency Evaluation of Basic Research in China. Scientometrics [Online] 69:85 - 101. Available at: http://dx.doi.org/10.1007/s11192-006-0140-y.
Liu, W., Carstensen, C. and Yan, N. (2006). A Posteriori Fe Error Control for P-Laplacian by Gradient Recovery in Quasi-norm. Mathematics of Computation 75:1599-1616.
Liu, W., Carstensen, C. and Yan, N. (2006). A Posteriori Error Estimates For Finite Element Approximation of Parabolic p-Laplacian. SIAM Journal on Numerical Analysis 43:2294 - 2319.
Liu, W., Feng, T. and Gulliksson, M. (2006). Adaptive Finite Element Methods for the Identification of Elastic Constants. Journal of Scientific Computing [Online] 26:217-235. Available at: http://dx.doi.org/10.1007/s10915-004-4935-9.
Sirlantzis, K., Lamb, J. and Liu, W. (2006). Novel Algorithms for Noisy Minimization Problems with Applications to Neural Networks Training. Journal of Optimization Theory and Applications [Online] 129:325-340. Available at: http://dx.doi.org/10.1007/s10957-006-9066-z.
Liu, W., Ebmeyer, C. and Steinhauer, M. (2005). Global regularity in fractional order Sobolev spaces for the p-Laplace equation on polyhedral domains . Journal for Analysis and it's Applications [Online] 24:353-374. Available at: http://dx.doi.org/10.4171/ZAA/1245.
Liu, W., Meng, W. and Li, X. (2005). DEA in Research Evaluation. Management of Science and Technology 26:11-16.
Liu, W. (2005). Adaptive Multi-Meshes in Finite Element Approximation of Optimal Control. Contemporary Mathematics 383:113-132.
Liu, W. and Ebmeyer, C. (2005). Quasi-Norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems. Numerische Mathematik 100:233 -258.
Liu, W. et al. (2004). A Posteriori Error Estimates for Discontinuous Galerkin Time-Stepping Method for Optimal Control Problems Governed By Parabolic Equations. SIAM Journal on Numerical Analysis 42:1032-1061.
Liu, W., Li, R. and Ma, H. (2004). Moving Mesh Method with Error-Estimator-Based Monitor and Its Applications to Static Obstacle Problem. Journal of Scientific Computing 21:31-55.
Liu, W. and Yan, N. (2003). A Posteriori Error Estimates for Optimal Control Problems Governed By Parabolic Equations. Numerische Mathematik [Online] 93:497-521. Available at: http://dx.doi.org/10.1007/s002110100380.
Liu, W., Neittaanmaki, P. and Tiba, D. (2003). Existence For Shape Optimization Problems in Arbitrary Dimension. SIAM Journal on Control and Optimization [Online] 41:1440-1454. Available at: http://dx.doi.org/10.1137/S0363012901388142.
Liu, W. and Yan, N. (2003). A Posteriori Error Estimates For Control Problems Governed by Stokes' Equations. SIAM Journal on Numerical Analysis [Online] 40:1805-1869. Available at: http://dx.doi.org/10.1137/S0036142901384009.
Liu, W., Dai, Y. and Lamb, J. (2003). Novel Supervisor-Searcher Cooperation Algorithms For Minimization Problems With Strong Noise. Optimization Methods and Software [Online] 18:246-264. Available at: http://dx.doi.org/10.1080/1055678031000119364.
Liu, W. and Yan, N. (2003). A Posteriori Error Estimates For Nonlinear Elliptic Control Problems. Application of Numerical Analysis [Online] 47:173-187. Available at: http://dx.doi.org/10.1016/S0168-9274(03)00054-0.
Liu, W. and Yan, N. (2002). A Posteriori Error Estimates for Convex Boundary Control Problems. SIAM Journal on Numerical Analysis [Online] 39:73-99. Available at: http://dx.doi.org/10.1137/S0036142999352187.
Liu, W. and Yan, N. (2002). Quasi-Norm Local Error Estimates For Finite Element Approximation of P-Laplacian. SIAM, Journal on Numerical Analysis [Online] 39:100-127. Available at: http://dx.doi.org/10.1137/S0036142999351613.
Liu, W. and Yan, N. (2002). Quasi-Norm Interpolation Error Estimation and a Posterori Error Estimates for P-Laplacian. SIAM Journal on Numerical Analysis [Online] 40:1870-1895. Available at: http://dx.doi.org/10.1137/S0036142901393589.
Liu, W. et al. (2002). Adaptive Finite Element Approximation For Distributed Elliptic Optimal Control Problems. SIAM Journal on Control and Optimization 41:1321-1349.
Liu, W. and Yan, N. (2001). Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian. Numerische Mathematik [Online] 89:341-378. Available at: http://dx.doi.org/10.1007/PL00005470.
Liu, W. and Yan, N. (2001). Quasi-norm local error estimates for p-laplacian. SIAM Journal on Numerical Analysis [Online] 39:100-127. Available at: http://dx.doi.org/10.1137/S0036142999351613.
Liu, W. and Yan, N. (2001). A Posteriori Error Estimates For Distributed Optimal Control Problems. Advances in Computational Mathematics [Online] 15:285-309. Available at: http://dx.doi.org/10.1023/A:1014239012739.
Liu, W. and Yan, N. (2001). Some a Posteriori Error Estimators for p-Laplacian Based on Residual Estimation or Gradient Recovery. Journal of Scientific Computing [Online] 16:435-477. Available at: http://dx.doi.org/10.1023/A:1013246424707.
Liu, W. and Tiba, D. (2001). Error Estimates in the Approximation of Optimization Problems Governed by Non-Linear Operators. Numerical Functional Analysis and Optimization [Online] 22:953-972. Available at: http://dx.doi.org/10.1081/NFA-100108317.
Liu, W. and Tang, T. (2001). Error Analysis for a Galerkin-Spectral Method With Coordinate Transformation for Solving Singularly Pertubed Problems. Applied Numerical Mathematics [Online] 38:315-345. Available at: http://10.1016/S0168-9274(01)00036-8 .
Liu, W. and Cheng, R. (2001). The Consistency of Estimators in Finite Mixture Models. Scandinavian Journal of Statistics [Online] 28:603-616. Available at: http://dx.doi.org/10.1111/1467-9469.00257.
Liu, W. and Dai, Y. (2001). Minimization Algorithms Based On Supervisor and Searcher Co-operation. Journal of Optimization Theory and Applications [Online] 111:359-379. Available at: http://dx.doi.org/10.1023/A:1011986402461.
Liu, W., Tang, T. and Ma, H. (2001). On Mixed Error Estimates For Elliptic Obstacle Problems. Advances in Computational Mathematics [Online] 15:261-283. Available at: http://dx.doi.org/10.1023/A:1014261013164.
Liu, W. and Yan, N. (2001). Quasi Norm a Posteriori Error Estimates Based on Gradient Recovery or Residual Estimation. Journal of Scientific Computing 16:435-477.
Liu, W. and Yan, N. (2001). Quasi-norm local error estimators for p-Laplacian. SIAM Journal on Numerical Analysis [Online] 39:100-127. Available at: http://dx.doi.org/10.1137/S0036142999351613.
Liu, W. and Yan, N. (2001). Quasi-Norm a Posteriori Error Estimates For Non-Conforming Finite Element Approximation of P-Laplacian. Numerische Mathematik [Online] 89:341-378. Available at: http://dx.doi.org/10.1007/PL00005470.
Liu, W. and Yan, N. (2000). A Posteriori Error Estimates for a Model Boundary Optimal Control Problem. Journal of Computational and Applied Mathematics [Online] 120:159-173. Available at: http://dx.doi.org/10.1016/S0377-0427(00)00308-3.
Liu, W. (2000). Finite element approximationof a nonlinear elliptic equation arising from bimaterial problemsin elastic-plastic mechanics. Numerische Mathematik [Online] 86:491-506. Available at: http://dx.doi.org/10.1007/s002110000157.
Liu, W. and Yan, N. (2000). A Posteriori Error Estimators for a Class of Variational Inequalities. Journal of Scientific Computing [Online] 15:361-393. Available at: http://dx.doi.org/10.1023/A:1011130501691.
Liu, W. and Yan, N. (2000). A posteriori error estimates for some model boundary control problems. Journal of Computational and Applied Mathematics [Online] 120:159-173. Available at: http://dx.doi.org/10.1016/S0377-0427(00)00308-3.
Liu, W., Neittaanmaki, P. and Tiba, D. (2000). On the structural optimization problems. Comptes Rendus De L Academie Des Sciences Serie I-Mathematique [Online] 331:101-106. Available at: http://dx.doi.org/10.1016/S0764-4442(00)00316-5 .
Liu, W. (2000). Finite element approximation of a nonlinear elliptic equation arising from bimaterial problems in elastic-plastic mechanics. Numerische Mathematik [Online] 86:491-506. Available at: http://dx.doi.org/10.1007/s002110000157.
Liu, W. (1999). Degenerate quasilinear elliptic equations arising from bimaterial problems in elastic-plastic mechanics. Nonlinear Analysis: Theory, Methods & Applications [Online] 35:517-529. Available at: http://dx.doi.org/10.1016/S0362-546X(98)00014-5.
Cheng, R. and Liu, W. (1997). A continuous representation of the family of stable law distributions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) [Online] 59:137-145. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-10844273697&partnerID=40&md5=800e83d47971ad8ecf1a0c08b245fdb1.
Robert, C. et al. (1997). On Bayesian analysis of mixtures with an unknown number of components - Discussion. Journal of the Royal Statistical Society: Series B (Statistical Methodology) [Online] 59:758-792. Available at: http://dx.doi.org/10.1111/1467-9868.00095.
Cheng, R. and Liu, W. (1997). Acknowledgement of priority: A continuous representation of the family of stable law distributions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 59:729-729.
Liu, W. and Floudas, C. (1996). Generalized primal-relaxed dual approach for global optimization. Journal of Optimization Theory and Applications [Online] 90:417-434. Available at: http://dx.doi.org/10.1007/BF02190006.
Liu, W. and Shen, J. (1996). A new efficient spectral Galerkin method for singular perturbation problems. Journal of Scientific Computing [Online] 11:411-437. Available at: http://dx.doi.org/10.1007/BF02088955.
Liu, W. and Barrett, J. (1996). Finite element approximation of some degenerate monotone quasilinear elliptic systems. SIAM Journal on Numerical Analysis [Online] 33:88-106. Available at: http://dx.doi.org/10.1137/0733006.
Liu, W. and Floudas, C. (1995). Convergence of the (GOP) algorithm for a large class of smooth optimization problems. Journal of Global Optimization [Online] 6:207-211. Available at: http://dx.doi.org/10.1007/BF01096769.
Liu, W. and Barrett, J. (1995). Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear parabolic equations and variational inequalities. Numerical Functional Analysis and Optimization [Online] 16:1309-1321. Available at: http://dx.doi.org/10.1080/01630569508816675.
Liu, W. and Forbes, R. (1995). Modelling the link between emission current and LMIS cusp length. Applied Surface Science [Online] 87-88:122-126. Available at: http://dx.doi.org/10.1016/0169-4332(94)00528-1.
Barrett, J. and Liu, W. (1994). Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow. Numerische Mathematik [Online] 68:437-456. Available at: http://dx.doi.org/10.1007/s002110050071.
Liu, W. and Barrett, J. (1994). Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities. RAIRO - Modélisation Mathématique et Analyse Numérique [Online] 28:725-744. Available at: http://www.numdam.org/item?id=M2AN_1994__28_6_725_0.
Barrett, J. and Liu, W. (1994). Finite element approximation of the parabolic p-Laplacian. SIAM Journal on Numerical Analysis [Online] 31:413-428. Available at: http://dx.doi.org/10.1137/0731022.
Liu, W. and Barrett, J. (1993). Error bounds for the finite element approximation of a degenerate quasilinear parabolic variational inequality. Advances in Computational Mathematics [Online] 1:223-239. Available at: http://dx.doi.org/10.1007/BF02071387.
Liu, W. and Barrett, J. (1993). Higher-Order Regularity for the Solutions of Some Degenerate Quasilinear Elliptic Equations in the Plane. SIAM Journal on Mathematical Analysis [Online] 24:1522-1536. Available at: http://dx.doi.org/10.1137/0524086.
Liu, W. and Barrett, J. (1993). A Remark on the Regularity of the Solutions of the p-Laplacian and Its Application to Their Finite Element Approximation. Journal of Mathematical Analysis and Applications [Online] 178:470-487. Available at: http://dx.doi.org/10.1006/jmaa.1993.1319.
Liu, W. and Rubio, J. (1993). Optimality conditions for strongly monotone variational inequalities. Applied Mathematics & Optimization [Online] 27:291-312. Available at: http://dx.doi.org/10.1007/BF01314820.
Barrett, J. and Liu, W. (1993). Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law. Numerische Mathematik [Online] 64:433-453. Available at: http://dx.doi.org/10.1007/BF01388698.
Liu, W. and Floudas, C. (1993). A remark on the GOP algorithm for global optimization. Journal of Global Optimization [Online] 3:519-521. Available at: http://dx.doi.org/10.1007/BF01096418.
Liu, W. and Barrett, J. (1993). A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation. Nonlinear Analysis: Theory, Methods & Applications [Online] 21:379-387. Available at: http://dx.doi.org/10.1016/0362-546X(93)90081-3.
Liu, W. and Rubio, J. (1993). A unified optimality condition for eigenvalue problems. Kybernetika [Online] 29:249-255. Available at: http://dml.cz/dmlcz/125105.
Barrett, J. and Liu, W. (1993). Finite element approximation of the p-Laplacian. Mathematics of Computation [Online] 61:523-537. Available at: http://dx.doi.org/10.1090/S0025-5718-1993-1192966-4.
Liu, W. and Rubio, J. (1992). Local convergences and optimal shape design. SIAM Journal on Control and Optimization [Online] 30:49-62. Available at: http://dx.doi.org/10.1137/0330004.
Liu, W. and Rubio, J. (1992). Optimal shape design for systems governed by variational inequalities, part 3: Necessary conditions in the elliptic case. Journal of Optimization Theory and Applications [Online] 74:273-304. Available at: http://dx.doi.org/10.1007/BF00940895.
Liu, W. and Rubio, J. (1991). Maximum principles for optimal controls for elliptic variational inequalities of the second kind. IMA Journal of Mathematical Control and Information [Online] 8:211-230. Available at: http://dx.doi.org/10.1093/imamci/8.3.211.
Liu, W. and Rubio, J. (1991). Optimal shape design for systems governed by variational inequalities, part 2: Existence theory for the evolution case. Journal of Optimization Theory and Applications [Online] 69:373-396. Available at: http://dx.doi.org/10.1007/BF00940650.
Liu, W. and Rubio, J. (1991). Optimal shape design for systems governed by variational inequalities, part 1: Existence theory for the elliptic case. Journal of Optimization Theory and Applications [Online] 69:351-371. Available at: http://dx.doi.org/10.1007/BF00940649.
Book
Liu, W. and Yan, N. (2008). Adaptive Finite Element Methods for Optimal Control Governed by PDEs: C Series in Information and Computational Science 41 . China: Science Press.
Book section
Liu, W. and Sirlantzis, K. (2009). SSC Minimization Algorithms. in: Floudas, C. and Pardalos, P. eds. Encyclopaedia of Optimization (2nd ed.). Springer Verlag, pp. 3662-3665.
Liu, W., Meng, W. and Zhang, T. (2006). Incorporating Value Judgments in DEA. in: Productivity Analysis in the Service Sector using Data Envelopment Analysis. NK Avkiran.
Liu, W. and Sirlantzis, K. (2001). SSC Minimization Algorithms . in: Floudas, C. A. and Pardalos, P. M. eds. Encyclopedia of Optimization. Boston: Kluwer Academic Publishers, pp. 253-257.
Liu, W. and Feng, J. (2001). SSC Minimisation Algorithms for Nonsmooth and Stochastic Optimisation. in: Floudas, C. A. and Pardalos, P. M. eds. Encyclopedia of Optimization. Kluwer academic Publishers, pp. 257-260.
Liu, W. (2001). Generalised primal-relaxed dual approach, GPRD. in: Floudas, C. A. and Pardalos, P. M. eds. Encyclopaedia of Optimization. Kluwer Academic Publishers, pp. 254-257.
Conference or workshop item
Sirlantzis, K. and Liu, W. (2001). The Supervisor-Searcher Co-operation Framework: A Class of Powerful Algorithms for Stochastic Optimisation . in: Euro 2001-European Operational Research Conference, Association of European Operational Research Societies . p. .
Liu, W. (2001). Recent Advances in Mesh Adaptivity for Optimal Control. in: Workshop held at the Weierstrass Institute for Applied Analysis and Stochastics. v, pp. 154-166. Available at: http://dx.doi.org/10.1007/978-3-0348-8233-0_12.
Liu, W. and Barrett, J. (1994). Finite-Element Approximation of Degenerate Quasi-Linear Elliptic and Parabolic Problems. in: 15th Dundee Conference on Numerical Analysis. Longman, pp. 1-16.
Monograph
Mingers, J. et al. (2009). The 3E Methodology for Developing Performance Indicators for Public Sector Organisations. University of Kent Canterbury. Available at: http://dx.doi.org/10.1080/09540962.2010.509180.
Liu, W., Mingers, J. and Xu, F. (2009). Modifications to the g-index to Improve its Discriminatory Power. University of Kent Canterbury.
Liu, W., Meng, W. and Zhang, D. (2007). Multi-level DEA Approach in Research Evaluation. Kent Business School, University of Kent.
Liu, W. et al. (2007). DEA Analysis Based on both Efficient and Anti-Efficient Frontiers. Kent Business School, University of Kent. Available at: http://www.kent.ac.uk/kbs/pdf/Liu-Zhang-Qi-and-Li-No-144.pdf.
Liu, W., Mingers, J. and Meng, W. (2006). Combining SSM and DEA: Evaluating the Basic Research Performance for the Chinese Academy of Sciences. University of Kent, Canterbury.
Liu, W., Meng, W. and Hu, Z. (2005). Efficiency Evaluation of Basic Research in China. scientometrics. Available at: http://www.kent.ac.uk/kbs/pdf/Liu-and-Meng-No-82.pdf.
Sharp, J., Meng, W. and Liu, W. (2005). A Modified Slacks Based Measure Model for Data Environment Analysis with 'Natural' Negative Outputs and Inputs. Kent Business School, University of Kent. Available at: http://www.kent.ac.uk/kbs/pdf/Sharp-Liu-and-Meng-No-84.pdf.
Liu, W., Sharp, J. and Wu, Z. (2004). Preference, Production and Performance in Data Envelopment Analysis. Kent Business School. Available at: http://www.kent.ac.uk/kbs/pdf/Liu-Sharp-and-Wu-No-52.pdf.
Total publications in KAR: 129 [See all in KAR]
back to top

Research Interests

Professor Liu's research interests include:

  • Global and parallel optimization methods
  • Numerical simulation and modelling
  • Simulation and optimisation of highly complex systems
  • Production and operations management
  • Productivity analysis
back to top

Supervision

Current Supervisees
  • Lu Zhao: Performance Management of Supply Chain
  • Ahmed Aljazea: The Impact of Big Data on Warranty Management
  • Yu Ye: Research on the Development of Performance Management System Based on the Performance Generating Process
  • Charles Turkson: A Data Envelopment Analysis Model for Triple Bottom Line Sustainability Assessment in the Oil Industry
Past Supervisees
  • Yi Zheng: Theory and Action Research on a new Framework and Approach of Performance Management
  • Yang Song: Performance Management in Financial Organizations
  • Wei Wang: Performance Management in Public Hospitals in China
  • Evangelia Lipitakis: The Use of Bibliometric Methods in Evaluating Research Performance In Business and Management: A Study of Three UK Business Schools
  • Li Qi: Performance Management and Efficiency Analysis for Companies
  • Ross Wyatt: DEA Models
  • Fang Xu: Measuring Research Quality by using Bibliometric Methods
back to top

Kent Business School - © University of Kent

The University of Kent, Canterbury, Kent, CT2 7FS, T: +44 (0)1227 827726, E: kbsinfo@kent.ac.uk

Last Updated: 09/11/2017