Physics with a Foundation Year - BSc (Hons)

UCAS code F305


Physics reaches from the quark out to the largest of galaxies, and encompasses all the matter and timescales within these extremes. At the heart of a professional physicist is a fascination with the ‘how and why’ of the material world around us. We aim to equip you with the skills to understand these phenomena and to qualify you for a range of career pathways.


This programme is for students who have previously studied science subjects but who lack the qualifications needed for direct entry into Stage 1 of the BSc.

At Stage 3, the combination of specialist modules and an attachment to one of our research teams opens avenues for even deeper exploration: for instance, in space probe instrumentation, fibre optics, or the atomic-scale structure of a new engineering material, or neutron scattering work.

Independent rankings

Physics at Kent was ranked 5th for graduate prospects in The Guardian University Guide 2017. Of Physics and Astronomy students who graduated from Kent in 2015, 88% of Kent students were in work or further study within six months, according to the Destinations of Leavers from Higher Education Survey*.

*conducted by the Higher Education Statistics Agency (HESA)

Course structure

The following modules are indicative of those offered on this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.  

On most programmes, you study a combination of compulsory and optional modules. You may also be able to take ‘wild’ modules from other programmes so you can customise your programme and explore other subjects that interest you.

Foundation year

This programme is for students who have previously studied science subjects but who lack the qualifications needed for direct entry into Stage 1 of the BSc. The foundation year is taught entirely on the Canterbury campus and caters for students with a wide range of backgrounds and experience. Successful completion of the foundation year guarantees entry onto any of the School’s physics or astronomy degree courses.

Possible modules may include Credits

Lecture Syllabus


Graphical interpretation of a derivative and its numerical estimation

Differentiation of y = x squared from first principles

Differentiation of x to the power of n and polynomials by inference

Stationary values (turning points, Max and Min)

Differentiation of trigonometric functions

Differentiation of exponential functions

Differentiation of logarithmic functions

Differentiation of sums, products, quotients and functions of a function

Maclaurens series for sin x, cos x, e to the power of x, ln (1+x), (1+x) to the power of n


Comprehension and use of the integral notation symbol

Integration as the inverse operation of differentiation Constant of integration

Integration of polynomials, trigonometric functions and exponential functions

Integration of products and fractions

Integration by substitution (change of variables)

Integration by parts

Use of partial fractions

Integration of compound trigonometric functions

Calculation of the constant of integration

Integration as the process of summation

Definite integrals – calculations of areas

Simple first order differential equations – solution by the method of separation of variables.


Examples Class

Differentiation - 3 hours

Integration - 5 hours


Calculus x 4

Read more

Lecture Syllabus


Introduction – Charge

Capacitance as a charge storage element

Capacitors in series and parallel

Charging capacitors using a current source

Charging capacitors using a resistor and voltage source

Discharging capacitors Energy stored in capacitors Coulombs Law

Electric field

Electric field between parallel plates Breakdown field of insulators Equipotentials

Electric flux density

Capacitance of a parallel plate capacitor



Magnetic field around permanent magnets and current carrying conductors

Rules for working out direction of magnetic field

Quantifying a magnetic field – flux and flux density

Force on a current carrying conductor – simple applications – Loudspeaker Magnetic field intensity. Fields for toroids, solenoids and long wires Permeability of free space. Magnetic materials, relative permeability.

Faraday's Law of Induction. Simple applications: Dynamic microphone, AC generator.

Mutual Inductance, Self Inductance. The transformer.


Laboratory Classes

There will be 3 x 3 hour laboratory classes. The titles of the laboratory experiments are: Magnetic field around a long wire

Charging capacitors

Parallel plate capacitor

Example Classes

Electrostatics - 5 hours

Magnetism - 4 hours

There will be 9 hours of examples classes. This work will be assessed by a 1 hour test in conjunction with EL026 and EL027.

Read more

This module will focus on the topics which are fundamental across mathematics and the sciences. We will learn about the properties of many functions such as straight lines, quadratics, circles, exponentials, logarithms and the trigonometric functions. The focus of this module is on applied problem solving in many real-life situations, as well as some coverage of the rigorous theory behind many of these ideas. The material is delivered through lectures and examples classes, so that students have many different ways to learn. Many harder, extra-curricular examples are provided for keen students.

Read more

  • Arithmetic


    Significant figures

    Standard form


    Simplification of fractions

    Percentages and fractional changes


    Logarithmic and exponential functions

  • Algebra

    Basic rules (operations and indices).

    Solving equations (substitution and order of operation).

    Changing subject of a formula

    Inverse operations

    Rules of indices

    Long division

    Expansion and Factorisation

    Quadratic equations

    Solving linear and simultaneous equations

    Partial fractions

    Binomial Theorem

  • Read more


  • Introduction; units and dimensions.

    Dimensional analysis. Dynamics; distance, velocity and acceleration time graphs.

  • Newton's Laws of Motion applied to single objects.

    Newton's Laws applied to coupled objects.


  • Work; scalar product.

    Work against gravity.


    Energy; potential energy and kinetic energy.

    Conservation of energy.

  • Linear momentum.

    Conservation of linear momentum

    Circular motion.

    Rotational systems.

    Moment of inertia.

  • Rotational forces.

    Resolution of forces.

    Triangle of forces; moments.

    Force fields; gravitational, etc.

    Potential energy in fields

  • Read more


    (i) Types of waves. Characteristics of a wave:- frequency, period, amplitude, wavelength and velocity. Introduction to transverse and longitudinal waves and polarisation. c = f?

    (ii) Properties of Waves. Qualitative description of the properties of waves; motion, reflection, refraction (Snell's law), dispersion, diffraction, interference, standing waves.

    (iii) Sound Waves. Description of sound - loudness, noise, note, pitch, intensity, intensity level. Properties of sound - reflection, refraction, interference (interference pattern produced by two speakers), beats, resonance in a vibrating wire, including overtones/harmonics. Qualitative treatment of Doppler effect.

    (iv) Electromagnetic (em) Waves. Electromagnetic spectrum. Qualitative treatment of em waves from different parts of the spectrum. Refraction of light - critical angle and optical fibres. Polarisation of light, microwaves and radio waves. Interference. Young's double slit experiment. The Michelson interferometer. Transmission diffraction grating - orders of diffraction, application in spectroscopy.

    (v) Simple Harmonic Motion (SHM). Displacement, velocity and acceleration of a body undergoing S.H.M. Link between SHM. and circular motion. Force acting on a body undergoing SHM. Qualitative description of systems displaying SHM. Detailed description of pendulum and mass on a spring. Energy in SHM. General expression for SHM.

    (vi) Damping and Forced Oscillations. Qualitative treatment of light, heavy and critical damping. Qualitative discussion of the concepts of natural frequency, resonance and the behaviour of vibratory systems driven by a periodic force.

    Read more


    (i) Simple model of nuclear atom. Atomic number and mass. The periodic table. The mole and Avogadro’s number. Solids, liquids and gases. Interatomic forces. Excitation and ionization. The electron volt.

    (ii) Spectra and energy levels. E = hf. Relation of spectra to transitions between energy levels. Bohr atom quantitatively. Photoelectric effect. Crystalline lattices. Amorphous materials. X-ray diffraction. Polymers and plastics.

    (iii) Gases, liquids and solids. Pressure. Archimedes principle. Hydrostatics. Heat and temperature scales. Thermometers. Latent heat. Thermal expansion. Perfect gas laws.

    (iv) Thermal equilibrium and temperature. Thermal conduction. Radiation laws. Kinetic theory of gases.

    (v) Introduction to radioactivity.

    Read more

    There will be laboratory sessions with eight experiments relating to both general skills and to the syllabus of the Physics lecture modules PH023, PH025 and PH026.

    There will be lecture tutorials on:

  • Introduction to the module

  • Analysing experimental uncertainties

  • Writing reports on laboratory work

  • Read more

    Stage 1

    Possible modules may include Credits

    Measurement and motion; Dimensional analysis, Motion in one dimension: velocity, acceleration, motion with constant acceleration, Motion in a plane with constant acceleration, projectile motion, uniform circular motion, and Newton's laws of motion.

    Work, Energy and Momentum; Work, kinetic energy, power, potential energy, relation between force and potential energy, conservation of energy, application to gravitation and simple pendulum, momentum, conservation of linear momentum, elastic and inelastic collisions.

    Rotational Motion; Rotational motion: angular velocity, angular acceleration, rotation with constant angular acceleration, rotational kinetic energy, moment of inertia, calculation of moment of inertia of a rod, disc or plate, torque, angular momentum, relation between torque and angular momentum, conservation of angular momentum.

    Concept of field; 1/r2 fields; Gravitational Field; Kepler's Laws, Newton's law of gravitation, Gravitational potential, the gravitational field of a spherical shell by integration.

    Oscillations and Mechanical Waves; Vibrations of an elastic spring, simple harmonic motion, energy in SHM, simple pendulum, physical pendulum, damped and driven oscillations, resonance, mechanical waves, periodic waves, their mathematical representation using wave vectors and wave functions, derivation of a wave equation, transverse and longitudinal waves, elastic waves on a string, principle of superposition, interference and formation of standing waves, normal modes and harmonics, sound waves with examples of interference to form beats, and the Doppler Effect. Phase velocity and group velocity.

    Read more

    Properties of Light and Optical Images; Wave nature of light. Reflection, refraction, Snell’s law, total internal reflection, refractive index and dispersion, polarisation. Huygens' principle, geometrical optics including reflection at plane and spherical surfaces, refraction at thin lenses, image formation, ray diagrams, calculation of linear and angular magnification, magnifying glass, telescopes and the microscope.

    Electric Field; Discrete charge distributions, charge, conductors, insulators, Coulomb’s law, electric field, electric fields lines, action of electric field on charges, electric field due to a continuous charge distribution, electric potential, computing the electric field from the potential, calculation of potential for continuous charge distribution.

    Magnetic Field; Force on a point charge in a magnetic field, motion of a point charge in a magnetic field, mass spectrometer and cyclotron.

    Electric current and Direct current circuits, electric current, resistivity, resistance and Ohm’s Law, electromotive force, ideal voltage and current sources, energy and power in electric circuits, theory of metallic conduction, resistors in series and in parallel, Kirchhoff’s rules and their application to mesh analysis, electrical measuring instruments for potential difference and current, potential divider and Wheatstone’s bridge circuits, power transfer theorem, transient current analysis in RC, RL, LC and LRC circuits using differential equations.

    Alternating Current Circuits; Phasor and complex number notation introduced for alternating current circuit analysis, reactance and complex impedance for Capacitance and Inductance, application to LRC series and parallel circuits. Series and parallel resonance, AC potential dividers and filter circuits, Thevenin's theorem, AC bridge circuits to measure inductance and capacitance, mutual inductance, the transformer and its simple applications.

    Read more

    Static Equilibrium, Elasticity and fluids; Elasticity: stress, strain, Hooke's law, Young's modulus, shear modulus, forces between atoms or molecules, intermolecular potential energy curve, equilibrium separation, Morse and 6-12 potentials, microscopic interpretation of elasticity, relation between Young's modulus and parameters of the interatomic potential energy curve, the nature of interatomic forces, the ionic bond, calculation of the energy to separate the ions in an ionic crystal, viscosity of fluids, Poiseuille's law, Stokes' law.

    Thermodynamics; Thermal equilibrium, temperature scales, thermal expansion of solids, relation between thermal expansion and the interatomic potential energy curve, the transfer of thermal energy: conduction, convection, radiation, the ideal-gas law, Boltzmann's constant, Avogadro's number, the universal gas constant. The kinetic theory of gases, pressure of a gas, molecular interpretation of temperature, molecular speeds, mean free path, specific heat, molar specific heat. The equipartition theorem, degrees of freedom. Heat capacities of monatomic and diatomic gases and of solids. Internal energy of a thermodynamic system, the first law of thermodynamics, work and the PV diagram of a gas., work done in an isothermal expansion of an ideal gas. Molar heat capacities of gases at constant pressure and at constant volume and the relation between them. Adiabatic processes for an ideal gas. Heat engines and the Kelvin statement of the second law of thermodynamics, efficiency of a heat engine. Refrigerators and the Clausius statement of the second law of thermodynamics. Equivalence of the Kelvin and Clausius statements. The Carnot cycle, the Kelvin temperature scale.

    Atoms; The nuclear atom, Rutherford scattering and the nucleus, Bohr model of the atom, energy level calculation and atom spectra, spectral series for H atom. Limitation of Bohr theory. Molecules.

    Read more

    Standard Lectures

    How Physical Sciences are taught at Kent.

    Library use. Bibliographic database searches.

    Error analysis and data presentation. Types of errors; combining errors; Normal distribution; Poisson distribution; graphs – linear and logarithmic.

    Probability and Statistics. Probability distributions, laws of probability, permutations and combinations, mean and variance.

    Academic integrity and report writing skills.

    Laboratory experiments

    A choice of experiments in weekly sessions. Some of the experiments require two consecutive sessions to complete.

    Choice of (among others): Deduction of a law, Wind tunnel, Probability distributions, Geometrical optics on the magnetic board, Computer–aided study of electrical and electronic circuits, Heat engines, Waves, Firing projectiles with the model catapult, mechanical simulation of stabbing action, etc.

    Read more

    Introduction to Special Relativity and Cosmology

    The distance scale; Redshif;, Hubble constant; Feynmann light clock and time dilation; Lorentz constraction and simultaneity derived with light ray signals; Lerentz transformation and invariant interval; Light cones; Special relativistic paradoxes; Cosmological principle; Space expansion and concept of critical density, closed, open and flat universe; The problem of missing matter.

    Introduction to, Planetary and Space Science

    Solar system; Theory of orbital dynamics; Kepler’s Laws; Earth-moon system; Tidal force and the consequent phenomena; Rocket equation; Basic components of spacecraft.

    Introduction to Astronomy

    Astronomical coordinate systems; Positions and motions of stars; Stellar luminosity and magnitudes; Magnitude systems and the color of stars; Lluminosity; Stellar temperatures; luminosity and radi;. Stellar spectral classification; Line strength and formation. Hertzsprung-Russell diagram, mass-Luminosity relation.

    Introduction to Particle Physics

    Discovery of elementary particles. The concept of four different forces and fields in classical and quantum physics; Introduction to virtual particles and discovery of different particles for different type of interaction forces; Standard model of particles.

    Introduction to Space Science

    Rocket equation. Basic components of spacecraft.

    Read more

    Teaching and assessment

    Teaching is by lectures, practical classes, tutorials and workshops. You have an average of nine one-hour lectures, one or two days of practical or project work and a number of workshops each week. The practical modules include specific study skills in Physics and general communication skills.

    Assessment is by written examinations at the end of each year and by continuous assessment of practical classes and other written assignments. Your final degree result is made up of a combined mark from the Stage 2 and 3 assessments with maximum weight applied to the final stage.

    Please note that you must pass all modules of the foundation year in order to progress onto stage 1.

    Programme aims

    The programme aims to:

    • foster an enthusiasm for physics by exploring the ways in which it is core to our understanding of nature and fundamental to many other scientific disciplines
    • enhance an appreciation of the application of physics in different contexts
    • involve students in a stimulating and satisfying experience of learning within a research-led environment
    • motivate and support a wide range of students in their endeavours to realise their academic potential
    • provide students with a balanced foundation of physics knowledge and practical skills and an understanding of scientific methodology
    • develop in students a range of transferable skills of general value
    • enable students to apply their skills and understanding to the solution of theoretical and practical problems
    • provide students with a knowledge and skills base from which they can proceed to Stage 1 of any of the Physics or Physics-based degrees at the University of Kent
    • generate in students an appreciation of the importance of physics in the industrial, economic, environmental and social contexts.

    Learning outcomes

    Knowledge and understanding

    You gain knowledge and understanding in physical laws and principles and their applications. Areas covered include:

    • laws of motion
    • electromagnetism
    • wave phenomena and the properties of matter
    • necessary aspects of mathematics.

    Intellectual skills

    You gain intellectual skills in how to:

    • identify relevant principles and laws when dealing with problems and make approximations necessary to obtain solutions
    • solve problems in physics using appropriate mathematical tools
    • execute an experiment or investigation, analyse the results and draw valid conclusions
    • use mathematical techniques and analysis to model physical phenomena.

    Subject-specific skills

    You gain subject-specific skills in:

    • how to to present and interpret information graphically
    • communicating scientific information, in particular producing clear and accurate scientific reports
    • the use of laboratory apparatus and techniques, including aspects of health and safety
    • the systematic and reliable recording of experimental data
    • making use of appropriate texts, research-based materials or other learning resources as part of managing your own learning.

    Transferable skills

    You gain transferable skills in:

    • problem-solving including the ability to formulate problems in precise terms, identify key issues and have the confidence to try different approaches
    • independent investigative skills including the use of textbooks, other literature, databases and interaction with colleagues
    • communication skills when dealing with surprising ideas and difficult concepts, including listening carefully, reading demanding texts and presenting complex information in a clear and concise manner
    • analytical skills including the ability to manipulate precise and intricate ideas,  construct logical arguments, use technical language correctly and pay attention to detail
    • personal skills including the ability to work independently, use initiative, organise your time to meet deadlines and interact constructively with other people.


    Of Physics and Astronomy students who graduated from Kent in 2015, 88% were in work or further study within six months, according to the Destinations of Leavers from Higher Education Survey.

    Recent graduates have gone into research and development, technical management, the City and financial institutions, computing, software design, the media, teaching, and postgraduate study.

    Kent science graduates have an excellent employment record, in part because we ensure they have the transferable skills necessary for success in today’s employment market.

    Professional recognition

    Fully accredited by the Institute of Physics.

    Entry requirements

    All applications for the Foundation Year will be considered individually, however evidence of previous level 3 (i.e. A level, BTEC, etc.) relevant scientific study is required.

    Home/EU students

    The University will consider applications from students offering a wide range of qualifications. Typical requirements are listed below. Students offering alternative qualifications should contact us for further advice. 

    It is not possible to offer places to all students who meet this typical offer/minimum requirement.

    Qualification Typical offer/minimum requirement
    Access to HE Diploma

    The University will not necessarily make conditional offers to all Access candidates but will continue to assess them on an individual basis. 

    If we make you an offer, you will need to obtain/pass the overall Access to Higher Education Diploma and may also be required to obtain a proportion of the total level 3 credits and/or credits in particular subjects at merit grade or above.

    BTEC Level 3 Extended Diploma (formerly BTEC National Diploma)

    The University will consider applicants holding/studying BTEC National Diploma and Extended National Diploma Qualifications (QCF; NQF;OCR) in a relevant Science or Engineering subject at 120 credits or more, on a case by case basis. Please contact us via the enquiries tab for further advice on your individual circumstances.

    International students

    The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country.

    If you need to increase your level of qualification ready for undergraduate study, we offer a number of International Foundation Programmes.

    Meet our staff in your country

    For more advise about applying to Kent, you can meet our staff at a range of international events.

    English Language Requirements

    Please see our English language entry requirements web page.

    Please note that if you are required to meet an English language condition, we offer a number of 'pre-sessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme. 

    General entry requirements

    Please also see our general entry requirements.


    The 2018/19 entry tuition fees have not yet been set. As a guide only, the 2017/18 tuition fees for this programme are:

    UK/EU Overseas
    Full-time £9250 £16480

    For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* 

    Your fee status

    The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.

    General additional costs

    Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.


    University funding

    Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details. 

    Government funding

    You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.


    General scholarships

    Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.

    The Kent Scholarship for Academic Excellence

    At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence. 

    For 2018/19 entry, the scholarship will be awarded to any applicant who achieves a minimum of AAA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages

    The scholarship is also extended to those who achieve AAB at A level (or specified equivalents) where one of the subjects is either Mathematics or a Modern Foreign Language. Please review the eligibility criteria.

    The Key Information Set (KIS) data is compiled by UNISTATS and draws from a variety of sources which includes the National Student Survey and the Higher Education Statistical Agency. The data for assessment and contact hours is compiled from the most populous modules (to the total of 120 credits for an academic session) for this particular degree programme. 

    Depending on module selection, there may be some variation between the KIS data and an individual's experience. For further information on how the KIS data is compiled please see the UNISTATS website.

    If you have any queries about a particular programme, please contact

    Related to this course