Biomedical Engineering - BEng (Hons)

Business and research environments need engineers who can design complete solutions involving complex integrated systems. Biomedical Engineering at Kent educates engineers that can develop systems used in medical practice and biology research.

Overview

This cross-disciplinary programme is designed for students with an equally strong interest in engineering and biology/medicine. Drawing from our established expertise in engineering technologies and from the research synergies with the School of Biosciences, this degree produces engineers with a solid knowledge in biology and medical science.

Why study a Biomedical Engineering degree at Kent

  • Biomedical Engineering is an exciting, interdisciplinary course at the interface between engineering, biology and medicine
  • You’ll build bioscience-related electronic devices, graduating as an engineer capable of designing complete solutions involving complex integrated systems
  • Seminars delivered by experts currently working in the field give you an insight into career options
  • Our teaching is based on leading-edge research using case studies which incorporate hot topics within industry and emerging technologies.

What you’ll study

In the first year, you gain a broad grounding in biomedical engineering, including human physiology, biomedical skills, robotics and engineering mathematics. You also undertake laboratory-based practical work.

In the second year and final years, you study modules that build upon the material learnt in the first year. As your knowledge grows, you discover which areas particularly interest you, so that in your final year you can specialise in preparation for your final-year design or development-based engineering project.

Featured video

Watch to find out why you should study at Kent.

Flexible tariff

Make Kent your firm choice – The Kent Guarantee

We understand that applying for university can be stressful, especially when you are also studying for exams. Choose Kent as your firm choice on UCAS and we will guarantee you a place, even if you narrowly miss your offer (for example, by 1 A Level grade)*.

*exceptions apply. Please note that we are unable to offer The Kent Guarantee to those who have already been given a reduced or contextual offer.

Entry requirements

The University will consider applications from students offering a wide range of qualifications. All applications are assessed on an individual basis but some of our typical requirements are listed below. Students offering qualifications not listed are welcome to contact our Admissions Team for further advice. Please also see our general entry requirements.

  • medal-empty

    A level

    ABB - BBB including B in Mathematics plus one other science/technology subject (Physics, Computing or Electronics)

  • medal-empty Access to HE Diploma

    The University welcomes applications from Access to Higher Education Diploma candidates for consideration. A typical offer may require you to obtain a proportion of Level 3 credits in relevant subjects at merit grade or above.

  • medal-empty BTEC Nationals

    DMM in an Engineering subject including Further Maths/Further Maths for Engineering Technicians. Other subjects are considered on a case-by-case basis. Please contact us for further advice on your individual circumstances.

  • medal-empty International Baccalaureate

    30 points overall or 15 points at HL including Mathematics (not Mathematics Studies) 5 at HL or 6 at SL or HL Maths: Analysis and Approaches at 5 (not Applications and Interpretations), and a science subject 5 at HL or 6 at SL

  • medal-empty International Foundation Programme

    N/A

  • medal-empty T level

    The University will consider applicants holding T level qualifications in subjects closely aligned to the course.

Please contact the School for more information at CEMSadmissions@kent.ac.uk 

Typical entry requirements for 2022 entry remain published on the UCAS course search website. These provide a rough guide to our likely entry requirements for Clearing applicants. 

During Clearing (after 5 July), our entry requirements change in real time to reflect the supply and demand of remaining course vacancies and so may be higher or lower than those published on UCAS as typical entry grades. Our Clearing vacancy list will be updated regularly as courses move in and out of Clearing, so please check regularly to see if we have any places available. See our Clearing website for more details on how Clearing works at Kent.

If you are an international student, visit our International Student website for further information about entry requirements for your country, including details of the International Foundation Programmes. Please note that international fee-paying students who require a Student visa cannot undertake a part-time programme due to visa restrictions.

Please note that meeting the typical offer/minimum requirement does not guarantee that you will receive an offer.

English Language Requirements

Please see our English language entry requirements web page.

Please note that if you do not meet our English language requirements, we offer a number of 'pre-sessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme.

Form

Priority Clearing

Register for Priority Clearing at Kent to give yourself a head start this results day.

This field is required
This field is required
This field is required
This field is required
This field is required
Please enter a valid email address
Please enter a valid telephone number
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Please contact me by email, telephone, text message or via social media with information about the courses available at the University of Kent, including information about relevant events, scholarships and other general information.
This field is required

If you would like further information about how the University of Kent will process your data, then please read our Privacy Notice.

Course structure

Duration: 3 years full-time

Modules 

The following modules are indicative of those offered on this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.

On most programmes, you study a combination of compulsory and optional modules. You may also be able to take ‘elective’ modules from other programmes so you can customise your programme and explore other subjects that interest you.

Stage 1

Compulsory modules currently include

EENG3130 - Introduction to Programming (15 credits)

EENG3230 - Engineering Design and Mechanics (15 credits)

BIOS3070 - Human Physiology and Disease (15 credits)

EENG3050 - Introduction to Electronics (15 credits)

EENG3110 - First Year Engineering Applications Project (15 credits)

EENG3150 - Digital Technologies (15 credits)

EENG3180 - Engineering Mathematics (15 credits)

EENG3190 - Engineering Analysis (15 credits)

Stage 2

Compulsory modules currently include

BIOS5130 - Human Physiology and Disease II (15 credits)

EENG5170 - Control and Mechatronics (15 credits)

EENG5770 - Entrepreneurship and Professional Development (15 credits)

EENG5160 - Biomechanics (15 credits)

EENG5150 - Physiological Measurements (15 credits)

EENG5610 - Image Analysis and Applications (15 credits)

EENG5620 - Engineering Group Project (15 credits)

EENG5190 - Introduction to Fluid Dynamics (15 credits)

Stage 3

Compulsory modules currently include

EENG6460 - Robotics and Artificial Intelligence (15 credits)

EENG6000 - Project (45 credits)

EENG6141 - Biomaterials (15 credits)

EENG6830 - Reliability, Availability, Maintainability and Safety (RAMS) (15 credits)

EENG6760 - Digital Signal Processing and Control (15 credits)

Optional modules may include

EENG5220 - Design & Manufacturing Technology (15 credits)

EENG6770 - Communication Network and IoT (15 credits)

PHYS5130 - Medical Physics (15 credits)

EENG5090 - Virtual Reality (15 credits)

Fees

The 2022/23 annual tuition fees for this course are:

  • Home full-time £9250
  • EU full-time £15900
  • International full-time £21200

For details of when and how to pay fees and charges, please see our Student Finance Guide.

For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* 

Your fee status

The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.

Additional costs

There are no mandatory course-specific costs but please refer to our general additional costs page.

General additional costs

Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.

Funding

University funding

Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details. 

Government funding

You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.

Scholarships

General scholarships

Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.

The Kent Scholarship for Academic Excellence

At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence. 

The scholarship will be awarded to any applicant who achieves a minimum of A*AA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages.

We have a range of subject-specific awards and scholarships for academic, sporting and musical achievement.

Search scholarships

Teaching and assessment

Teaching/learning

Lectures; tutorial lectures; demonstrator-led examples classes; tutor-led small group supervisions; project work; laboratory experiments and computer-based assignments.  Case studies on industry hot topics and emerging technologies. In particular the first, second and third-year projects give hands-on experience of electronic design and project management.

Problem-solving workshops allow you to develop skills in applying biomedical knowledge to solution of problems. Practical classes teach specific laboratory skills and demonstrate how they can be used to investigate biomedical systems.

Assessment

Written unseen examinations; assessed coursework in the form of examples, class assignments, laboratory write-ups, assessed project work, assignments and essays and class tests.

Contact hours

For a student studying full time, each academic year of the programme will comprise 1200 learning hours which include both direct contact hours and private study hours.  The precise breakdown of hours will be subject dependent and will vary according to modules.  Please refer to the individual module details under Course Structure.

Methods of assessment will vary according to subject specialism and individual modules.  Please refer to the individual module details under Course Structure.

Programme aims

The programme aims to:

  • Educate students to become engineers who are well equipped for professional careers in development, research and production in industry and universities, and who are well adapted to meet the challenges of a rapidly changing subject.
  • Produce professional engineers skilled in Biomedical engineering with a well-balanced knowledge of Electronic System Engineering.
  • Provide proper academic guidance and welfare support for all students.
  • Create an atmosphere of co-operation and partnership between staff and students, and offer the students an environment where they can develop their potential.

Learning outcomes

Knowledge and understanding

You gain knowledge and understanding of:

  • Mathematical principles relevant to bioengineering
  • Scientific principles and methodology relevant to bioengineering
  • Advanced concepts of instrumentation and systems engineering.
  • The value of intellectual property and contractual issues
  • Business and management techniques which may be used to achieve engineering objectives
  • The need for a high level of professional and ethical conduct in engineering 
  • Current manufacturing practice with particular emphasis on product safety and EMC standards and directives
  • Characteristics of materials, equipment, processes and products 
  • Appropriate codes of practice, industry standards and quality issues
  • Contexts in which engineering knowledge can be applied 
  • The structure, function and control of the human body
  • The main metabolic pathways used in biological systems in catabolism and anabolism, understanding biological reactions in chemical terms
  • The variety of mechanisms by which metabolic pathways can be controlled and the way that they can be co-ordinated with changes in the physiological environment
  • The main principles of cell and molecular biology, biochemistry and microbiology
  • Immunological disease/disorders
  • The main methods for communicating information on biomedical sciences

Intellectual skills

You gain the following intellectual abilities:

  • Analysis and solution of problems in bioengineering using appropriate mathematical methods
  • Ability to apply and integrate knowledge and understanding of other engineering and bioscience disciplines to support study of bioengineering
  • Use of engineering and bioscience principles and the ability to apply them to analyse key bioengineering processes
  • Ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
  • Ability to apply and understand a systems approach to bioengineering problems
  • Ability to investigate and define a problem and identify constraints including cost drivers, economic, environmental, health and safety and risk assessment issues
  • Ability to use creativity to establish innovative, aesthetic solutions whilst understanding customer and user needs, ensuring fitness for purpose of all aspects of the problem including production, operation, maintenance and disposal
  • Ability to demonstrate the economic and environmental context of the engineering solution
  • Integrate scientific evidence, to formulate and test hypotheses
  • Recognise the moral and ethical issues of biomedical investigations and appreciate the need for ethical standards and professional codes of conduct

Subject-specific skills

You gain subject-specific skills in the following:

  • Use of mathematical techniques to analyse problems in bioengineering.
  • Ability to work in an engineering laboratory environment and to use a wide range of electronic equipment, workshop equipment and CAD tools for the practical realisation of electronic circuits
  • Ability to work with technical uncertainty
  • Ability to apply quantitative methods and computer software relevant to engineering in order to solve bioengineering problems
  • Ability to design electronic circuits or systems to fulfil a product specification and devise tests to appraise performance.
  • Awareness of the nature of intellectual property and contractual issues and an understanding of appropriate codes of practice and industry standards
  • Ability to use technical literature and other information sources and apply it to a design 
  • Ability to apply management techniques to the planning, resource allocation and execution of a design project and evaluate outcomes
  • Ability to prepare technical reports and presentations.

Transferable skills

You gain transferable skills in the following:

  • Ability to generate, analyse, present and interpret data
  • Use of Information and Communications Technology
  • Personal and interpersonal skills, work as a member of a team
  • Communicate effectively (in writing, verbally and through drawings)
  • Learn effectively for the purpose of continuing professional development
  • Ability for critical thinking, reasoning and reflection
  • Ability to manage time and resources within an individual project and a group project

Careers

Graduate destinations

The School of Engineering has an excellent record of student employability. Previous graduates have gone on to careers in:

  • design of electronic and computer systems
  • software engineering
  • real-time industrial control systems
  • computer communications networks.

Other graduates have gone on to work for a range of organisations including:

  • BAE Systems
  • RAF
  • CISCO
  • Defence Science and Technology Laboratory (MOD).

Help finding a job

The School of Engineering holds an annual Employability and Careers Day where you can meet local and national employers and discuss career opportunities. Ongoing support is provided by the School's dedicated Employability Officer.

The University also has a friendly Careers and Employability Service which can give you advice on how to:

  • apply for jobs
  • write a good CV
  • perform well in interviews.

Career-enhancing skills

Alongside specialist skills, you also develop the transferable skills graduate employers look for, including the ability to:

  • think critically 
  • communicate your ideas and opinions 
  • work independently and as part of a team.

You can gain extra skills by signing up for one of our Kent Extra activities, such as learning a language or volunteering.

Professional recognition

Our programme is accredited by the Institution of Engineering and Technology (IET), which enables fast-track career progression as a professional engineer.

Apply for Biomedical Engineering - BEng (Hons)

Full-time study

Complete this form to tell us more about you and your experience. This will enable us to make a decision. Remember that you will need to add us as your choice in UCAS to accept any offers that we make to you. There's a short checklist of details you need to help complete your UCAS application simply:


  • Your UCAS Track login details
  • UCAS code 3D9J
  • Institution ID K24

Start your application

Contact us

bubble-text
earth

International student enquiries

Enquire online

T: +44 (0)1227 823254
E: internationalstudent@kent.ac.uk

network

School website

School of Engineering

Discover Uni information

Discover Uni is designed to support prospective students in deciding whether, where and what to study. The site replaces Unistats from September 2019.

Discover Uni is jointly owned by the Office for Students, the Department for the Economy Northern Ireland, the Higher Education Funding Council for Wales and the Scottish Funding Council.

It includes:

  • Information and guidance about higher education
  • Information about courses
  • Information about providers

Find out more about the Unistats dataset on the Higher Education Statistics Agency website.