The Power and Limits of Causal Analysis - SO744

Looking for a different module?

Module delivery information

This module is not currently running in 2021 to 2022.

Overview

This module aims to develop basic quantitative research skills (to the level of regression) to understand more advanced issues in making causal claims. Learning will be oriented towards:
• Understanding the limitations of simple (OLS) regression for making causal claims, with particular emphasis on endogeneity/confounding and causal heterogeneity;
• Learning a small number of advanced methods for investigating causality through quantitative research (e.g. experiments, instrumental variable approaches, matching methods, longitudinal analysis). For each method, students will first consider the rationale for the method (its strengths and limitations), and then use the method in hands-on statistical analysis sessions using appropriate statistical software (e.g. Stata);
• Towards the end of the module, students will learn how to decide the relative strengths and merits of each approach, and how to select the appropriate research design given the particular features of real-world scenarios.

Details

Contact hours

Total contact hours: 22
Private study hours: 128
Total study hours: 150

Method of assessment

Main assessment methods
Coursework - Report (2500 words) (55%)
Coursework - Group Presentation (35%)
Coursework - Class Participation (10%)

Reassessment methods
Reassessment Instrument: 100% coursework

Indicative reading

Cartwright, Nancy (2013), 'Knowing what we are talking about: why evidence doesn't always travel'. Evidence & Policy: A Journal of Research, Debate and Practice, Volume 9, Number 1, pp. 97-112.

Christenfeld, N., R. Sloan, et al. (2004). "Risk factors, confounding, and the illusion of statistical control." Psychosomatic Medicine 66: 868-875.

Cook, T., & Campbell, D. (1979) Quasi-experimentation: Design and analysis issues for field settings. Rand McNally College Publications.

Hedström, P and Ylikoski, P, (2010). 'Causal Mechanisms in the Social Sciences'. Annual Review of Sociology, 36:49-67. DOI: 10.1146/annurev.soc.012809.102632

Jackson, M and Cox, DR (2013), 'The Principles of Experimental Design and Their Application in Sociology'. Annual Review of Sociology, Vol. 39: 27-49.

Morgan, SL and Winship, C (2007), Counterfactuals and Causal Inference: Methods and Principles for Social Research.

Shadish, William R., Thomas D. Cook and Donald T. Campbell. 2002. Experimental and Quasi-experimental Designs for Generalized Causal Inference. Boston, MA: Houghton-Mifflin.

See the library reading list for this module (Canterbury)

Learning outcomes

The intended subject specific learning outcomes are as follows. On successfully completing the module students will be able to:
1.Critically understand the limitations of simple regression when making causal claims, with particular attention to endogeneity/confounding and causal heterogeneity;
2.Critically understand the strengths and limitations of more advanced methods for investigating causality through quantitative research (e.g. experiments, instrumental variable approaches, matching methods, longitudinal analysis);
3.Demonstrate a basic ability to themselves apply these more advanced methods for investigating causality, using appropriate statistical software (e.g. Stata);
4.Demonstrate an ability to select the most appropriate design for investigating causality in real-world settings, given practical constraints;
5.Demonstrate an ability to critique causal claims made in public debates and in academic research;
6.Demonstrate an ability to present the rationale and results of more advanced statistical methods for investigating causality to non-technical audiences.

The intended generic learning outcomes are as follows. On successfully completing the module students will be able to:
1.Demonstrate a basic ability to use advanced quantitative analytical skills for investigating causality in complex societal processes;
2.Understand the strengths and weaknesses of advanced quantitative methods of causal analysis, and apply sound judgement in real-world scenarios;
3.Demonstrate proficiency in the use of one or various statistical software packages (e.g. Stata).

Notes

  1. ECTS credits are recognised throughout the EU and allow you to transfer credit easily from one university to another.
  2. The named convenor is the convenor for the current academic session.
Back to top

University of Kent makes every effort to ensure that module information is accurate for the relevant academic session and to provide educational services as described. However, courses, services and other matters may be subject to change. Please read our full disclaimer.