
Physics with Astrophysics - MPhys
with a Year Abroad
- Standard option
-
with a Year Abroad
- Physics with a Foundation Year
Undergraduate Open Days
Join us at the Medway campus on Saturday 24 June and the Canterbury campus on Saturday 1 July. Meet staff and students, find out about our courses and explore our stunning campuses for yourself.
Physics reaches from the quark out to the largest of galaxies, and encompasses all the matter and timescales within these extremes. By combining your degree with astrophysics, you'll use the principles of physics to explore the cosmos - from our own solar system to galaxies and cosmology - as well as developing an understanding of the material world.
Overview
This course provides an understanding of the physical nature of bodies and processes in space, and the instruments and techniques used in modern astronomical research.
Our four-year integrated Master's programme (MPhys) with a Year Abroad allows you to hone the skills needed for research and technical roles in industry, or as a preparation for a PhD. Deepen your knowledge with specialised taught modules and work with an academic to carry out a real, open-ended research project.
Develop the transferable skills to open up a world of job opportunities, leading to careers in research, aeronautics, engineering, medical physics, defence, teaching, finance and data analytics.
Studying for a Year Abroad provides a wealth of personal and professional benefits, including establishing international contacts and enhancing your employability. You will study at one of our partner universities across the world, experience a different culture, enhance your employability and grow in self-confidence.
This course is fully accredited by the Institute of Physics (IOP).
Reasons to study Physics with Astrophysics at Kent
- Excellent teaching and research facilities including newly-refurbished physics and astronomy labs, a photonics centre and the Beacon Observatory with optical telescope.
- Our expert lecturers are both innovative teachers and active researchers working at the cutting-edge of research across a range of fields, from quantum materials to medical imaging.
- Students meet regularly with their academic adviser to support their academic and career development.
- Learn in a variety of settings, from lectures and interactive workshops to laboratory classes, computing sessions and team projects.
- Flexible curriculum allows you to move between our courses in the earlier years, ensuring you are studying the best course for you.
- Join our student-run societies: PhySoc, SpaceSoc and Amateur Rocketry Society, who organise talks, practical demonstrations and social events.
- Build the connections that matter thanks to our links with optical laboratories, local health authorities, aerospace/defence industries and software and engineering companies.
- A dedicated foundation year makes our course accessible to those without a science background.
What you'll learn
Astrophysics emphasises the underlying physical concepts of the stars and galaxies, which make up the Universe. This provides an understanding of the physical nature of bodies and processes in space and the instruments and techniques used in modern astronomical research.
In your first year, you get to grips with the broad knowledge base on which physical science is built, including electricity and light, mathematics, mechanics, thermodynamics and matter. You also develop your experimental, computational, statistical and analytical skills.
Your second and final years include a broad range of modules such as quantum mechanics, solid state, atomic, nuclear and particle physics, electromagnetism and optics, and mathematical techniques as well as the mulitwavelength universe exoplanets and stars, galaxies and the universe.
You spend the third year of your degree at one of our global partner universities, which have previously included institutions in the USA, Canada, Hong Kong and Switzerland. You study equivalent courses to those you would take at Kent. This programme is also offered without a year abroad. For details, see Physics with Astrophysics - MPhys.
Foundation Year
If you do not have the grades or scientific background for direct entry to the degree, you have the option of the Physics Foundation Year. Upon successful completion of this year, you are able to progress to any of our Physics, Physics with Astrophysics, or Astronomy, Space Science and Astrophysics degrees.
School of Physics and Astronomy
The School of Physics and Astronomy is a welcoming and supportive environment with a lively student community. Our physics teaching is underpinned by our research strengths in quantum materials, applied optics and imaging, and astrophysics and planetary science, giving you the chance to learn from experts and providing opportunities to become involved in our research.
The flexible curriculum at Kent allows you to move between our range of physics-based courses in the early years, helping you find the right course for you. The student-run Physics, Space and Amateur Rocketry societies organise talks, practical demonstrations, trips and social events, and the School offers a programme of talks and careers events, including the annual Stephen Gray lecture.
Featured video
Entry requirements
The University will consider applications from students offering a wide range of qualifications. All applications are assessed on an individual basis but some of our typical requirements are listed below. Students offering qualifications not listed are welcome to contact our Admissions Team for further advice. Please also see our general entry requirements.
-
A level
BBB, including A level Mathematics or Physics at BB (not Use of Mathematics)
-
Access to HE Diploma
The University welcomes applications from Access to Higher Education Diploma candidates for consideration. A typical offer may require you to obtain a proportion of Level 3 credits in relevant subjects at merit grade or above.
-
BTEC Nationals
The University will consider applicants holding/studying BTEC Extended National Diploma Qualifications (QCF; NQF;OCR) in a relevant Science or Engineering subject at 180 credits or more, on a case by case basis. Please contact us via the enquiries tab for further advice on your individual circumstances.
-
International Baccalaureate
30 points overall or 14 points at Higher Level including HL Physics at 5 or SL Physics at 6 and either HL Maths/Maths Methods/Maths: Analysis and Approaches at 5 or SL Maths/Maths Methods at 6 (Note Maths Studies/SL Maths: Applications & Interpretations is not acceptable).
-
International Foundation Programme
N/A
-
T level
The University will consider applicants holding T level qualifications in subjects closely aligned to the course.
Please contact our Admissions Team for more information at studynats@kent.ac.uk.
The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country.
If you need to increase your level of science/mathematics ready for undergraduate study, we offer a Foundation Year programme which can help boost your previous scientific experience.
Meet our staff in your country
For more advice about applying to Kent, you can meet our staff at a range of international events.
English Language Requirements
Please see our English language entry requirements web page.
Please note that if you do not meet our English language requirements, we offer a number of 'pre-sessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme.
Form

Course structure
Duration: 4 years full-time
The following modules are indicative of those offered on this course. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.
At all stages in this course, the modules listed are compulsory.
Stage 1
You take all compulsory modules.
This module provides an introduction to astronomy, beginning with our own solar system and extending to objects at the limits of the universe. Straightforward mathematics is used to develop a geometrical optics model for imaging with lenses and mirrors, and this is then used to explore the principles of astronomical telescopes.
This module builds on prior knowledge of arithmetic, algebra, and trigonometry. It will cover key areas of mathematics which are widely used throughout undergraduate university physics. In the first part it will look at functions, series, derivatives and integrals. In the second part it will look at vectors, matrices and complex numbers.
This module builds on the Mathematics I module to develop key mathematical techniques involving multiple independent variables. These include the topics of differential equations, multivariate calculus, non-Cartesian coordinates, and vector calculus that are needed for Physics modules in Stages 2 and 3.
In this module the mathematics of vectors and calculus are used to describe motion, the effects of forces in accordance with Newton's laws, and the relation to momentum and energy. This description is extended to rotational motion, and the force of gravity. In addition, the modern topic of special relativity is introduced.
This module examines key physical phenomena of waves and fields which extend over time and space. The first part presents a mathematical description of oscillations and develops this to a description of wave phenomena. The second part is an introduction to electromagnetism which includes electric and magnetic fields before providing an introduction to the topic of electrical circuits.
This module develops the principles of mechanics to describe mechanical properties of liquids and solids. It also introduces the principles of thermodynamics and uses them to describe properties of gases. The module also introduces the modern description of atoms and molecules based on quantum mechanics.
This module guides students through a series of experiments giving them experience in using laboratory apparatus and equipment. Students will also learn how to accurately record and analyse data in laboratory notebooks and write scientific laboratory reports. The experiments cover subjects found in the Physics degree program and are run parallel with Computing Skills workshops in which students are introduced to the concept of using programming/scripting languages to analyse and report data from their experiments.
Stage 2
You take all compulsory modules.
This module provides an introduction to quantum mechanics, developing knowledge of wave-functions, the Schrodinger equation, solutions and quantum numbers for important physical properties. Topics include: 2-state systems. Bras and kets. Eigenstates and Eigenvalues; Superposition Principle; Probability Amplitudes; Change of Basis; Operators. The Schrodinger equation. Stationary states. Completeness. Expectation values. Collapse of the wave function. Probability density. Solutions of the Schrodinger equation for simple physical systems with constant potentials: Free particles. Particles in a box. Classically allowed and forbidden regions. Reflection and transmission of particles incident onto a potential barrier. Probability flux. Tunnelling of particles. The simple harmonic oscillator. Atomic vibrations.
This module will build on the general principles of quantum mechanics introduced earlier in the degree and applied them to the description of atoms, starting by the description of the hydrogen atom and covering other topics such as the effect of magnetic fields on an atom or X-ray spectra.
This module looks to introduce a range of important laws and principles relating to the physics of electromagnetism and optics. Students will also learn mathematical techniques to enable the modelling of physical behaviour and apply important theory to a range of electromagnetism and optics scenarios.
This module builds on the brief introduction to astronomy previously taught in earlier stages. Students enhance their knowledge of astrophysics through the study of the theory, formalism and fundamental principles developing a rigorous grounding in observational, computational and theoretical aspects of astrophysics. In particular they study topics such as properties of galaxies and stars and the detection of planets outside the solar system.
In this module students develop their experience of the practical nature of physics, including developing their ability to execute an experiment, and to use programming scripts to process data. Students also develop their skill in analysis of uncertainties, and comparison with theory. The module strengthens students' communication skills and knowledge of, and ability to write, all components of laboratory reports.
This module gives students experience of group work in the context of a physics investigation in an unfamiliar area. The module includes workshops for advice about successful group project work, and culminates in each group producing a report and presentation.
This module introduces and develops a knowledge of numerical approximations to solve problems in physics, building on the programming skills gained in earlier stages. In addition, it complements the analytical methods students are trained to use and extends the range of tools that they can use in later stages of the degree. This module covers for example how to solve linear equations, how to find eigenvalues and numerical integration and differentiation.
The module will provide a firm grounding in mathematical methods: both for solving differential equations and, through the study of special functions and asymptotic analysis, to determine the properties of solutions.
Year abroad
You spend a year between Stages 2 and 4 at one of our global partner universities, which have previously included institutions in the USA, Canada, Hong Kong and Switzerland. For a full list, please see Go Abroad. Places are subject to availability.
You are expected to adhere to any academic progression requirements in Stages 1 and 2 to proceed to the Year Abroad. If the requirement is not met, you will revert to the equivalent programme without a Year Abroad.
Going abroad as part of your degree is an amazing experience and a chance to develop personally, academically and professionally. You experience a different culture, gain a new academic perspective, establish international contacts and enhance your employability.
PH790 needs to cover a majority of learning outcomes in Stage 3 of the parent MPhys programme. The modules in the university abroad should normally cover similar topics at a similar level. Note that a one-to-one correspondence is not feasible and would negate the purpose of the Year Abroad, which is to provide the student with the experience of the educational system abroad. In addition, the student has the opportunity to study some modules which are not available at University of Kent.
With regards to topics, the academic liaison (typically DoUGS Physics) will check and approve the students choice of modules at the time they are at the university abroad.
Stage 4
You take all compulsory modules and then choose two from a list of optional modules.
Aims:
To provide an experience of open-ended research work.
To begin to prepare students for postgraduate work towards degrees by research or for careers in R&D in industrial or government/national laboratories.
To deepen knowledge in a specialised field and be able to communicate that knowledge orally and in writing.
Syllabus
All MPhys students undertake a laboratory, theoretical or computationally-based project related to their degree specialism. These projects may also be undertaken by Diploma students. A list of available project areas is made available during Stage 3, but may be augmented/revised at any time up to and including Week 1 of Stage 4. As far as possible, projects will be assigned on the basis of students' preferences – but this is not always possible: however, the project abstracts are regarded as 'flexible' in the sense that significant modification is possible (subject only to mutual consent between student and supervisor). The projects involve a combination of some or all of: literature search and critique, laboratory work, theoretical work, computational physics and data reduction/analysis. The majority of the projects are directly related to the research conducted in the department and are undertaken within the various SPS research teams.
Space Astronomy:
Why use space telescopes; other platforms for non-ground-based astronomical observatories (sounding rockets, balloons, satellites); mission case study; what wavelengths benefit by being in space; measurements astronomers make in space using UV, x-ray and infra-red, and examples of some recent scientific missions.
Exploration of the Solar System:
Mission types from flybys to sample returns: scientific aims and instrumentation: design requirements for a spacecraft-exploration mission; how to study planetary atmospheres and surfaces: properties of and how to explore minor bodies (e.g. asteroids and comets): current and future missions: mission case study; how space agencies liaise with the scientific community; how to perform calculations related to the orbital transfer of spacecraft.
Solar System Formation and Evolution:
The composition of the Sun and planets will be placed in the context of the current understanding of the evolution of the Solar System. Topics include: Solar system formation and evolution; structure of the solar system; physical and orbital evolution of asteroids.
Extra Solar Planets:
The evidence for extra Solar planets will be presented and reviewed. The implications for the development and evolution of Solar Systems will be discussed.
Life in Space:
Introduction to the issue of what life is, where it may exist in the Solar System and how to look for it.
Interstellar Medium:
The major properties of the Interstellar Medium (ISM) are described. The course will discuss the characteristics of the gaseous and dust components of the ISM, including their distributions throughout the Galaxy, physical and chemical properties, and their influence the star formation process. The excitation of this interstellar material will be examined for the various physical processes which occur in the ISM, including radiative, collisional and shock excitation. The way in which the interstellar material can collapse under the effects of self-gravity to form stars, and their subsequent interaction with the remaining material will be examined. Finally the end stages of stellar evolution will be studied to understand how planetary nebulae and supernova remnants interact with the surrounding ISM.
Extragalactic astrophysics:
Review of FRW metric; source counts; cosmological distance ladder; standard candles/rods.
High-z galaxies: fundamental plane; Tully-Fisher; low surface brightness galaxies; luminosity functions and high-z evolution; the Cosmic Star Formation History
Galaxy clusters: the Butcher-Oemler effect; the morphology-density relation; the SZ effect
AGN and black holes: Beaming and superluminal motion; Unified schemes; Black hole demographics; high-z galaxy and quasar absorption and emission lines.
In this module you learn what is meant by neural networks and how to explain the mathematical equations that underlie them. You also familiarise yourself with cognitive neural networks using state of the art simulation technology and apply these networks to the solution of problems. In addition, the module discusses examples of computation applied to neurobiology and cognitive psychology. The module also introduces artificial neural networks from the machine learning perspective. You will study the existing machine learning implementations of neural networks, and you will also engage in implementation of algorithms and procedures relevant to neural networks.
This module will give students an overarching introduction to quantum information processing (QIP). At the end of the course the students will have a basic understanding of quantum computation, quantum communication, and quantum cryptography; as well as the implications to other fields such as computation, physics, and cybersecurity.
We will take a multi-disciplinary approach that will encourage and require students to engage in topics outside of their core discipline. The module will cover the most essential mathematical background required to understand QIP. This includes: linear algebra, basic elements of quantum theory (quantum states, evolution of closed quantum systems, Born's rule), and basic theory of computing. The module will introduce students to the following theoretical topics: quantum algorithms, quantum cryptography, quantum communication & information. The module will also address experimental quantum computation & cryptography.
Introduction. Magnetism, magnetometry and measuring techniques, Localised magnetic moments, spin and orbital moments, magnetic moments in solids. Paramagnetism. Exchange interactions, direct, indirect and superexchange, Magnetic structures, ferro, ferri, antiferromagnetism. Neutron and X-ray scattering. Spin waves, magnons. Magnetic phase transitions. Superconductivity: Introduction to properties of superconductors, Thermodynamics and electrodynamics of superconductors, Type I and Type II superconductors, the flux lattice Superconducting phase transitions. Microscopic superconductivity, correlations lengths, isotope effect, Cooper pairs, Froehlich Interaction, BCS theory. High Tc superconductors, superfluids, liquid helium.
Quantum mechanics is the theoretical basis of much of modern physics. Building on the introductory quantum theory studied in earlier stages, this module will review some key foundational ideas before developing more advanced topics of quantum mechanics and quantum field theory.
Fees
The 2023/24 annual tuition fees for this course are:
- Home full-time £9,250
- EU full-time £16,400
- International full-time £21,900
For details of when and how to pay fees and charges, please see our Student Finance Guide.
For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.*
Your fee status
The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.
Fees for year in industry
Fees for undergraduate students are £1,385.
Fees for year abroad
Fees for undergraduate students are £1,385.
Students studying abroad for less than one academic year will pay full fees according to their fee status.
Additional costs
Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.
Funding
Scholarships
We have a range of subject-specific awards and scholarships for academic, sporting and musical achievement.
Search scholarshipsKent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details.
The Kent Scholarship for Academic Excellence
At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence.
The scholarship will be awarded to any applicant who achieves a minimum of A*AA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages.
Teaching and assessment
Teaching is by lectures, practical classes, tutorials and workshops. You have an average of nine one-hour lectures, one or two days of practical or project work and a number of workshops each week. The practical modules include specific study skills in Physics and general communication skills. In the MPhys final year, you work with a member of staff on an experimental or computing project.
Assessment is by written examinations at the end of each year and by continuous assessment of practical classes and other written assignments. Your final degree result is made up of a combined mark from the Stage 2/4 assessments with a 40/60 weighting. Stage 3 is assessed as a pass or fail.
Please note that there are degree thresholds at stages 1 and 2 that you will be required to pass in order to continue onto the next stages. If you do not meet the thresholds at stage 1 and 2 you will be required to change your registration for the equivalent MPhys programme without the Year Abroad option.
Contact hours
For a student studying full time, each academic year of the programme will comprise 1200 learning hours which include both direct contact hours and private study hours. The precise breakdown of hours will be subject dependent and will vary according to modules. Please refer to the individual module details under Course Structure.
Methods of assessment will vary according to subject specialism and individual modules. Please refer to the individual module details under Course Structure.
Programme aims
The programme aims to:
- Foster an enthusiasm for physics by exploring the ways in which it is core to our understanding of nature and fundamental to many other scientific disciplines.
- Develop an appreciation of the importance of astrophysics and its role in understanding how our universe came about and how it continues to exist and develop.
- To meet the needs of those students who wish to enter careers as professional research physicists and/or astrophysicists in industrial, university or other settings.
- To enhance an appreciation of the application of physics in different contexts.
- Foster an enthusiasm for astrophysics and an appreciation of its application in current research.
- Involve students in a stimulating and satisfying experience of learning within a research-led environment.
- Motivate and support a wide range of students in their endeavours to realise their academic potential.
- Provide students with a balanced foundation of physics knowledge and practical skills and an understanding of scientific methodology.
- Enable students to undertake and report on an experimental and/or theoretical investigation and base this in part on an extended research project.
- Develop in students a range of transferable skills of general value.
- Enable students to apply their skills and understanding to the solution of theoretical and practical problems.
- Provide students with a knowledge base that allows them to progress into more specialised areas of physics and space science, or into multi-disciplinary areas involving physical principles; the MPhys is particularly useful for those wishing to undertake physics research.
- Generate in students an appreciation of the importance of physics in the industrial, economic, environmental and social contexts.
- To provide the opportunity for students to broaden their experience through studying abroad.
Learning outcomes
Knowledge and understanding
MPhys students gain a systematic understanding of most fundamental laws and principles of physics and astrophysics, along with their application to a variety of areas in physics and/or astrophysics, some of which are at the forefront of the discipline.
The areas covered include:
- Electromagnetism.
- Classical and quantum mechanics.
- Statistical physics and thermodynamics.
- Wave phenomena and the properties of matter as fundamental aspects.
- Nuclear and particle physics.
- Condensed matter physics.
- Materials.
- Plasmas and fluids.
Intellectual skills
You gain intellectual skills in how to:
- Identify relevant principles and laws when dealing with problems and make approximations necessary to obtain solutions.
- Solve problems in physics using appropriate mathematical tools.
- Execute an experiment or investigation, analyse the results and draw valid conclusions.
- Evaluate the level of uncertainty in experimental results and compare the results to expected outcomes, theoretical predictions or published data in order to evaluate their significance.
- Use mathematical techniques and analysis to model physical phenomena.
- An ability to comment critically on how telescopes (operating at various wavelengths) are designed, their principles of operation, and their use in astronomy and astrophysics research.
As an MPhys student, you also develop:
- An ability to solve advanced problems in physics using mathematical tools, to translate problems into mathematical statements and apply their knowledge to obtain order of magnitude or more precise solutions as appropriate.
- An ability to interpret mathematical descriptions of physical phenomena.
- An ability to plan an experiment or investigation under supervision and to understand the significance of error analysis.
- A working knowledge of a variety of experimental, mathematical and/or computational techniques applicable to current research within physics.
- An enhanced ability to work within in the astrophysics area that is well matched to the frontiers of knowledge, the science drivers that underpin government funded research and the commercial activity that provides hardware or software solutions to challenging scientific problems in these fields
Subject-specific skills
You gain subject-specific skills in:
- The use of communications and IT packages for the retrieval of information and analysis of data.
- How to present and interpret information graphically.
- The ability to communicate scientific information, in particular to produce clear and accurate scientific reports.
- The use of laboratory apparatus and techniques, including aspects of health and safety.
- The systematic and reliable recording of experimental data.
- An ability to make use of appropriate texts, research-based materials or other learning resources as part of managing your own learning.
As an MPhys student, you also gain:
- IT skills which show fluency at the level needed for project work, such as familiarity with a programming language, simulation software or the use of mathematical packages for manipulation and numerical solution of equations.
- An ability to communicate complex scientific ideas, the conclusion of an experiment, investigation or project concisely, accurately and informatively.
- Experimental skills showing the competent use of specialised equipment, the ability to identify appropriate pieces of equipment and to master new techniques.
- An ability to make use of research articles and other primary sources.
Transferable skills
You gain transferable skills in:
- Problem-solving including the ability to formulate problems in precise terms, identify key issues and have the confidence to try different approaches.
- Independent investigative skills including the use of textbooks, other literature, databases and interaction with colleagues.
- Communication skills when dealing with surprising ideas and difficult concepts, including listening carefully, reading demanding texts and presenting complex information in a clear and concise manner.
- Analytical skills including the ability to manipulate precise and intricate ideas, construct logical arguments, use technical language correctly and pay attention to detail.
- Personal skills including the ability to work independently, use initiative, organise your time to meet deadlines and interact constructively with other people.
- The ability to study within a different educational system and live in a foreign country.

Independent rankings
Over 86% of final-year Physics students were satisfied with the quality of the teaching on their course in The Guardian University Guide 2023.
Careers
Your future
You graduate with an excellent grounding in scientific knowledge and extensive laboratory experience. In addition, you also develop the key transferable skills sought by employers, such as: excellent communication skills work independently or as part of a team the ability to solve problems and think analytically time management. This means that our graduates are well equipped for careers across a range of fields and have gone on to work for companies such as BAE, Defence Science and Technology, Rolls Royce, Siemens and IBM. You can read some of their stories, and find out about the range of support and extra opportunities available to further your career potential here.
Professional recognition
Fully accredited by the Institute of Physics.
Apply for Physics with Astrophysics with a Year Abroad - MPhys
If you are from the UK or Ireland, you must apply for this course through UCAS. If you are not from the UK or Ireland, you can apply through UCAS or directly on our website if you have never used UCAS and you do not intend to use UCAS in the future.
Find out more about how to apply
All applicants
International applicants
Contact us
International student enquiries
T: +44 (0)1227 823254
E: internationalstudent@kent.ac.uk
School website
Discover Uni information
Discover Uni is designed to support prospective students in deciding whether, where and what to study. The site replaces Unistats from September 2019.
Discover Uni is jointly owned by the Office for Students, the Department for the Economy Northern Ireland, the Higher Education Funding Council for Wales and the Scottish Funding Council.
It includes:
- Information and guidance about higher education
- Information about courses
- Information about providers
Find out more about the Unistats dataset on the Higher Education Statistics Agency website.