Astronomy, Space Science and Astrophysics
with a Foundation Year
Inspired by the wonders and vastness of the universe? This is the course for you.
Key information
Inspired by the wonders and vastness of the universe? This is the course for you.
Physics gives you the tools to understand our world at a fundamental level, from the smallest sub-atomic particles to the large-scale structure of the universe. Our dedicated foundation year will give you the knowledge and skills needed for entry to any of our physics, astrophysics, astronomy or space science degrees.
This course is designed for science students who do not meet the requirements for direct entry to Stage 1 of our degree courses. It is also an excellent conversion course for applicants who have shown academic ability in non-science subjects. We consider applicants without traditional academic qualifications who have relevant professional experience.
Successful completion of the foundation year allows you to move on to any of our physics, astrophysics, astronomy or space science degrees, including the four-year integrated Master's (MPhys).
You'll also develop the transferable skills to open up a world of job opportunities, leading to careers in research, aeronautics, engineering, medical physics, defence, teaching, finance and data analytics.
This course is fully accredited by the Institute of Physics.
The following modules are offered to our current students. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation:
You'll study mathematics, physics, electronics and computing, and take part in practical classes.
Compulsory modules currently include the following
One-on-one meetings and small group tutorials focused on academic progression and the development of key skills to support the core curriculum and future study or employment. Students meet with their Academic Advisor individually or in small groups at intervals during the academic year. Individual meetings review academic progress, support career planning etc. Themed tutorials develop transferable skills; indicative topics are essay and report writing, presentation skills, sourcing information, critical analysis etc. The tutorials are informal involving student activity and discussion. Year group events deliver general information e.g. on University resources, 4-year programmes, module selection etc.
You’ll get to grips with the broad knowledge base on which physics is built and develop your, experimental, computational, statistical and analytical skills.
Compulsory modules currently include the following
One-on-one meetings and small group tutorials focused on academic progression and the development of key skills to support the core curriculum and future study or employment. Students meet with their Academic Advisor individually or in small groups at intervals during the academic year. Individual meetings review academic progress, support career planning etc. Themed tutorials develop transferable skills; indicative topics are essay and report writing, presentation skills, sourcing information, critical analysis etc. The tutorials are informal involving student activity and discussion. Year group events deliver general information e.g. on University resources, 4-year programmes, module selection etc.
You’ll deepen your understanding of physics and astrophysics, carry out in-depth laboratory experiments and work on group projects.
Compulsory modules currently include the following
Mathematical techniques are essential for solving problems in physics and related fields. You will gain comprehensive grounding in the mathematical methods necessary for solving differential equations, understanding special functions, and conducting harmonic analysis. You’ll also get a grounding in numerical methods and asymptotic analysis, preparing students for the analytical challenges they will encounter in their studies and professional lives.
Building on a strong mathematical foundation for further study and research, the skills you develop will not only benefit you academically but also enhance your employability, preparing you for technical roles in research, engineering, data analysis, and beyond, where rigorous mathematical reasoning and problem-solving abilities are highly valued by employers.
Modern science is a collaborative effort, requiring physicists to work in teams of varying sizes, and to communicate their results to a wide range of audiences. We ensure you will develop your ability to conduct complex investigations as a team, and to disseminate your outcomes.
You’ll do this through producing more comprehensive written reports and using computational scripts to analyse and visualise data. A key focus is on analysis of experimental uncertainties and comparison with underlying physical theories. Your team-working skills will be developed through a group project focused on a real, open-ended research topic, with problems chosen from a list drawn from the research interests of academics, problems set by industry, and areas such as physics education and outreach.
The skills developed in this module will help prepare you for more in-depth investigations later in your degree and for collaborative working in your future career.
Dive into the fascinating world of quantum mechanics, where you will develop a comprehensive understanding of wave functions, the Schrödinger equation, and quantum numbers, essential for describing the properties of key physical systems.
This module introduces you to critical terminology and mathematical concepts fundamental to quantum mechanics, such as eigenstates, eigenvalues, and expectation values. You will explore the Schrödinger equation through various important systems, including two-state systems, particles in simple potentials, and the simple harmonic oscillator. You will also learn how to use the Schrödinger equation in different coordinate systems to understand the concept of angular momentum in quantum mechanics.
In the realm of atomic physics, you will investigate solutions for atoms, with a particular focus on the hydrogen atom, and study their interactions with electromagnetic radiation. These methods extend to the study of molecules and nuclei, providing a robust framework for understanding a wide range of physical phenomena.
This module offers a detailed and accurate portrayal of atomic structures, which are the fundamental building blocks of numerous physical processes and phenomena.
Electromagnetism and Relativity are two fundamental classical theories in Physics. You'll be introduced to a range of important laws and principles that lay the foundation for studies in these fields. You'll develop an understanding of magnetic and electric fields and how to apply Maxwell’s laws to describe all phenomena involving electromagnetic waves (from radio waves to visible light, X-rays and gamma rays).
Once the propagation of light has been discussed and understood in the context of Electromagnetism, you will study the consequences of the constant velocity of light in the context of Einstein’s theory of Special Relativity. The theory will be applied to understanding concepts such as time dilation and event horizon.
You'll acquire a deeper understanding of highly formalised theories, and how these are powerful tools to solve a diverse range of problems. You'll also develop your skills for formal reasoning and fundamental mathematical tools (vector fields in particular), applying these to solve problems in the context of the systems studied in the module and will contribute to the skills set of a physicist for your future career.
This module builds on the introduction to astronomy you will have learned in earlier stages of your degree. You'll enhance your knowledge of astrophysics through the study of the theory, formalism and fundamental principles, developing a rigorous grounding in observational, computational and theoretical aspects of astrophysics.
In particular, you'll study topics such as properties of galaxies and stars, the detection of planets outside the solar system, and CCD cameras. You will also have the opportunity to take part in observations with the Beacon Observatory, getting hands on in exploring the universe.
How can we use space to benefit our society on Earth and to explore our solar system and beyond? On this module you'll discuss the design and operations of spacecraft, including satellites, to explore answers to these questions. We'll introduce the harsh environment of space, the hazards posed to spacecraft, and how we design spacecraft to overcome these challenges. You'll also develop your understanding of the major subsystems of a spacecraft through the study of the theory, formalism and fundamental principles, as well as the framework to understand spacecraft trajectories and orbits.
As humanity seeks to both explore and establish bases beyond Earth you'll consider the additional scientific and technical challenges of crewed space flight and establishing extraterrestrial habitats. The course also discusses how space missions are designed, funded and managed. Join the next generation of physicists looking to journey further into the cosmos and unlock the secrets of the universe.
You’ll take more advanced and specialised modules and conduct open-ended laboratory investigations.
Compulsory modules currently include the following
All modern technologies rely on the use of light in some way or another, which makes understanding light absolutely essential. This module provides you with an immersive experience, allowing you to discover fundamental and contemporary concepts that shape our understanding of how light interacts with matter. You'll explore the practical applications of optics and photonics in various fields, such as telecommunications, medicine, manufacturing, and computing, giving you experience aligned with a range of potential careers.
Throughout the module, you'll acquire knowledge and skills in designing and analysing optical systems, becoming proficient in using tools such as lasers and fibre optics and enhancing your problem-solving skills. In doing so, you'll understand how your developing expertise can be applied in practice, including in multi-disciplinary or multi-professional contexts, to make a positive difference to the world around you.
Explore the classic theory of thermodynamics and how the thermal properties of physical objects can be described in terms of their microscopic properties through the application of statistical mechanics. You'll learn the three laws of thermodynamics and how to use them to understand physical phenomena, such as the conversion of heat into work in an engine or the cooling cycle in a refrigerator.
You'll learn how to derive measurable, bulk properties such as temperature, heat capacity, entropy or magnetisation from the behaviour of the microscopic components in a gas or a paramagnet. Statistical mechanics bridges the gap between the microscopic and macroscopic description of the physical world; you'll apply theoretical principles, alongside a range of mathematical skills, to contemporary issues such as how heat pumps work, the effect of temperature on defects in a crystalline solid, heat capacity due to electrons in a metal, to address real-world problems and potential solutions.
Building on your studies in observational astronomy, this module provides a balanced and rigorous course in astrophysics for BSc students. You'll develop and enhance your knowledge of astrophysics through the study of the theory, formalism, and fundamental principles.
You'll also delve into the equations describing the internal structure of stars, energy transport mechanisms, nuclear fusion processes, and the evolution of stars off the main sequence. The second half of the module explores topics such as high-redshift galaxies, galaxy clusters, and active galactic nuclei (AGN), general relativity, cosmological principles, the age and stages of the universe, dark matter, dark energy, and the cosmic microwave background.
You'll finish the module having embarked on a thrilling journey through the cosmos, equipped with essential skills and understanding needed for astronomy at a professional level and be on a firm footing should you wish to pursue further studies in astrophysics at MPhys level and beyond.
If you want to explore beyond earth, your the first step is our solar system. You'll get to grips with our closest neighbors, the composition of the Sun and planets will be placed in the context of the current understanding of the evolution of the Solar System. You'll also study solar terrestrial physics, learning how interactions between the Sun and Earth affect life on our planet. You will then move on to look at the terrestrial planets and the processes that have shaped them, learning first about the Earth before considering Mars, Mercury and Venus.
By the end of this module, you'll have achieved a solid understanding of the interplay of the Sun and its planetary system, and be equipped with analytical skills and interdisciplinary knowledge applicable to fields including not only planetary science but also remote sensing, environmental and earth science and space exploration.
Explore the constituents of matter and how the structured arrangement of atoms in a solid gives rise to their properties. You'll start by looking at the structure and properties of the nucleus, as well as its stability and fission and fusion processes. You'll then study how the regular arrangement of atoms in a lattice gives rise to crystalline solids and proceed to investigate how the behaviour of electrons in crystals is responsible for many of the properties we find in the materials driving technology (such as metals, semiconductors, magnetic materials). The theoretical principles taught in the lectures, as well as a range of mathematical skills, will be applied to solving problems, including those related to electronics and optoelectronic devices.
How are data processing and analysis techniques applied to astronomical data from telescopes? You'll learn how telescopes and CCD cameras work, and how they process astronomical images and spectra. You'll also apply a range of data analysis and machine learning techniques using software packages.
As part of your project work, you can engage in the scientific interpretation of images and spectra of astronomical objects or numerical modelling results. You'll get to take part in at least two observing nights with our Beacon Observatory. This on-campus facility offers hands-on astronomical experience with a research-grade dome and telescope, enhancing the quality of your degree experience and better preparing you for a career in the space and astronomy sector.
This module provides a practical underpinning to the theoretical astrophysics work in other modules. Working through the experiments provided, using authentic data, will leave you with a richer appreciation and understanding of this subject matter, equipping you with the skills to succeed as working astronomers that are, in addition, transferable to many other professional disciplines.
Required subjects
We consider all applications on an individual basis during Clearing and you're encouraged to get in touch to discuss your grades. You're most likely to be offered a place in Clearing for this course if you hold the following subjects:
For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.*
The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.
For details of when and how to pay fees and charges, please see our Student Finance Guide.
Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.
Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details.
You’ll graduate with an excellent grounding in scientific knowledge and extensive laboratory experience, as well as a toolbox of transferable skills highly sought after by employers. These include excellent communication and problem-solving skills; analytical thinking; effective time management; and the ability to work independently or as part of a team. Our graduates have gone on to work for employers such as:
Read some of their stories and find out about the range of support and extra opportunities available to further your career potential.
If you are from the UK or Ireland, you must apply for this course through UCAS. If you are not from the UK or Ireland, you can apply through UCAS or directly on our website if you have never used UCAS and you do not intend to use UCAS in the future.
You can make a direct application to Kent if you pay international tuition fees, live outside the UK or Ireland and do not have or intend to have a UCAS account or application.
There is no application fee for a direct application to Kent.