Students preparing for their graduation ceremony at Canterbury Cathedral

Computer Science - MSc, PhD

2018

The School of Computing welcomes applications for our Computer Science research programmes. 

2018

Overview

Your research should produce an original contribution in your chosen field of study. You work closely with your supervisor, a member of academic staff, who is your principal source of support. If you choose a research area that has interdisciplinary aspects, you may have more than one supervisor. In addition to regular supervision, you will be supported by a supervisory panel of three academic staff who provide further structured input and guidance.

Supporting your research

We offer an extensive support framework to all our research students. We support you in becoming an effective researcher through a series of weekly workshops taken in the first year. These cover research-specific subjects including how to access journals and review research publications, how to write and publish academic articles and how to present your work at seminars and conferences. You may also attend workshops on key transferable skills including communication, time management and teamwork.

You join one or more of our well-integrated, active research groups where you will be able to test and discuss your ideas and place your research in a broader context.

We host a seminar series for visiting speakers as well as holding regular seminars within our research groups where research students are encouraged to participate. We also host an annual postgraduate conference where you have the opportunity to both present your work and to gain experience as a conference organiser.

Many of our research students earn money by teaching on our undergraduate programmes. We provide teaching development courses in your first year to give you the skills to teach effectively.

About the School of Computing

Our world-leading researchers, in key areas such as systems security, programming languages, communications, computational intelligence and memory management, and in interdisciplinary work with biosciences and psychology, earned us an outstanding result in the most recent national research assessment.

Our programmes are taught and supervised by leading researchers who are experts in their fields. The School of Computing at Kent is home to several authors of leading textbooks, a National Teaching Fellow, an IET (Institute of Engineering and Technology) Fellow and two Association of Computer Machinery (ACM) award-winning scientists. Kent was awarded gold, the highest rating, in the UK Government’s Teaching Excellence Framework*.

We have strong links with industry including Cisco, IBM, Microsoft and Oracle and are among the top ten in the UK for graduate employment prospects.

Think Kent video series

Awareness and the presence of intent, both in everyday life and in the clinic, are inferred primarily through our behaviour. But what if you were aware but unable to express it? Dr Shrivas Chennu explores what current neuroscience research can tell us about the neural correlates of consciousness in health and disease.


*The University of Kent's Statement of Findings can be found here

National ratings

In the Research Excellence Framework (REF) 2014, research by the School of Computing was ranked 12th in the UK for research intensity.

An impressive 98% of our research was judged to be of international quality, with 81% of this judged world-leading or internationally excellent. The School’s environment was judged to be conducive to supporting the development of research of international excellence.

Course structure

If you choose the MSc by research option, you will study for one year full-time (two years part-time).

As a PhD student you study for a minimum of three years to a maximum of four years full-time, or a minimum of five years to a maximum of six years part-time.

Careers

Graduate destinations

Many research students choose to continue their careers by working in academia. Our graduates have also gone on to work in:

  • software engineering
  • mobile applications development
  • systems analysis
  • consultancy
  • networking
  • web design and e-commerce
  • finance and insurance
  • commerce
  • engineering
  • education
  • government
  • healthcare. 

Recent graduates have gone on to develop successful careers at leading companies such as:

  • BAE Systems
  • Cisco 
  • IBM
  • The Walt Disney Company
  • Citigroup 
  • BT.

Help finding a job

The University has a friendly Careers and Employability Service, which can give you advice on how to:

  • apply for jobs
  • write a good CV
  • perform well in interviews.

The School has a dedicated Employability Coordinator who is a useful contact for all student employability queries.

Study support

We provide an extensive support framework for our research students and encourage involvement in the international research community.

Postgraduate resources

The School of Computing has a large range of equipment providing both UNIX (TM) and PCbased systems and a cluster facility consisting of 30 Linux-based PCs for parallel computation. New resources include a multi-core enterprise server with 128 hardware threads and a virtual machine server that supports computer security experiments.

All students benefit from a well-stocked library, giving access to e-books and online journals as well as books, and a high bandwidth internet gateway. The School and its research groups hold a series of regular seminars presented by staff as well as by visiting speakers and our students are welcome to attend.

Our full-time research students are offered funds for academic conference travel, to assist in publishing papers and getting involved in the international community. You have your own desk and PC/laptop in a research office, which is shared by other research students. We also provide substantial support, principally via one-to-one supervision of research students and well-integrated, active research groups, where you have the opportunity to test and discuss your ideas in a friendly environment. You also go on an activity weekend at an outward-bound centre in the Kent countryside, where you will take part in team-building exercises designed to help you learn how to communicate effectively and work together to solve work-based problems.

Dynamic publishing culture

Staff and research students publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Journal of Artificial Evolution and Applications; International Journal of Computer and Telecommunications Networking; Journal of Visual Languages and Computing; Journal in Computer Virology.

Links with industry

Strong links with industry underpin all our work, notably with Cisco, Microsoft, Oracle, IBM, Agilent Technologies, Erlang Solutions, Hewlett Packard Laboratories, Ericsson and Nexor.

T

Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subject-specific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills.

Entry requirements

A first or 2.1 degree or advanced/specialist taught MSc in computer science or a related discipline (such as mathematics, business studies or electronics, as long as the degree has a strong computing component).

All applicants are considered on an individual basis and additional qualifications, and professional qualifications and experience will also be taken into account when considering applications. 

International students

Please see our International Student website for entry requirements by country and other relevant information for your country. 

English language entry requirements

The University requires all non-native speakers of English to reach a minimum standard of proficiency in written and spoken English before beginning a postgraduate degree. Certain subjects require a higher level.

For detailed information see our English language requirements web pages. 

Need help with English?

Please note that if you are required to meet an English language condition, we offer a number of pre-sessional courses in English for Academic Purposes through Kent International Pathways.

Research areas

Research Groups and Highlighed PhDs

If you are keen to pursue a reseach degree, each of the School of Computing's five research groups has suggested projects: do contact the project proposers or the head of research group to tell us that you are interested. 

Programming Languages and Systems Group

Our research involves all aspects of programming languages and systems, from fundamental theory to practical implementation. The Group has interests across a wide range of programming paradigms: object-oriented, concurrent, functional and logic. We research the links between logic and programming languages, the verification of the correctness of programs, and develop tools for refactoring, tracing and testing. We are interested in incorporating safe concurrent programming practices into language design.

The Group is also interested in practical implementation of programming languages, from massively concurrent parallel processing to batteryoperated mobile systems. Particular research topics include lightweight multi-threading kernels, highly concurrent operating systems, memory managers and garbage collectors.

Research areas include:

  • theoretical and architectural questions concerning designs for both hardware and software
  • abstractions and implementations of concurrency in programming languages
  • formal specification of systems and their architecture
  • design patterns and tools for enabling the safe and scalable exploitation of concurrency
  • compilers, memory managers and garbage collectors
  • lightweight multi-threading kernels and highly concurrent operating systems 
  • refactoring of functional and concurrent languages
  • applications of formal methods to provably correct, secure systems
  • model checking and abstract interpretation, including applications to discovering security vulnerabilities
  • program verification and theorem proving

Computational Intelligence Group

This Group brings together interdisciplinary researchers investigating the interface between computer science and the domains of bioscience and cognition. In terms of applying computation to other domains, we have experts in investigating the modelling of gene expression and modeling of human attention, emotions and reasoning. From the perspective of applying biological metaphors to computation, we research new computational methods such as genetic algorithms and swarm intelligence.

The Group also develops novel techniques for data mining, visualisation and simulation. These use the results of interdisciplinary research for finding solutions to computationally expensive problems.

The Group has strong links with other schools at the University of Kent, as well as with universities, hospitals and scientific research institutes throughout the country and internationally.

Areas of research activity within the group include:

  • bio-inspired computing including neural networks, evolutionary
  • computing and swarm intelligence
  • application of computational simulations in biology and medicine
  • systems biology including gene expression modelling
  • theory and application of diagrammatic visualisation methods
  • data mining and knowledge discovery
  • construction of computational models of the human cognitive and neural system.

Security Research Group

Security - of information, systems, and communications - has become a central issue in our society. Interaction between people's personal devices (far beyond just phones and computers) and the rest of the connected world is nearly continuous; and with the advent of the Internet Of Things its scope will only grow.

In that context, so much can go wrong - every communication can potentially be intercepted, modified, or spoofed, and surreptitiously obtained data can be commercially exploited or used for privacy invasions. In fact, data flows in society are such that many people already feel they have lost control over where (their) data goes.

The security research group operates within that context. All members bring a particular technological emphasis - the analysis of particular classes of security problems or their solutions - but are fully aware that it all fits within a wider context of people using systems and communicating data in secure and insecure ways, and how external pressures beyond the mere technology impact on that. The topic of computer security then naturally widens to include topics like privacy, cyber crime, and ethics and law relating to computing, as well as bringing in aspects of psychology, sociology and economics.

From that perspective, the Security research group played a key role in setting up, and continues to be a core contributor to, the University's Interdisciplinary Cyber Security Research Centre, see www.cybersecurity.kent.ac.uk.

The group has a strong involvement with postgraduate teaching in this area. It teaches most of the core modules in MSc programmes in Computer Security, and Networks and Security. A new (from September 2017) MSc Course in Cyber Security has been provisionally certified by GCHQ. The group is also involved in undergraduate modules in this area, as well as postgraduate programmes in other schools such as the MSc Information Security and Biometrics, and in UK activities to define curricula in Cyber Security.

Areas of Research Activity

Members are engaged in the following areas of research (research areas in more detail) .

  • Data Ethics and Privacy
  • Authorisation Infrastructures
  • Cybercrime
  • Internet Of Things Security and Privacy
  • Authentication
  • Quantum Computation and Information, with Security Applications 
  • Formal Methods for Cryptography
  • Steganography and Steganalysis
  • Trust Management and Metrics and Reputation Systems
  • Tools for Vulnerability Analysis
  • Self-Adaptation applied to Security and Privacy
  • Cloud Security
  • Human Aspects of Security
  • Blockchain and Distributed Ledger Technology
  • Identity Management

Computing Education Group

We focus on disciplinary-specific pedagogy, especially the teaching and learning of computer science and programming.

Our research interests focus on understanding the aspects of learning that are specific to computing education, and which range from examining general theories of learning, through thematically focused investigations (such as gender), to tool construction. We examine education from multiple aspects, including supporting computing education research infrastructure, working with teachers, or focusing on student learning.

Areas of interest include:

  • building an evidence base of research on early programming education
  • tool support for learning and teaching of programming, including custom-made development tools, such as educational programming languages, or development environments, which can adapt to changes in programming paradigms and technology and pedagogical advances
  • analysis of data generated as a part of the learning process, which could be text-based, naturally occurring in the classroom (eg, assessments), generated as a reflective process on learning (eg, diaries), or generated from interaction with programming environments.

Data Science Research Group

Data Science is about developing new techniques to better understand data and draws on many areas within and outside of computer science. Our research group develops and applies methods to interpret rich information sources.Our research comes under three themes:

eHealth

  • Dr Caroline Li gathers and analyses EEG data for to study of seasonal affective disorder.
  • Dr Srivas Chennu works on neurodynamics of consciousness, developing new tools to study brain networks, including improved diagnostics and prognostics during emergence from coma. He also uses neural network modelling for predictive coding in cognition.
  • Professor Ian McLoughlin studies speech signal processing, human hearing, automatic speech recognition as well as deep neural network acoustic models.
  • Dr Palani Ramaswamy has worked on biological signal analysis, brain-computer interfaces and biometrics. He has applied machine learning techniques to these and other fields.

Systems

Finance

  • Dr Michael Kampouridis and Dr Fernando Otero research in the areas of algorithmic trading and financial forecasting. They have worked with different types of data, such as foreign exchange ultra-high frequency data. Algorithms they've used include genetic programming and ant colony optimisation.
  • Dr Kampouridis works on the pricing of weather derivatives by using machine learning algorithms.

Staff research interests

Kent’s world-class academics provide research students with excellent supervision. The academic staff in this school and their research interests are shown below. You are strongly encouraged to contact the school to discuss your proposed research and potential supervision prior to making an application. Please note, it is possible for students to be supervised by a member of academic staff from any of Kent’s schools, providing their expertise matches your research interests. Use our ‘find a supervisor’ search to search by staff member or keyword.

Full details of staff research interests can be found on the School's website.

David Barnes: Senior Lecturer

Simulation and modelling for biosciences, the teaching of introductory programming, chess cheating and legacy software.

View Profile

Professor Howard Bowman: Professor of Cognition and Logic

Human attention, emotions, reasoning; connectionist modelling; symbolic modelling; EEG recording and analysis methods; formal methods and concurrency theory.

View Profile

Professor David Chadwick: Professor of Information Systems Security

Public key infrastructures; privilege management infrastructures; trust management; identity management; privacy management; policy based authorisation; cloud security; autonomic access controls and internet security research.

View Profile

Dr Olaf Chitil: Lecturer

Semantics and theoretical foundations of programming languages; type theory; program transformation; compiler construction; message-passing- based concurrency; programming tools; how to write programs.

View Profile

Dr Dominique Chu: Lecturer

Molecular computing (including biochemical computers), stochastic neural networks, complexity and computation, mathematical modelling of stochastic systems.

View Profile

Dr Rogerio de Lemos: Senior Lecturer

Software engineering for self-adaptive systems: dynamic generation of management processes, abstractions for supporting self-adaptability and self-organisation, resilience evaluation; self-adaptive dependable and secure systems; architecting dependable systems: abstractions for fault tolerance, and verification and validation of dependable software architectures; software development for safety-critical systems; dependability and bio-inspired computing.

View Profile

Professor Sally Fincher: Professor of Computing Education

The construction and boundaries of CS education; the teacher perspective, especially teacher decision-making; patterns and pattern languages, their use in knowledge-transfer, and their application to CS pedagogy.

View Profile

Professor Alex Freitas: Professor of Computational Intelligence

Data mining; the biology of ageing; evolutionary algorithms; bioinformatics.

View Profile

Dr Colin Johnson: Reader

Bioinformatics; computer simulation in biology; bio-inspired computing including genetic algorithms, genetic programming and swarm intelligence methods.

View Profile

Professor Richard Jones: Professor of Computer Systems

Implementation of programming languages; memory management; garbage collection, distributed garbage collection; object demographics; program analysis for improved memory management; program visualisation. 

View Profile

Dr Stefan Kahrs: Lecturer

Expressiveness of programming languages, type systems, term rewriting, infinitary rewriting.

View Profile

Michael Kampouridis: Lecturer

Computational finance; application of computational intelligence (CI) techniques to business-related problems, such as economics and finance; use of evolutionary techniques (eg, genetic algorithms, genetic programming); financial forecasting; intelligent decision support systems for business.

View Profile

Dr Andy King: Reader in Program Analysis

Abstract interpretation, logic programming and security.

View Profile

Dr Caroline Li: Lecturer

Tools for controlling computer/robot using brain signal; body sensor data fusion for healthcare and sports; methods for diagnosing, classifying and monitoring states of brain health/ illness; signal processing and machine learning methods.

View Profile

Fernando Otero: Lecturer

Development of ant colony optimisation algorithms for data mining; economic applications of data mining; bioinformatics; evolutionary algorithms, mainly genetic programming.

View Profile

Scott Owens: Lecturer

Semantics of shared memory concurrency; design of programming languages; formal verification for software and interactive theorem proving.

View Profile

Dr Peter Rodgers: Reader

Information visualisation; graph drawing; Euler diagrams.

View Profile

Professor Simon Thompson: Professor of Logic and Computation

Functional programming in Haskell, OCaml and Erlang; refactoring functional programs: tool building, theory and practice; dependently-typed functional programming; testing of complex and concurrent systems using properties; property extraction from test suites. 

View Profile

Gerald Tripp: Lecturer

Techniques for the analysis and control of high-speed packet networks, including system monitoring and network intrusion detection; use of special-purpose hardware and firmware designs to perform high-speed string and regular expression matching.

View Profile

Ian Utting: Senior Lecturer

Tool support for teaching and learning in CS, especially programming, and especially small and mobile devices; large scale data-driven studies of initial programming education, especially using Black Box.

View Profile

Professor Frank Wang: Professor of Future Computing; Head of School

Future computing; unconventional computing; non-Turing architecture; cloud computing; big data; deep learning; memristor; neural networks; nature-inspired computing; green computing.

View Profile

Dr Laura Bocchi: Lecturer

Theory and application of session types, concurrency and service-oriented computing.

View Profile

Professor Ian McLoughlin: Head of School (Medway)

Speech is the primary communications mechanism for humans, and is increasingly the way we interact with computers and mobile devices. In my research I deal with all aspects of speech, language and hearing, and ally this with powerful machine learning techniques that mimic how human brains acquire language and recognise sounds (machine hearing). My research team also works with speech-impaired patients to develop techniques that enable them to regain the power of speech in their daily lives.

View Profile

Dr Matteo Migliavacca: Lecturer

Stream processing, database systems, parallel data processing, networked systems, cloud computing, distributed systems, big data.

View Profile

Dr Palaniappan Ramaswamy: Reader, Admissions Officer (Medway)

Analysis of biomedical signals (such as EEG, PCG and ECG) for various applications: brain-computer interface, biometrics, electrophysiological analysis, cardiovascular disease diagnosis and stress management. Also, analysis of speech and image data for various engineering and computer science applications. Tools utilised: advanced signal processing and machine learning (such as neural networks and genetic algorithms).

View Profile

Dr Mark Batty: Senior Lecturer

Empirical testing of the behaviour of hardware and compilers, building formal models of parts of the system, the development of algorithms and data-structures that use fine-grained concurrency, and the verification of those pieces of concurrent code.

View Profile

Dr Marek Grzes: Lecturer

Machine learning, artificial intelligence for games, data analysis, probabilistic reasoning, and applications thereof.

View Profile

Dr Julio Hernandez-Castro: Senior Lecturer

Computer and network security, cryptography and cryptanalysis, steganography and steganalysis, data loss prevention and RFID security.

View Profile

Dr Anna Jordanous: Lecturer

Computational creativity and its evaluation, music informatics, digital humanities, knowledge modelling, Semantic Web, and natural language processing.

View Profile

Dr Carlos Perez-Delgado: Lecturer

The advantages and limitations that quantum theory conveys to communication, computation, metrology, and security.

View Profile

Fees

The 2018/19 annual tuition fees for Home/EU PG Research programmes have not yet been set by the Research Councils UK.  This is ordinarily announced in March. 

General additional costs

Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.

Funding

Search our scholarships finder for possible funding opportunities. You may find it helpful to look at both: