Stars, Galaxies and the Universe - PH607

Location Term Level Credits (ECTS) Current Convenor 2017-18 2018-19
Canterbury Spring
View Timetable
6 15 (7.5) PROF MD Smith

Pre-requisites

None.

Restrictions

None

2017-18

Overview

Aims: To provide, in combination with PH507, a balanced and rigorous course in Astrophysics for B.Sc. Physics with Astrophysics students, while forming a basis of the more extensive M.Phys. modules.

SYLLABUS
Physics of Stars
  • Review of hydrostatic and thermal equilibrium, use to calculate stellar properties. Virial theorem and timescales. Radiative equilibrium, radiation and conduction, energy sources. Fission and fusion. Nucleosynthesis: PPI, PPII, PPIII chains; CNO cycle, Triple-alpha process; elemental abundances; Solar neutrino problem. Post main sequence evolution. Convection; conditions for convective instability. Convective vs radiative energy transport for stars of different mass. Stellar structure equations and description of techniques for solutions. Formation and properties of binary stars.
    Galaxies
  • Our galaxy. Hubble classification of galaxies. Luminosity functions. Distribution of galaxies in space. Mass and dynamics of galaxies. Interpretation of spiral and elliptical galaxies. Dark Matter. Active galaxies, quasars; observational properties.
  • General Relativity and Cosmology
    Inadequacy of Newton's Laws of Gravitation, principle of Equivalence, non-Euclidian geometry. Curved surfaces. Schwarzschild solution; Gravitational redshift, the bending of light and gravitational lenses; black holes. Brief survey of the universe. Robertson-Walker metric, field equations for cosmological and critical density. Friedmann models. The early universe. Dark Energy.
  • Details

    This module appears in:


    Contact hours

    26 lectures + 2 workshops. This module is expected to occupy 150 total study hours, including the contact hours above.

    Availability

    This is not available as a wild module.

    Method of assessment

    Coursework assessment 30%, including class tests; Exam (Length 2 hours) 70%.

    Preliminary reading

    Recommended Texts:

  • Carroll & Ostlie, Modern Astrophysics, Addison Wesley
    Background reading:
  • Bohm-Vitense, Volume 3; Stellar Structure and Evolution, Cambridge University Press
  • Taylor, The stars: Their structure and Evolution, Cambridge University Press
  • Berry, Principles of Cosmology and Gravitation, Adam Hilger
  • Roos, Introduction to Cosmology, Wiley

    See the library reading list for this module (Canterbury)

    See the library reading list for this module (Medway)

  • Learning outcomes

  • Knowledge and understanding of physical laws and principles of astrophysics, and their application to diverse areas of physics.
  • An ability to identify relevant principles and laws when dealing with problems, and to make approximations necessary to obtain solutions.
  • An ability to solve problems in physics involving stars and galaxies using appropriate mathematical tools.
  • An ability to use mathematical techniques and analysis to model physical behaviour of stars and galaxies and the universe.
  • An ability to present and interpret information about stars and galaxies graphically.
  • An ability to make use of appropriate texts, research-based materials or other learning resources about astrophysics as part of managing their own learning.
  • Problem-solving skills, in the context of both problems with well-defined solutions and open-ended problems. Numeracy is subsumed within this area.
  • Analytical skills – associated with the need to pay attention to detail and to develop an ability to manipulate precise and intricate ideas, to construct logical arguments and to use technical language correctly.

  • University of Kent makes every effort to ensure that module information is accurate for the relevant academic session and to provide educational services as described. However, courses, services and other matters may be subject to change. Please read our full disclaimer.