Linear Mathematics - MA347

Location Term Level Credits (ECTS) Current Convenor 2019-20
Canterbury Spring
View Timetable
4 15 (7.5) DR D Bearup

Pre-requisites

Pre-requisite: MAST4006 (Mathematical Methods 1)
Co-requisite: MAST4007 (Mathematical Methods 2)

Restrictions

None

2019-20

Overview

This module serves as an introduction to algebraic methods and linear algebra methods. These are central in modern mathematics, having found applications in many other sciences and also in our everyday life.

Indicative module content:

Basic set theory, Functions and Relations, Systems of linear equations and Gaussian elimination, Matrices and Determinants, Vector spaces and Linear Transformations, Diagonalisation, Orthogonality.

Details

This module appears in:


Contact hours

49 hours

Method of assessment

80% examination and 20% coursework.

Indicative reading

A. Chetwynd & P. Diggle: Discrete Mathematics. Butterworth Heinemann, 1995.
A.G. Hamilton: Linear algebra: an introduction with concurrent examples. C.U.P, Cambridge, 1989.
L. Robbiano: Linear Algebra for everyone. ISBN: 978-88-470-1839-6 (online)
W.D. Wallis: A beginner's Guide to Discrete Mathematics. ISBN: 978-0-8176-8286-6 (online)

See the library reading list for this module (Canterbury)

Learning outcomes

The intended subject specific learning outcomes.
On successfully completing the module students will be able to:
1 demonstrate knowledge of the underlying concepts and principles associated with basic set theory and linear mathematics;
2 demonstrate the capability to make sound judgements in accordance with the basic theories and concepts in the following areas, whilst demonstrating a reasonable level of skill in calculation and manipulation of the material: basic set theory, functions, systems of linear equations, matrices, vector spaces and bilinear forms;
3 apply the underlying concepts and principles associated with basic set theory and linear mathematics in several well-defined contexts, showing an ability to evaluate the appropriateness of different approaches to solving problems in this area;
4 make appropriate use of Maple.

The intended generic learning outcomes.
On successfully completing the module students will be able to demonstrate an increased ability to:
1 manage their own learning and make use of appropriate resources;
2 understand logical arguments, identifying the assumptions made and the conclusions drawn;
3 communicate straightforward arguments and conclusions reasonably accurately and clearly;
4 manage their time and use their organisational skills to plan and implement efficient and effective modes of working;
5 solve problems relating to qualitative and quantitative information;
6 make use of information technology skills such as online resources (Moodle), internet communication;
7 communicate technical material competently;
8 demonstrate an increased level of skill in numeracy and computation;
9 work as a member of a team.

University of Kent makes every effort to ensure that module information is accurate for the relevant academic session and to provide educational services as described. However, courses, services and other matters may be subject to change. Please read our full disclaimer.