Linear Algebra - MAST4004

Looking for a different module?

Module delivery information

Location Term Level1 Credits (ECTS)2 Current Convenor3 2022 to 2023
Spring Term 4 15 (7.5) Rowena Paget checkmark-circle


This module is a sequel to Algebraic Methods. It considers the abstract theory of linear spaces together with applications to matrix algebra and other areas of Mathematics (and its applications). Since linear spaces are of fundamental importance in almost every area of mathematics, the ideas and techniques discussed in this module lie at the heart of mathematics. Topics covered will include vector spaces, linear transformations, eigenvalues and eigenvectors, diagonalisation, orthogonality and applications including conics.


Contact hours

Total contact hours: 49
Private study hours: 101
Total study hours: 150

Method of assessment

80% examination and 20% coursework.

Indicative reading

T. S. Blyth and E. F. Robertson: Basic Linear Algebra. Springer, London, 2002 (SpringerLink online).
A.G. Hamilton: Linear algebra: an introduction with concurrent examples. C.U.P, Cambridge, 1989.
L. Robbiano: Linear Algebra for everyone. ISBN: 978-88-470-1839-6 (online)

See the library reading list for this module (Canterbury)

Learning outcomes

The intended subject specific learning outcomes.
On successfully completing the module students will be able to:
1 demonstrate knowledge of the underlying concepts and principles associated with linear algebra;
2 demonstrate the capability to make sound judgements in accordance with the basic theories and concepts in the following areas, whilst demonstrating a reasonable level
of skill in calculation and manipulation of the material: vector spaces, linear transformations, determinants, diagonalisation, bilinear forms, orthogonality, quadratic forms,
applications including conics;
3 apply the underlying concepts and principles associated with linear algebra in several well-defined contexts, showing an ability to evaluate the appropriateness of different
approaches to solving problems in this area;
4 make appropriate use of Maple.

The intended generic learning outcomes.
On successfully completing the module students will be able to demonstrate an increased ability to:
1 manage their own learning and make use of appropriate resources;
2 understand logical arguments, identifying the assumptions made and the conclusions drawn;
3 communicate straightforward arguments and conclusions reasonably accurately and clearly;
4 manage their time and use their organisational skills to plan and implement efficient and effective modes of working;
5 solve problems relating to qualitative and quantitative information;
6 make use of information technology skills such as online resources (Moodle), internet communication;
7 communicate technical material competently;
8 demonstrate an increased level of skill in numeracy and computation
9 work as a member of a team.


  1. Credit level 4. Certificate level module usually taken in the first stage of an undergraduate degree.
  2. ECTS credits are recognised throughout the EU and allow you to transfer credit easily from one university to another.
  3. The named convenor is the convenor for the current academic session.
Back to top

University of Kent makes every effort to ensure that module information is accurate for the relevant academic session and to provide educational services as described. However, courses, services and other matters may be subject to change. Please read our full disclaimer.