Physics reaches from the quark to the largest of galaxies, encompassing all matter and timescales within these extremes. If you are fascinated by the ‘how and why’ of the material world, our Physics with a Year Abroad MPhys equips you with the skills to understand these phenomena and prepares you for a range of career pathways.
Overview
The School of Physical Sciences is a dynamic multidisciplinary department, achieving national and international excellence in chemistry, forensic science and physics. We offer a broad training in physics, and provide an ideal preparation for a wide range of careers in the manufacturing and service industries as well as education, the media and the financial sector.
This programme is fully accredited by the Institute of Physics (IOP).
Our degree programme
In your first year, you get to grips with the broad knowledge base on which physical science is built, including electricity and light, mathematics, mechanics, thermodynamics and matter. You also develop your experimental, statistical and analytical skills.
Your second year covers a broad range of subjects including medical physics, quantum physics, atomic and nuclear physics, electromagnetism and optics, and mathematical techniques.
You spend the third year of this fouryear degree at one of our partner universities in the USA, Canada or Hong Kong. You study equivalent courses to those you would take at Kent. The programme is also available without a year abroad. For details, see Physics MPhys.
The final year of the MPhys programme brings your core knowledge and skills up to an advanced level. This stage concentrates on the indepth training required for a sciencebased career, including the practical aspects of the research processes and a major project within the School's research group.
Student view
Physics student Anthony talks about his course at the University of Kent.
BSc programme
You also have the option of doing a threeyear BSc degree. For details, see Physics. It is possible to take the BSc with a placement year and gain valuable work experience. For details, see Physics with a Year in Industry.
Foundation year
If you do not have the grades you need to study on our BSc degree, you could take Physics with a Foundation Year.
Study resources
You have access to firstclass research facilities in new laboratories. These are equipped with stateoftheart equipment, including a full characterisation suite for materials, including:
 three powder diffractometers
 a single crystal diffractometer
 xray fluorescence
 instruments to measure magnetic and transport properties
 a Raman spectrometer
 scanning electron microscopes
 optical coherence tomography imaging equipment
 optical spectrum analysers
 twostage light gas gun for impact studies
 oncampus Beacon Observatory.
The University is a member of the South East Physics Network (SEPnet), which offers a competitive programme of summer internships to Stage 2 and 3 undergraduates.
Extra activities
The School of Physical Sciences is home to an international scientific community of forensic science, chemistry, physics and astronomy students. Numerous formal and informal opportunities for discussion make it easy to participate in the academic life of the School. All students have an academic adviser and we also run a peer mentoring scheme.
You are encouraged to participate in conferences and professional events to build up your knowledge of the science community and enhance your professional development. The School also works collaboratively with business partners, which allows you to see how our research influences current practice.
You can also take part in:
 the School’s Physical Sciences Colloquia, a popular series of talks given by internal and external experts on relevant and current topics
 the studentrun Physics and Space Societies, which organise talks with top industry professionals, practical demonstrations and social events
Professional networks
The School of Physical Sciences also has links with:
 the Home Office
 optical laboratories
 local health authorities
 aerospace/defence industries
 software and engineering companies
 Interpol.
Independent rankings
Of Physics and Astronomy students who graduated from Kent in 2016, over 90% of those who responded to a national survey were in work or further study within six months (DLHE).
Teaching Excellence Framework
Based on the evidence available, the TEF Panel judged that the University of Kent delivers consistently outstanding teaching, learning and outcomes for its students. It is of the highest quality found in the UK.
Please see the University of Kent's Statement of Findings for more information.
Course structure
The course structure below gives a flavour of the modules and provides details of the content of this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.
In Stage 1, all modules listed below are compulsory.
In Stage 2, you take six compulsory modules including a physics laboratory module. You also choose one further module from the following: PH507  The Multiwavelength Universe and Exoplanets; PH508  Spacecraft Design and Operations.
In Stage 3, all modules listed below are compulsory.
In Stage 4, you carry out a research project in physics and take two further compulsory modules in particle and quantum physics, and magnetism and superconductivity. You also choose two optional modules from the following: PH709  Space, Astronomy and Solar System Science; PH711  Rocketry and Human Spaceflight; PS701  Topics in Functional Materials.
Stage 1
Modules may include  Credits 

PH304  Introduction to Astronomy and Special Relativity
Introduction to Special Relativity: Inadequacy of Galilean Transformation; Postulates of Relativity; Lorentz transformation; Time dilation, length contraction and simultaneity; Special relativity paradoxes; Invariant intervals; Momentum and energy in special relativity; Equivalence of mass and energy. Introduction to Astronomy: Astronomical coordinate systems and conversions; Positions and motions of stars; Timekeeping systems; Introduction to the distance scale. Introduction to Astrophysics and Cosmology: Stellar luminosity and magnitudes; Magnitude systems; Colour of stars; Stellar spectral classification; Evolution of stars, HertzsprungRussell diagram; Cosmological principle; Redshift; Hubble constant; Space expansion. Read more 
15 
PH311  Mathematics I
Derivatives and Integrals: Derivatives of elementary functions, chain rule, product rule, Integrals of elementary functions, Evaluation by substitution, Integration by parts, Area under the graph of a function. Vectors: Basic properties, linear dependence, scalar and vector products, triple products, vector identities. Matrices: Matrix representation, systems of equations, products, inverses, determinants, solution of linear systems, eigenvalues and eigenvectors, transformations. Elementary Functions: Binomial coefficients, expansions and series, Maclaurin series, Taylor series, Exponential functions, Hyperbolic functions, Inverse functions. Functions of a single variable: Linear and quadratic functions, polynomials, rational functions, limits, infinite series, approximation of functions. Complex numbers: Quadratic equations, Argand diagram, modulus, Argument, complex exponential, de Moivre's theorem, roots of polynomials. Read more 
15 
PH312  Mathematics II
Differential Equations: Solving differential equations, separable equations, linearity, homogeneity, first and second order equations, particular integrals. Boundary and initial values, auxiliary equations with complex roots, coefficients and terms, examples from physics. Partial Derivatives: functions of two variables , partial derivatives, directional derivatives, functions many variables, higher derivatives, function of a function, implicit differentiation, differentiation of an integral w.r.t a parameter, Taylor expansions, stationary points. Elementary multivariate Calculus: the chain rule, Multiple integrals, integrals over rectangles/irregular areas in the plane, change of order of integration. Polar Coordinates: Cylindrical polar coordinates in two and three dimensions, integrals, spherical coordinates, solid angle. Introduction to Vector Calculus : Gradients, Divergence, Gauss's theorem, Curl, Stokes' theorem. Read more 
15 
PH321  Mechanics
Measurement and motion; Dimensional analysis, Motion in one dimension: velocity, acceleration, motion with constant acceleration, Motion in a plane with constant acceleration, projectile motion, uniform circular motion, and Newton's laws of motion. Work, Energy and Momentum; Work, kinetic energy, power, potential energy, relation between force and potential energy, conservation of energy, application to gravitation and simple pendulum, momentum, conservation of linear momentum, elastic and inelastic collisions. Rotational Motion; Rotational motion: angular velocity, angular acceleration, rotation with constant angular acceleration, rotational kinetic energy, moment of inertia, calculation of moment of inertia of a rod, disc or plate, torque, angular momentum, relation between torque and angular momentum, conservation of angular momentum. Concept of field; 1/r2 fields; Gravitational Field; Kepler's Laws, Newton's law of gravitation, Gravitational potential, the gravitational field of a spherical shell by integration. Oscillations and Mechanical Waves; Vibrations of an elastic spring, simple harmonic motion, energy in SHM, simple pendulum, physical pendulum, damped and driven oscillations, resonance, mechanical waves, periodic waves, their mathematical representation using wave vectors and wave functions, derivation of a wave equation, transverse and longitudinal waves, elastic waves on a string, principle of superposition, interference and formation of standing waves, normal modes and harmonics, sound waves with examples of interference to form beats, and the Doppler Effect. Phase velocity and group velocity. Read more 
15 
PH322  Electricity and Light
Properties of Light and Optical Images; Wave nature of light. Reflection, refraction, Snell’s law, total internal reflection, refractive index and dispersion, polarisation. Huygens' principle, geometrical optics including reflection at plane and spherical surfaces, refraction at thin lenses, image formation, ray diagrams, calculation of linear and angular magnification, magnifying glass, telescopes and the microscope. Electric Field; Discrete charge distributions, charge, conductors, insulators, Coulomb’s law, electric field, electric fields lines, action of electric field on charges, electric field due to a continuous charge distribution, electric potential, computing the electric field from the potential, calculation of potential for continuous charge distribution. Magnetic Field; Force on a point charge in a magnetic field, motion of a point charge in a magnetic field, mass spectrometer and cyclotron. Electric current and Direct current circuits, electric current, resistivity, resistance and Ohm’s Law, electromotive force, ideal voltage and current sources, energy and power in electric circuits, theory of metallic conduction, resistors in series and in parallel, Kirchhoff’s rules and their application to mesh analysis, electrical measuring instruments for potential difference and current, potential divider and Wheatstone’s bridge circuits, power transfer theorem, transient current analysis in RC, RL, LC and LRC circuits using differential equations. Alternating Current Circuits; Phasor and complex number notation introduced for alternating current circuit analysis, reactance and complex impedance for Capacitance and Inductance, application to LRC series and parallel circuits. Series and parallel resonance, AC potential dividers and filter circuits, Thevenin's theorem, AC bridge circuits to measure inductance and capacitance, mutual inductance, the transformer and its simple applications. Read more 
15 
PH323  Thermodynamics and Matter
Static Equilibrium, Elasticity and fluids; Elasticity: stress, strain, Hooke's law, Young's modulus, shear modulus, forces between atoms or molecules, intermolecular potential energy curve, equilibrium separation, Morse and 612 potentials, microscopic interpretation of elasticity, relation between Young's modulus and parameters of the interatomic potential energy curve, the nature of interatomic forces, the ionic bond, calculation of the energy to separate the ions in an ionic crystal, viscosity of fluids, Poiseuille's law, Stokes' law. Thermodynamics; Thermal equilibrium, temperature scales, thermal expansion of solids, relation between thermal expansion and the interatomic potential energy curve, the transfer of thermal energy: conduction, convection, radiation, the idealgas law, Boltzmann's constant, Avogadro's number, the universal gas constant. The kinetic theory of gases, pressure of a gas, molecular interpretation of temperature, molecular speeds, mean free path, specific heat, molar specific heat. The equipartition theorem, degrees of freedom. Heat capacities of monatomic and diatomic gases and of solids. Internal energy of a thermodynamic system, the first law of thermodynamics, work and the PV diagram of a gas., work done in an isothermal expansion of an ideal gas. Molar heat capacities of gases at constant pressure and at constant volume and the relation between them. Adiabatic processes for an ideal gas. Heat engines and the Kelvin statement of the second law of thermodynamics, efficiency of a heat engine. Refrigerators and the Clausius statement of the second law of thermodynamics. Equivalence of the Kelvin and Clausius statements. The Carnot cycle, the Kelvin temperature scale. Atoms; The nuclear atom, Rutherford scattering and the nucleus, Bohr model of the atom, energy level calculation and atom spectra, spectral series for H atom. Limitation of Bohr theory. Photoelectric Effect. Blackbody Radiation. Compton scattering. Xray diffraction. De Broglie hypothesis. Electron diffraction. Introduction to wavefunctions, Heisenberg's Uncertainty Principle. Read more 
15 
PH370  Laboratory and Computing Skills for Physicists
Standard Lectures: How Physical Sciences are taught at Kent. Library use. Bibliographic database searches. Error analysis and data presentation. Types of errors; combining errors; Normal distribution; Poisson distribution; graphs – linear and logarithmic. Probability and Statistics. Probability distributions, laws of probability, permutations and combinations, mean and variance. Academic integrity and report writing skills. Laboratory experiments: A number of experiments in weekly sessions; some of the experiments require two consecutive weeks to complete. Experiments introduce students to test equipment, data processing and interpretation and cover subjects found in the Physics degree program which include the following topics: Mechanics, Astronomy/Astrophysics, statistical and probability analysis, numerical simulations, electric circuits and Thermodynamics. Computing Skills: Introduction to the concept of programming/scripting languages. Introduction to operating systems: including text editors, the directory system, basic utilities and the editcompilerun cycle. Introduction to the use of variables, constants, arrays and different data types; iteration and conditional branching. Modular design: Use of programming subroutines and functions. Simple input/output, such as the use of format statements for reading and writing, File handling, including practical read/write of data files. Producing graphical representation of data, including histograms. Interpolating data and fitting functions. Programming to solve physical problems. Introduction to typesetting formal scientific documents. Read more 
30 
Stage 2
Modules may include  Credits 

PH500  Physics Laboratory
SYLLABUS Most practicing physicists at some point will be required to perform experiments and take measurements. This module, through a series of experiments, seeks to allow students to become familiar with some more complex apparatus and give them the opportunity to learn the art of accurate recording and analysis of data. This data has to be put in the context of the theoretical background and an estimate of the accuracy made. Keeping of an accurate, intelligible laboratory notebook is most important. Each term 3 three week experiments are performed. The additional period is allocated to some further activities to develop experimental and communications skills. Read more 
30 
PH502  Quantum Physics
Revision of classical descriptions of matter as particles, and electromagnetic radiation as waves. Some key experiments in the history of quantum mechanics. The concept of waveparticle duality. The wavefunction. Probability density. The Schrodinger equation. Stationary states. Solutions of the Schrodinger equation for simple physical systems with constant potentials: Free particles. Particles in a box. Classically allowed and forbidden regions. Reflection and transmission of particles incident onto a potential barrier. Probability flux. Tunnelling of particles. The simple harmonic oscillator as a model for atomic vibrations. Revision of classical descriptions of rotation. Rotation in three dimensions as a model for molecular rotation. The Coulomb potential as a model for the hydrogen atom. The quantum numbers l, m and n. The wavefunctions of the hydrogen atom. Physical observables represented by operators. Eigenfunctions and eigenvalues. Expectation values. Time independent perturbation theory. Read more 
15 
PH503  Atomic Physics
Atomic Physics Review of previous stages in the development of quantum theory with application to atomic physics; Atomic processes and the excitation of atoms; Electric dipole selection rules; atom in magnetic field; normal Zeeman effect; Stern Gerlach experiment; Spin hypothesis; Addition of orbital and spin angular moments; Lande factor; Anomalous Zeeman effect; Complex atoms; Periodic table; General Pauli principle and electron antisymmetry; Alkali atoms; ls and jj coupling; Xrays. Lambshift and hyperfinestructure (if time). Nuclear Physics Properties of nuclei: Rutherford scattering. Size, mass and binding energy, stability, spin and parity. Nuclear Forces: properties of the deuteron, magnetic dipole moment, spindependent forces. Nuclear Models: Semiempirical mass formula M(A, Z), stability, binding energy B(A, Z)/A. Shell model, magic numbers, spinorbit interaction, shell closure effects. Alpha and Beta decay: Energetics and stability, the positron, neutrino and antineutrino. Nuclear Reactions: Qvalue. Fission and fusion reactions, chain reactions and nuclear reactors, nuclear weapons, solar energy and the helium cycle. Read more 
15 
PH504  Electromagnetism and Optics
SYLLABUS Electromagnetism Vectors: Review of Grad, Div & Curl; and other operations Electrostatics: Coulomb's Law, electric field and potential, Gauss's Law in integral and differential form; the electric dipole, forces and torques. Isotropic dielectrics: Polarization; Gauss's Law in dielectrics; electric displacement and susceptibility; capacitors; energy of systems of charges; energy density of an electrostatic field; stresses; boundary conditions on field vectors. Poisson and Laplace equations. Electrostatic images: Point charge and plane; point and sphere, line charges. Magnetic field: Field of current element or moving charge; Div B; magnetic dipole moment, forces and torques; Ampere's circuital law. Magnetization: Susceptibility and permeability; boundary conditions on field vectors; fields of simple circuits. Electromagnetic induction: Lenz’s law, inductance, magnetic energy and energy density; Optics Field equations: Maxwell's equations; the E.M. wave equation in free space. Irradiance: E.M. waves in complex notation. Polarisation: mathematical description of linear, circular and elliptical states; unpolarised and partially polarised light; production of polarised light; the Jones vector. Interference: Classes of interferometers – wavefront splitting, amplitude splitting. Basic concepts including coherence. Diffraction: Introduction to scalar diffraction theory: diffraction at a single slit, diffraction grating. Read more 
15 
PH513  Medical Physics
The aim of the module in Medical Physics is to provide a primer into this important physics specialisation. The range of subjects covered is intended to give a balanced introduction to Medical Physics, with emphasis on the core principles of medical imaging, radiation therapy and radiation safety. A small number of lectures is also allocated to the growing field of optical techniques. The module involves several contributions from the Department of Medical Physics at the Kent and Canterbury Hospital. SYLLABUS: Radiation protection (radiology, generic); Radiation hazards and dosimetry, radiation protection science and standards, doses and risks in radiology; Radiology; (Fundamental radiological science, general radiology, fluoroscopy and special procedures); Mammography (Imaging techniques and applications to health screening); Computed Tomography (Principles, system design and physical assessment); Diagnostic ultrasound (Pulse echo principles, ultrasound imaging, Doppler techniques); Tissue optics (Absorption, scattering of light in the tissue); The eye (The eye as an optical instrument); Confocal Microscopy (Principles and resolutions); Optical Coherence Tomography (OCT) and applications; Nuclear Medicine (Radionuclide production, radiochemistry, imaging techniques, radiation detectors); In vitro techniques (Radiation counting techniques and applications); Positron Emission Tomography (Principles, imaging and clinical applications); Radiation therapies (Fundamentals of beam therapy, brachytherapy, and 131I thyroid therapy); Radiation Protection (unsealed sources); Dose from invivo radionuclides, contamination, safety considerations. Read more 
15 
PH588  Mathematical Techniques for Physical Sciences
Most physically interesting problems are governed by ordinary, or partial differential equations. It is examples of such equations that provide the motivation for the material covered in this module, and there is a strong emphasis on physical applications throughout. The aim of the module is to provide a firm grounding in mathematical methods: both for solving differential equations and, through the study of special functions and asymptotic analysis, to determine the properties of solutions. The following topics will be covered: Ordinary differential equations: method of Frobenius, general linear second order differential equation. Special functions: Bessel, Legendre, Hermite, Laguerre and Chebyshev functions, orthogonal functions, gamma function, applications of special functions. Partial differential equations; linear second order partial differential equations; Laplace equation, diffusion equation, wave equation, Schrödinger’s equation; Method of separation of variables. Fourier series: application to the solution of partial differential equations. Fourier Transforms: Basic properties and Parseval’s theorem. Read more 
15 
PH507  The Multiwavelength Universe and Exoplanets
Aims: To provide a basic but rigorous grounding in observational, computational and theoretical aspects of astrophysics to build on the descriptive course in Part I, and to consider evidence for the existence of exoplanets in other Solar Systems. SYLLABUS: Observing the Universe Telescopes and detectors, and their use to make observations across the electromagnetic spectrum. Basic Definitions: Magnitudes, solid angle, intensity, flux density, absolute magnitude, parsec, distance modulus, bolometric magnitude, spectroscopic parallax, HertzsprungRussel diagram, Stellar Photometry: Factors affecting signal from a star. Detectors: Examples, Responsive Quantum Efficiency, CCD cameras. Filters, UBV system, Colour Index as temperature diagnostic. Extra Solar Planets The evidence for extrasolar planets will be presented and reviewed. The implications for the development and evolution of Solar Systems will be discussed. Astrophysics Basic stellar properties, stellar spectra. Formation and Evolution of stars. Stellar structure: description of stellar structure and evolution models, including star and planet formation. Stellar motions: Space velocity, proper motion, radial velocity, Local Standard of Rest, parallax. Degenerate matter: concept of degenerate pressure, properties of white dwarfs, Chandrasekhar limit, neutron stars, pulsars, Synchrotron radiation, Schwarzschild radius, black holes, stellar remnants in binary systems. Read more 
15 
PH508  Spacecraft Design and Operations
Aims: (1) To provide a basic understanding of the major subsystems of a spacecraft system. (2) To provide basic frameworks for understanding of spacecraft trajectory and orbits, including interplanetary orbits, launch phase and attitude control. (3) To provide an awareness of the basic ideas of how space is a business/commercial opportunity and some of the management tools required in business. SYLLABUS: Low Earth Orbit Environment The vacuum, radiation etc environment that a spacecraft encounters in Low Earth Orbit is introduced and its effect on spacecraft materials discussed. Spacecraft systems A basic introduction to spacecraft and their environment. Covers Spacecraft structures and materials, thermal control, power systems, attitude control systems, the rocket equation and propulsion. Project management This discusses: the evolving framework in which worldwide public and private sector space activities are conceived, funded and implemented. The basics of business planning and management. Orbital mechanics for spacecraft Students will find out how basic Celestial Mechanics relates to the real world of satellite/spacecraft missions. Following an overview of the effects of the Earth’s environment on a satellite, the basic equationsofmotion are outlined in order to pursue an understanding of the causes and effects of orbit perturbations. A description is given of different types of orbit and methods are outlined for the determination and prediction of satellite and planetary orbits. Launch phase is also considered, and the module concludes with an assessment of Mission Analysis problems such as choice of orbit, use of ground stations, satellite stationkeeping and orbit lifetimes. Read more 
15 
Year abroad
Students on a fouryear degree programme spend a year between Stages 2 and 3 at one of our partner universities in the USA, Canada or Hong Kong. For a full list, please see Go Abroad. Places are subject to availability.
You are expected to adhere to any academic progression requirements in Stages 1 and 2 to proceed to the Year Abroad. If the requirement is not met, you will be transferred to the equivalent threeyear programme. The Year Abroad is assessed on a pass/fail basis and will not count towards your final degree classification.
Going abroad as part of your degree is an amazing experience and a chance to develop personally, academically and professionally. You experience a different culture, gain a new academic perspective, establish international contacts and enhance your employability.
Modules may include  Credits 

PH790  Year Abroad
PH790 needs to cover a majority of learning outcomes in Stage 3 of the parent MPhys programme. The modules in the university abroad should normally cover similar topics at a similar level. Note that a onetoone correspondence is not feasible and would negate the purpose of the Year Abroad, which is to provide the student with the experience of the educational system abroad. In addition, the student has the opportunity to study some modules which are not available at University of Kent. With regards to topics, the academic liaison (typically DoUGS Physics) will check and approve the students choice of modules at the time they are at the university abroad. Read more 
120 
Stage 4
Modules may include  Credits 

PH722  Particle and Quantum Physics
• Approximation Methods, perturbation theory, variational methods. • Classical/Quantum Mechanics, measurement and the correspondence principle. • Uncertainty Principle and Spin precession . • Key Experiments in Modern Quantum Mechanics (AharonovBohm, neutron diffractyion in a gravitational field, EPR paradox). • Experimental methods in Particle Physics (Accelerators, targets and colliders, particle interactions with matter, detectors, the LHC). • Feynman Diagrams, particle exchange, leptons, hadrons and quarks. • Symmetries and Conservation Laws. • Hadron flavours, isospin, strangeness and the quark model. • Weak Interactions, W and Z bosons. Read more 
15 
PH752  Magnetism and Superconductivity

15 
PH700  Physics Research Project
Aims: Syllabus All MPhys students undertake a laboratory, theoretical or computationallybased project related to their degree specialism. These projects may also be undertaken by Diploma students. A list of available project areas is made available during Stage 3, but may be augmented/revised at any time up to and including Week 1 of Stage 4. As far as possible, projects will be assigned on the basis of students' preferences – but this is not always possible: however, the project abstracts are regarded as 'flexible' in the sense that significant modification is possible (subject only to mutual consent between student and supervisor). The projects involve a combination of some or all of: literature search and critique, laboratory work, theoretical work, computational physics and data reduction/analysis. The majority of the projects are directly related to the research conducted in the department and are undertaken within the various SPS research teams. Read more 
60 
PH709  Space Astronomy and Solar System Science
SYLLABUS: Space Astronomy Why use space telescopes; other platforms for nongroundbased astronomical observatories (sounding rockets, balloons, satellites); mission case study; what wavelengths benefit by being in space; measurements astronomers make in space using uv, xray and infrared, and examples of some recent scientific missions. Exploration of the Solar System Mission types from flybys to sample returns: scientific aims and instrumentation: design requirements for a spacecraftexploration mission; how to study planetary atmospheres and surfaces: properties of and how to explore minor bodies (e.g. asteroids and comets): current and future missions: mission case study; how space agencies liaise with the scientific community; how to perform calculations related to the orbital transfer of spacecraft. Solar System Formation and Evolution The composition of the Sun and planets will be placed in the context of the current understanding of the evolution of the Solar System. Topics include: Solar system formation and evolution; structure of the solar system; physical and orbital evolution of asteroids. Extra Solar Planets The evidence for extra Solar planets will be presented and reviewed. The implications for the development and evolution of Solar Systems will be discussed. Life in Space Introduction to the issue of what life is, where it may exist in the Solar System and how to look for it. Read more 
15 
PH711  Rocketry and Human Spaceflight
Flight Operations: Control of spacecraft from the ground, including aspects of telecommunications theory. Propulsion and attitude control: Physics of combustion in rockets, review of classical mechanics of rotation and its application to spacecraft attitude determination and control. Impact Damage: The mechanisms by which space vehicles are damaged by high speed impact will be discussed along with protection strategies. Human spaceflight: A review of human spaceflight programs (past and present). Lifesupport systems. An introduction to some major topics in space medicine; acceleration, pressurisation, radiation, etc. International Space Station: Status of this project/mission will be covered. Read more 
15 
PS701  Topics in Functional Materials
Chemists and physicists are now playing an important role in the growing field of materials research. More recently there has been a growing interest, driven by technological needs, in materials with specific functions and this requires a combination of physics and chemistry. For example, new materials are needed for the energy industry (batteries and fuel cells), for the optics and electronics industry (semiconductors, lasers and waveguides), and for the environment (sensors, actuators and ‘smart’ materials). The aim of this module is to introduce students to this area of modern materials and techniques. Examples of the topics that might typically be covered are: 1. Crystal growth and defects. 2. Liquid crystals. 3. Magnetism and Magnetic Materials. 4. Xray absorption spectroscopy (XAS). 5. Nanomaterials. 6. Multiferroics. Read more 
15 
Teaching and assessment
Teaching is by lectures, practical classes, tutorials and workshops. You have an average of nine onehour lectures, one or two days of practical or project work and a number of workshops each week. The practical modules include specific study skills in Physics and general communication skills. In the MPhys final year, you work with a member of staff on an experimental or computing project.
Assessment is by written examinations at the end of each year and by continuous assessment of practical classes and other written assignments. Your final degree result is made up of a combined mark from the Stage 2/3/4 assessments with maximum weight applied to the final stage.
Please note that there are degree thresholds at stages 2 and 3 that you will be required to pass in order to continue onto the next stages. If you do not meet the thresholds at stage 2 you will be required to change your registration for the equivalent MPhys programme without the Year Abroad option.
Programme aims
The programme aims to:
 Foster an enthusiasm for physics by exploring the ways in which it is core to our understanding of nature and fundamental to many other scientific disciplines.
 Enhance an appreciation of the application of physics in different contexts.
 Involve students in a stimulating and satisfying experience of learning within a researchled environment.
 Motivate and support a wide range of students in their endeavours to realise their academic potential.
 Provide students with a balanced foundation of physics knowledge and practical skills and an understanding of scientific methodology.
 Enable students to undertake and report on an experimental and/or theoretical investigation based in part on an extended research project.
 Develop in students a range of transferable skills of general value.
 Enable students to apply their skills and understanding to the solution of theoretical and practical problems.
 Provide students with a knowledge base that allows them to progress into more specialised areas of physics, or into multidisciplinary areas involving physical principles; the MPhys is particularly useful for those wishing to undertake physics research.
 Generate in students an appreciation of the importance of physics in the industrial, economic, environmental and social context.
 To provide the opportunity for students to broaden their experience through studying abroad.
Learning outcomes
Knowledge and understanding
You gain a systematic understanding of most fundamental laws and principles of physics, along with their application to a variety of areas in physics, some of which are at the forefront of the discipline.
The areas covered include:
 Electromagnetism.
 Classical and quantum mechanics.
 Statistical physics and thermodynamics.
 Wave phenomena and the properties of matter as fundamental aspects.
 Nuclear and particle physics.
 Condensed matter physics.
 Materials.
 Plasmas and fluids.
Intellectual skills
You gain intellectual skills in how to:
 Identify relevant principles and laws when dealing with problems and make approximations necessary to obtain solutions.
 Solve problems in physics using appropriate mathematical tools.
 Execute an experiment or investigation, analyse the results and draw valid conclusions.
 Evaluate the level of uncertainty in experimental results and compare the results to expected outcomes, theoretical predictions or published data in order to evaluate their significance.
 Use mathematical techniques and analysis to model physical phenomena.
 Solve advanced problems in physics using mathematical tools, translate problems into mathematical statements and apply knowledge to obtain order of magnitude or more precise solutions.
 Interpret mathematical descriptions of physical phenomena.
 Plan an experiment or investigation under supervision and to understand the significance of error analysis.
 A working knowledge of a variety of experimental, mathematical and/or computational techniques applicable to current research within physics.
Subjectspecific skills
You gain subjectspecific skills in:
 The use of communications and IT packages for the retrieval of information and analysis of data.
 How to present and interpret information graphically.
 The use of laboratory apparatus and techniques, including aspects of health and safety.
 The systematic and reliable recording of experimental data.
 Communications and IT skills which show fluency at the level needed for project work, such as familiarity with a programming language, simulation software or the use of mathematical packages for the manipulation and numerical solution of equations.
 An ability to communicate complex scientific ideas, the conclusion of an experiment, investigation or project concisely, accurately and informatively.
 Experimental skills showing the competent use of specialised equipment, the ability to identify appropriate pieces of equipment and master new techniques.
 An ability to make use of appropriate texts, researchbased materials or other learning resources as part of managing your own learning; an ability to make use of research articles and other primary sources.
Transferable skills
You gain transferable skills in:
 Problemsolving including the ability to formulate problems in precise terms, identify key issues and have the confidence to try different approaches.
 Independent investigative skills including the use of textbooks, other literature, databases and interaction with colleagues.
 Communication skills when dealing with surprising ideas and difficult concepts, including listening carefully, reading demanding texts and presenting complex information in a clear and concise manner.
 Analytical skills including the ability to manipulate precise and intricate ideas, construct logical arguments, use technical language correctly and pay attention to detail.
 Personal skills including the ability to work independently, use initiative, organise your time to meet deadlines and interact constructively with other people.
 The ability to study within a different educational system and live in a foreign country.
Careers
Independent rankings
Of Physics and Astronomy students who graduated from Kent in 2016, over 90% of those who responded to a national survey were in work or further study within six months (DLHE).
Graduate destinations
Kent Physics graduates have an excellent employment record with recent graduates going on to work for employers:
Defence Science and Technology
Rolls Royce
Siemens
IBM
Careerenhancing skills
You graduate with an excellent grounding in scientific knowledge and extensive laboratory experience. In addition, you also develop the key transferable skills sought by employers, such as:
excellent communication skills
work independently or as part of a team
the ability to solve problems and think analytically
time management.
You can also enhance your degree studies by signing up for one of our Kent Extra activities, such as learning a language or volunteering.
Help finding a job
The University has a friendly Careers and Employability Service which can give you advice on how to:
apply for jobs
write a good CV
perform well in interviews.
Professional recognition
Degrees fully accredited by the Institute of Physics.
Entry requirements
Home/EU students
The University will consider applications from students offering a wide range of qualifications. Typical requirements are listed below. Students offering alternative qualifications should contact us for further advice.
It is not possible to offer places to all students who meet this typical offer/minimum requirement.
New GCSE grades
If you’ve taken exams under the new GCSE grading system, please see our conversion table to convert your GCSE grades.
Qualification  Typical offer/minimum requirement 

A level  ABB, including A level Mathematics and Physics at BB (not Use of Mathematics), including the practical endorsement of any science qualifications taken 
Access to HE Diploma  The University will not necessarily make conditional offers to all Access candidates but will continue to assess them on an individual basis. If we make you an offer, you will need to obtain/pass the overall Access to Higher Education Diploma and may also be required to obtain a proportion of the total level 3 credits and/or credits in particular subjects at merit grade or above. 
BTEC Level 3 Extended Diploma (formerly BTEC National Diploma)  The University will consider applicants holding/studying BTEC Extended National Diploma Qualifications (QCF; NQF;OCR) in a relevant Science or Engineering subject at 180 credits or more, on a case by case basis. Please contact us via the enquiries tab for further advice on your individual circumstances 
International Baccalaureate  34 points overall or 16 at Higher, including Physics and Mathematics 5 at HL or 6 at SL (not Mathematics Studies) 
International students
The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country.
If you need to increase your level of science/mathematics ready for undergraduate study, we offer a Foundation Year programme which can help boost your previous scientific experience.
Meet our staff in your country
For more advice about applying to Kent, you can meet our staff at a range of international events.
English Language Requirements
Please see our English language entry requirements web page.
Please note that if you are required to meet an English language condition, we offer a number of 'presessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme.
General entry requirements
Please also see our general entry requirements.
Fees
The 2019/20 annual tuition fees for this programme are:
UK/EU  Overseas  

Fulltime  £9250  £19000 
For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.*
Your fee status
The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.
Fees for Year in Industry
For 2019/20 entrants, the standard year in industry fee for home, EU and international students is £1,385.
Fees for Year Abroad
UK, EU and international students on an approved year abroad for the full 2019/20 academic year pay £1,385 for that year.
Students studying abroad for less than one academic year will pay full fees according to their fee status.
General additional costs
Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.
Funding
University funding
Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details.
Government funding
You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.
Scholarships
General scholarships
Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.
The Kent Scholarship for Academic Excellence
At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence.
The scholarship will be awarded to any applicant who achieves a minimum of AAA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages.
The scholarship is also extended to those who achieve AAB at A level (or specified equivalents) where one of the subjects is either Mathematics or a Modern Foreign Language. Please review the eligibility criteria.