School of Mathematics, Statistics & Actuarial Science

About

Stephane was until late 2014 the School's Director of Research, chairing the School's Research and Enterprise Committee and serving on the Faculty Research and Enterprise Committee. He is now Head of the Mathematics group.

Contact Information

Address

Room 260

Office hours: Mo 11:00-12:00/Tu 11:00-12:00

back to top

Publications

Also view these in the Kent Academic Repository

Article
Launois, S. and Lecoutre, C. (2016). A quadratic Poisson Gel'fand-Kirillov problem in prime characteristic. Transactions of the American Mathematical Society [Online] 368:755-785. Available at: http://dx.doi.org/10.1090/tran/6352.
Launois, S. and Lecoutre, C. (2016). Poisson Deleting Derivations Algorithm and Poisson Spectrum. Communications in Algebra [Online] 45:1294-1313. Available at: http://dx.doi.org/10.1080/00927872.2016.1175619.
Kitchin, A. and Launois, S. (2015). On the automorphisms of quantum Weyl algebras. arXiv [Online]. Available at: http://arxiv.org/abs/1511.01775.
Bell, J., Launois, S. and Nolan, B. (2015). A generalised Dixmier-Moeglin equivalence for quantum Schubert cells. arXiv [Online]. Available at: http://arxiv.org/abs/1510.06577.
Bell, J. et al. (2015). Poisson algebras via model theory and differential-algebraic geometry. Journal of The European Mathematical Society.
Bell, J., Casteels, K. and Launois, S. (2014). Primitive ideals in quantum Schubert cells: Dimension of the strata. Forum Mathematicum [Online] 26:703-721. Available at: http://dx.doi.org/10.1515/forum-2011-0155.
Grabowski, J. and Launois, S. (2014). Graded quantum cluster algebras and an application to quantum Grassmannians. Proceedings of the London Mathematical Society [Online] 109:697-732. Available at: http://plms.oxfordjournals.org/content/109/3/697.
Kitchin, A. and Launois, S. (2014). Endomorphisms of Quantum Generalized Weyl Algebras. Letters in Mathematical Physics [Online] 104:837-848. Available at: http://dx.doi.org/10.1007/s11005-014-0691-4.
Launois, S. and Lenagan, T. (2014). Efficient Recognition of Totally Nonnegative Matrix Cells. Foundations of Computational Mathematics [Online] 14:371-387. Available at: http://dx.doi.org/10.1007/s10208-013-9169-5.
Launois, S. and Lopes, S. (2013). Classification of factorial generalized downup algebras. Journal of Algebra [Online] 396:184-206. Available at: http://dx.doi.org/10.1016/j.jalgebra.2013.08.012.
Launois, S. and Lenagan, T. (2013). Automorphisms of quantum matrices. Glasgow Mathematical Journal [Online] 55A:89-100. Available at: http://dx.doi.org/10.1017/S0017089513000529.
Bell, J., Casteels, K. and Launois, S. (2012). Enumeration of H-strata in quantum matrices with respect to dimension. Journal of Combinatorial Theory, Series A [Online] 119:83-98. Available at: http://dx.doi.org/10.1016/j.jcta.2011.07.007.
Goodearl, K. and Launois, S. (2011). The Dixmier-Moeglin equivalence and a Gel'fand-Kirillov problem for Poisson polynomial algebras. Bulletin de la Société Mathématique de France [Online] 139:1-39. Available at: http://smf4.emath.fr/en/Publications/Bulletin/139/html/smf_bull_139_1-39.php.
Goodearl, K., Launois, S. and Lenagan, T. (2011). Totally nonnegative cells and Matrix Poisson varieties. Advances in Mathematics [Online] 226:779-826. Available at: http://dx.doi.org/10.1016/j.aim.2010.07.010.
Goodearl, K., Launois, S. and Lenagan, T. (2011). Torus-invariant prime ideals in quantum matrices, totally nonnegative cells and symplectic leaves. Mathematische Zeitschrift [Online] 269:29-45. Available at: http://dx.doi.org/10.1007/s00209-010-0714-5.
Launois, S. and Lenagan, T. (2011). Twisting the quantum Grassmannian. Proceedings of the American Mathematical Society [Online] 139:99-110. Available at: http://dx.doi.org/10.1090/S0002-9939-2010-10478-1.
Grabowski, J. and Launois, S. (2011). Quantum Cluster Algebra Structures on Quantum Grassmannians and their Quantum Schubert Cells: The Finite-type Cases . International Mathematics Research Notices [Online]:2230-2262. Available at: http://dx.doi.org/10.1093/imrn/rnq153.
Bell, J., Launois, S. and Lutley, J. (2010). An automaton-theoretic approach to the representation theory of quantum algebras. Advances in Mathematics [Online] 223:476-510. Available at: http://dx.doi.org/10.1016/j.aim.2009.08.013.
Bell, J. and Launois, S. (2010). On the dimension of H-strata in quantum matrices. Algebra and Number Theory [Online] 4:175-200. Available at: http://dx.doi.org/10.2140/ant.2010.4.175.
Bell, J., Launois, S. and Nguyen, N. (2009). Dimension and enumeration of primitive ideals in quantum algebras. Journal of Algebraic Combinatorics [Online] 29:269-294. Available at: http://dx.doi.org/10.1007/s10801-008-0132-5.
Launois, S. and Richard, L. (2009). Poisson(co)homology of truncated polynomial algebras in two variables. Comptes Rendus Mathematique [Online] 347:133-138. Available at: http://dx.doi.org/10.1016/j.crma.2008.12.005.
Launois, S., Lenagan, T. and Rigal, L. (2008). Prime ideals in the quantum grassmanian. Selecta Mathematica - New Series [Online] 13:697-725. Available at: http://dx.doi.org/10.1007/s00029-008-0054-z.
Launois, S. and Lopes, S. (2007). Automorphisms and derivations of U_q(sl_4^+). Journal of Pure and Applied Algebra [Online] 211:249-264. Available at: http://dx.doi.org/10.1016/j.jpaa.2007.01.003 .
Launois, S. (2007). Primitive ideals and automorphism group of Uq+(B2). Journal of Algebra and its Applications 6:21-47.
Launois, S. (2007). Combinatorics of H-primes in quantum matrices. Journal of Algebra [Online] 309:139-167. Available at: http://dx.doi.org/10.1016/j.jalgebra.2006.10.023 .
Launois, S. and Lenagan, T. (2007). Primitive ideals and automorphisms of quantum matrices. Algebras and Representation Theory [Online] 10:339-365. Available at: http://dx.doi.org/10.1007/s10468-007-9059-0.
Launois, S. and Richard, L. (2007). Twisted Poincare duality for some quadratic Poisson algebras. Letters in Mathematical Physics [Online] 79:161-174. Available at: http://dx.doi.org/10.1007/s11005-006-0133-z.
Launois, S. and Lenagan, T. (2007). Quantised coordinate rings of semisimple groups are unique factorisation domains. Bulletin of the London Mathematical Society [Online] 39:439-446. Available at: http://dx.doi.org/10.1112/blms/bdm025.
Launois, S. and Lenagan, T. (2007). The first Hochschild cohomology group of quantum matrices and the quantum special linear group. Journal of Noncommutative Geometry 1:281-309.
Launois, S., Lenagan, T. and Rigal, L. (2006). Quantum unique factorisation domains. Journal of the London Mathematical Society [Online] 74:321-340. Available at: http://dx.doi.org/10.1112/S0024610706022927.
Launois, S. (2005). Rank t H-primes in quantum matrices. Communications in Algebra [Online] 33:837-854. Available at: http://dx.doi.org/10.1081/AGB-200051150 .
Launois, S. (2004). Les ideaux premiers invariants de Oq(Mm,p(C)). Journal of Algebra [Online] 272:191-246. Available at: http://dx.doi.org/10.1016/j.jalgebra.2003.05.005 .
Launois, S. (2004). Generators for H-invariant prime ideals in O-q(M-m,M-p(C)). Proceedings of The Edinburgh Mathematical Society [Online] 47:163-190. Available at: http://dx.doi.org/10.1017/S0013091502000718.
Book section
Bell, J., Casteels, K. and Launois, S. (2012). Enumeration of torus-invariant strata with respect to dimension in the big cell of the quantum minuscule Grassmannian of type B_n. in: Ara, P. et al. eds. New Trends in Noncommutative Algebra. American Mathematical Society, pp. 27-40. Available at: http://dx.doi.org/10.1090/conm/562.
Conference or workshop item
Launois, S. (2006). On the automorphism groups of q-enveloping algebras of nilpotent Lie algebras. in: From Lie Algebras to Quantum Groups. pp. 125-143.
Review
Launois, S. (2013). Review of the book 'Lie superalgebras and enveloping algebras' (Graduate Studies in Mathematics 131) By Ian M. Musson. Bulletin of the London Mathematical Society [Online] 45:666-667. Available at: http://dx.doi.org/10.1112/blms/bdt004.
Launois, S. (2009). Book Review:Quantum groups: A path to current algebra. Bulletin of the London Mathematical Society [Online] 41:571-572. Available at: http://dx.doi.org/10.1112/blms/bdp048 .
Total publications in KAR: 37 [See all in KAR]
back to top

Research Interests

  • Noncommutative algebra and noncommutative geometry; in particular, quantum algebras and their links with their (semi-)classical counterparts: enveloping algebras and Poisson algebras.
  • Combinatorics
  • Homological algebra.
back to top

Teaching

MA566: Number Theory
MA574: Polynomials in Several Variables back to top

Research Supervisees

 

back to top

School of Mathematics, Statistics and Actuarial Science (SMSAS), Sibson Building, Parkwood Road, Canterbury, CT2 7FS

Contact us

Last Updated: 15/05/2017