Are you inspired by the wonders and vastness of the universe? Do you want to investigate the possibilities of life elsewhere within it? If so, this course is for you. At Kent, you get involved with real space missions from ESA and NASA, and can work on Hubble Telescope data and images from giant telescopes.

## Overview

Astronomy, space science and astrophysics allow us to see the universe and our place in it. Through studying these subjects, mankind has continually enlarged its horizons and explored the cosmos. The subjects continually evolve and change every year based on discoveries by researchers around the world.

Astronomy is one of the oldest sciences, practised by most of the world's ancient civilisations, and one of the most modern, relying for many recent discoveries on high technology and the space programme.

It is an observational science that provides our view of the vast ranges of scales of space, time and physical conditions in the universe. Astrophysics emphasises the underlying physical concepts of the stars and galaxies, which make up the universe, providing an understanding of the physical nature of bodies and processes in space and the instruments and techniques used in modern astronomical research.

Space is often referred to as the final frontier of exploration by mankind. Space exploration and observations depend to a large extent on satellites and other forms of space probes. Designers of space equipment need a good understanding of physics and astrophysics, together with specialised engineering skills.

In this MPhys programme, core knowledge and skills are enhanced with the further in-depth training required for a science-based career, including the practical aspects of research.

If you would like to spend a year studying abroad as part of your degree, see Astronomy, Space Science and Astrophysics with a Year Abroad.

Alternatively, if you would prefer to study for a three-year BSc (Hons) programme, see Astronomy, Space Science and Astrophysics.

### Student view

ASSA student Dominik talks about his course at the University of Kent.

### Think Kent video series

Dr Stephen Lowry, Senior Lecturer in Astronomy and Astrophysics at the University of Kent, and a member of the science team for the OSIRIS optical camera instrument on board ESA's Rosetta spacecraft, examines what the mission has revealed about comet 67P/Churyumov-Gerasimenko and the formation of the solar system.

#### Independent rankings

Physics at Kent was ranked 5th for graduate prospects in *The Guardian University Guide 2017*. Of Physics and Astronomy students who graduated from Kent in 2015, 88% were in work or further study within six months (DLHE).

## Teaching Excellence Framework

Based on the evidence available, the TEF Panel judged that the University of Kent delivers consistently outstanding teaching, learning and outcomes for its students. It is of the highest quality found in the UK.

Please see the University of Kent's Statement of Findings for more information.

## Course structure

The course structure below gives a flavour of the modules and provides details of the content of this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.

At all stages in this programme, the modules listed are compulsory.

### Stage 1

Modules may include | Credits |
---|---|

PH304 - Introduction to Astronomy and Special Relativity
Introduction to Special Relativity: Inadequacy of Galilean Transformation; Postulates of Relativity; Lorentz transformation; Time dilation, length contraction and simultaneity; Special relativity paradoxes; Invariant intervals; Momentum and energy in special relativity; Equivalence of mass and energy. Introduction to Astronomy: Astronomical coordinate systems and conversions; Positions and motions of stars; Timekeeping systems; Introduction to the distance scale. Introduction to Astrophysics and Cosmology: Stellar luminosity and magnitudes; Magnitude systems; Colour of stars; Stellar spectral classification; Evolution of stars, Hertzsprung-Russell diagram; Cosmological principle; Redshift; Hubble constant; Space expansion. Read more |
15 |

PH311 - Mathematics I
Derivatives and Integrals: Derivatives of elementary functions, chain rule, product rule, Integrals of elementary functions, Evaluation by substitution, Integration by parts, Area under the graph of a function. Vectors: Basic properties, linear dependence, scalar and vector products, triple products, vector identities. Matrices: Matrix representation, systems of equations, products, inverses, determinants, solution of linear systems, eigenvalues and eigenvectors, transformations. Elementary Functions: Binomial coefficients, expansions and series, Maclaurin series, Taylor series, Exponential functions, Hyperbolic functions, Inverse functions. Functions of a single variable: Linear and quadratic functions, polynomials, rational functions, limits, infinite series, approximation of functions. Complex numbers: Quadratic equations, Argand diagram, modulus, Argument, complex exponential, de Moivre's theorem, roots of polynomials. Read more |
15 |

PH312 - Mathematics II
Differential Equations: Solving differential equations, separable equations, linearity, homogeneity, first and second order equations, particular integrals. Boundary and initial values, auxiliary equations with complex roots, coefficients and terms, examples from physics. Partial Derivatives: functions of two variables , partial derivatives, directional derivatives, functions many variables, higher derivatives, function of a function, implicit differentiation, differentiation of an integral w.r.t a parameter, Taylor expansions, stationary points. Elementary multivariate Calculus: the chain rule, Multiple integrals, integrals over rectangles/irregular areas in the plane, change of order of integration. Polar Coordinates: Cylindrical polar coordinates in two and three dimensions, integrals, spherical coordinates, solid angle. Introduction to Vector Calculus : Gradients, Divergence, Gauss's theorem, Curl, Stokes' theorem. Read more |
15 |

PH321 - Mechanics
Measurement and motion; Dimensional analysis, Motion in one dimension: velocity, acceleration, motion with constant acceleration, Motion in a plane with constant acceleration, projectile motion, uniform circular motion, and Newton's laws of motion. Work, Energy and Momentum; Work, kinetic energy, power, potential energy, relation between force and potential energy, conservation of energy, application to gravitation and simple pendulum, momentum, conservation of linear momentum, elastic and inelastic collisions. Rotational Motion; Rotational motion: angular velocity, angular acceleration, rotation with constant angular acceleration, rotational kinetic energy, moment of inertia, calculation of moment of inertia of a rod, disc or plate, torque, angular momentum, relation between torque and angular momentum, conservation of angular momentum. Concept of field; 1/r2 fields; Gravitational Field; Kepler's Laws, Newton's law of gravitation, Gravitational potential, the gravitational field of a spherical shell by integration. Oscillations and Mechanical Waves; Vibrations of an elastic spring, simple harmonic motion, energy in SHM, simple pendulum, physical pendulum, damped and driven oscillations, resonance, mechanical waves, periodic waves, their mathematical representation using wave vectors and wave functions, derivation of a wave equation, transverse and longitudinal waves, elastic waves on a string, principle of superposition, interference and formation of standing waves, normal modes and harmonics, sound waves with examples of interference to form beats, and the Doppler Effect. Phase velocity and group velocity. Read more |
15 |

PH322 - Electricity and Light
Properties of Light and Optical Images; Wave nature of light. Reflection, refraction, Snells law, total internal reflection, refractive index and dispersion, polarisation. Huygens' principle, geometrical optics including reflection at plane and spherical surfaces, refraction at thin lenses, image formation, ray diagrams, calculation of linear and angular magnification, magnifying glass, telescopes and the microscope. Electric Field; Discrete charge distributions, charge, conductors, insulators, Coulombs law, electric field, electric fields lines, action of electric field on charges, electric field due to a continuous charge distribution, electric potential, computing the electric field from the potential, calculation of potential for continuous charge distribution. Magnetic Field; Force on a point charge in a magnetic field, motion of a point charge in a magnetic field, mass spectrometer and cyclotron. Electric current and Direct current circuits, electric current, resistivity, resistance and Ohms Law, electromotive force, ideal voltage and current sources, energy and power in electric circuits, theory of metallic conduction, resistors in series and in parallel, Kirchhoffs rules and their application to mesh analysis, electrical measuring instruments for potential difference and current, potential divider and Wheatstones bridge circuits, power transfer theorem, transient current analysis in RC, RL, LC and LRC circuits using differential equations. Alternating Current Circuits; Phasor and complex number notation introduced for alternating current circuit analysis, reactance and complex impedance for Capacitance and Inductance, application to LRC series and parallel circuits. Series and parallel resonance, AC potential dividers and filter circuits, Thevenin's theorem, AC bridge circuits to measure inductance and capacitance, mutual inductance, the transformer and its simple applications. Read more |
15 |

PH323 - Thermodynamics and Matter
Static Equilibrium, Elasticity and fluids; Elasticity: stress, strain, Hooke's law, Young's modulus, shear modulus, forces between atoms or molecules, intermolecular potential energy curve, equilibrium separation, Morse and 6-12 potentials, microscopic interpretation of elasticity, relation between Young's modulus and parameters of the interatomic potential energy curve, the nature of interatomic forces, the ionic bond, calculation of the energy to separate the ions in an ionic crystal, viscosity of fluids, Poiseuille's law, Stokes' law. Thermodynamics; Thermal equilibrium, temperature scales, thermal expansion of solids, relation between thermal expansion and the interatomic potential energy curve, the transfer of thermal energy: conduction, convection, radiation, the ideal-gas law, Boltzmann's constant, Avogadro's number, the universal gas constant. The kinetic theory of gases, pressure of a gas, molecular interpretation of temperature, molecular speeds, mean free path, specific heat, molar specific heat. The equipartition theorem, degrees of freedom. Heat capacities of monatomic and diatomic gases and of solids. Internal energy of a thermodynamic system, the first law of thermodynamics, work and the PV diagram of a gas., work done in an isothermal expansion of an ideal gas. Molar heat capacities of gases at constant pressure and at constant volume and the relation between them. Adiabatic processes for an ideal gas. Heat engines and the Kelvin statement of the second law of thermodynamics, efficiency of a heat engine. Refrigerators and the Clausius statement of the second law of thermodynamics. Equivalence of the Kelvin and Clausius statements. The Carnot cycle, the Kelvin temperature scale. Atoms; The nuclear atom, Rutherford scattering and the nucleus, Bohr model of the atom, energy level calculation and atom spectra, spectral series for H atom. Limitation of Bohr theory. Photoelectric Effect. Blackbody Radiation. Compton scattering. X-ray diffraction. De Broglie hypothesis. Electron diffraction. Introduction to wavefunctions, Heisenberg's Uncertainty Principle. Read more |
15 |

PH370 - Laboratory and Computing Skills for Physicists
Standard Lectures: How Physical Sciences are taught at Kent. Library use. Bibliographic database searches. Error analysis and data presentation. Types of errors; combining errors; Normal distribution; Poisson distribution; graphs linear and logarithmic. Probability and Statistics. Probability distributions, laws of probability, permutations and combinations, mean and variance. Academic integrity and report writing skills. Laboratory experiments: A number of experiments in weekly sessions; some of the experiments require two consecutive weeks to complete. Experiments introduce students to test equipment, data processing and interpretation and cover subjects found in the Physics degree program which include the following topics: Mechanics, Astronomy/Astrophysics, statistical and probability analysis, numerical simulations, electric circuits and Thermodynamics. Computing Skills: Introduction to the concept of programming/scripting languages. Introduction to operating systems: including text editors, the directory system, basic utilities and the edit-compile-run cycle. Introduction to the use of variables, constants, arrays and different data types; iteration and conditional branching. Modular design: Use of programming subroutines and functions. Simple input/output, such as the use of format statements for reading and writing, File handling, including practical read/write of data files. Producing graphical representation of data, including histograms. Interpolating data and fitting functions. Programming to solve physical problems. Introduction to typesetting formal scientific documents. Read more |
30 |

### Stage 2

Modules may include | Credits |
---|---|

PH502 - Quantum Physics
Revision of classical descriptions of matter as particles, and electromagnetic radiation as waves. Some key experiments in the history of quantum mechanics. The concept of wave-particle duality. The wavefunction. Probability density. The Schrodinger equation. Stationary states. Solutions of the Schrodinger equation for simple physical systems with constant potentials: Free particles. Particles in a box. Classically allowed and forbidden regions. Reflection and transmission of particles incident onto a potential barrier. Probability flux. Tunnelling of particles. The simple harmonic oscillator as a model for atomic vibrations. Revision of classical descriptions of rotation. Rotation in three dimensions as a model for molecular rotation. The Coulomb potential as a model for the hydrogen atom. The quantum numbers l, m and n. The wavefunctions of the hydrogen atom. Physical observables represented by operators. Eigenfunctions and eigenvalues. Expectation values. Time independent perturbation theory. Read more |
15 |

PH504 - Electromagnetism and Optics
SYLLABUS Electromagnetism Vectors: Review of Grad, Div & Curl; and other operations Electrostatics: Coulomb's Law, electric field and potential, Gauss's Law in integral and differential form; the electric dipole, forces and torques. Isotropic dielectrics: Polarization; Gauss's Law in dielectrics; electric displacement and susceptibility; capacitors; energy of systems of charges; energy density of an electrostatic field; stresses; boundary conditions on field vectors. Poisson and Laplace equations. Electrostatic images: Point charge and plane; point and sphere, line charges. Magnetic field: Field of current element or moving charge; Div B; magnetic dipole moment, forces and torques; Ampere's circuital law. Magnetization: Susceptibility and permeability; boundary conditions on field vectors; fields of simple circuits. Electromagnetic induction: Lenzs law, inductance, magnetic energy and energy density; Optics Field equations: Maxwell's equations; the E.M. wave equation in free space. Irradiance: E.M. waves in complex notation. Polarisation: mathematical description of linear, circular and elliptical states; unpolarised and partially polarised light; production of polarised light; the Jones vector. Interference: Classes of interferometers wavefront splitting, amplitude splitting. Basic concepts including coherence. Diffraction: Introduction to scalar diffraction theory: diffraction at a single slit, diffraction grating. Read more |
15 |

PH507 - The Multiwavelength Universe and Exoplanets
Aims: To provide a basic but rigorous grounding in observational, computational and theoretical aspects of astrophysics to build on the descriptive course in Part I, and to consider evidence for the existence of exoplanets in other Solar Systems. SYLLABUS: Observing the Universe Telescopes and detectors, and their use to make observations across the electromagnetic spectrum. Basic Definitions: Magnitudes, solid angle, intensity, flux density, absolute magnitude, parsec, distance modulus, bolometric magnitude, spectroscopic parallax, Hertzsprung-Russel diagram, Stellar Photometry: Factors affecting signal from a star. Detectors: Examples, Responsive Quantum Efficiency, CCD cameras. Filters, UBV system, Colour Index as temperature diagnostic. Extra Solar Planets The evidence for extrasolar planets will be presented and reviewed. The implications for the development and evolution of Solar Systems will be discussed. Astrophysics Basic stellar properties, stellar spectra. Formation and Evolution of stars. Stellar structure: description of stellar structure and evolution models, including star and planet formation. Stellar motions: Space velocity, proper motion, radial velocity, Local Standard of Rest, parallax. Degenerate matter: concept of degenerate pressure, properties of white dwarfs, Chandrasekhar limit, neutron stars, pulsars, Synchrotron radiation, Schwarzschild radius, black holes, stellar remnants in binary systems. Read more |
15 |

PH508 - Spacecraft Design and Operations
Aims: (1) To provide a basic understanding of the major subsystems of a spacecraft system. (2) To provide basic frameworks for understanding of spacecraft trajectory and orbits, including interplanetary orbits, launch phase and attitude control. (3) To provide an awareness of the basic ideas of how space is a business/commercial opportunity and some of the management tools required in business. SYLLABUS: Low Earth Orbit Environment The vacuum, radiation etc environment that a spacecraft encounters in Low Earth Orbit is introduced and its effect on spacecraft materials discussed. Spacecraft systems A basic introduction to spacecraft and their environment. Covers Spacecraft structures and materials, thermal control, power systems, attitude control systems, the rocket equation and propulsion. Project management This discusses: the evolving framework in which world-wide public and private sector space activities are conceived, funded and implemented. The basics of business planning and management. Orbital mechanics for spacecraft Students will find out how basic Celestial Mechanics relates to the real world of satellite/spacecraft missions. Following an overview of the effects of the Earths environment on a satellite, the basic equations-of-motion are outlined in order to pursue an understanding of the causes and effects of orbit perturbations. A description is given of different types of orbit and methods are outlined for the determination and prediction of satellite and planetary orbits. Launch phase is also considered, and the module concludes with an assessment of Mission Analysis problems such as choice of orbit, use of ground stations, satellite station-keeping and orbit lifetimes. Read more |
15 |

PH512 - Data Analysis Techniques in Astronomy and Planetary Science
SYLLABUS: This module focuses on the use of data processing and analysis techniques as applied to astronomical data from telescopes. Students will learn how telescopes and CCD cameras work, to process astronomical images and spectra and apply a range of data analysis techniques using multiple software packages. Students will also engage in the scientific interpretation of images and spectra of astronomical objects. |
15 |

PH520 - Physics Laboratory A
SYLLABUS: Most practicing physicists at some point will be required to perform experiments and take measurements. This module, through a series of experiments, seeks to allow students to become familiar with some more complex apparatus and give them the opportunity to learn the art of accurate recording and analysis of data. This data has to be put in the context of the theoretical background and an estimate of the accuracy made. Keeping of an accurate, intelligible laboratory notebook is most important. Three 3 week experiments are performed. The remaining period is allocated to some additional activities to develop communication skills. Read more |
15 |

PH588 - Mathematical Techniques for Physical Sciences
Most physically interesting problems are governed by ordinary, or partial differential equations. It is examples of such equations that provide the motivation for the material covered in this module, and there is a strong emphasis on physical applications throughout. The aim of the module is to provide a firm grounding in mathematical methods: both for solving differential equations and, through the study of special functions and asymptotic analysis, to determine the properties of solutions. The following topics will be covered: Ordinary differential equations: method of Frobenius, general linear second order differential equation. Special functions: Bessel, Legendre, Hermite, Laguerre and Chebyshev functions, orthogonal functions, gamma function, applications of special functions. Partial differential equations; linear second order partial differential equations; Laplace equation, diffusion equation, wave equation, Schrödingers equation; Method of separation of variables. Fourier series: application to the solution of partial differential equations. Fourier Transforms: Basic properties and Parsevals theorem. Read more |
15 |

### Stage 3

Modules may include | Credits |
---|---|

PH604 - Relativity Optics and Maxwell's Equations
Special Relativity: Limits of Newtonian Mechanics, Inertial frames of reference, the Galilean and Lorentz transformations, time dilation and length contraction, invariant quantities under Lorentz transformation, energy momentum 4-vector Maxwell's equations: operators of vector calculus, Gauss law of electrostatics and magnetostatics, Faraday's law and Ampere's law, physical meanings and integral and differential forms, dielectrics, the wave equation and solutions, Poynting vector, the Fresnel relations, transmission and reflection at dielectric boundaries. Modern Optics: Resonant cavities and the laser, optical modes, Polarisation and Jones vector formulation. Read more |
15 |

PH605 - Thermal and Statistical Physics
1. Thermodynamics Review of zeroth, first, second laws. Quasistatic processes. Functions of state. Extensive and intensive properties. Exact and inexact differentials. Concept of entropy. Heat capacities. Thermodynamic potentials: internal energy, enthalpy, Helmholtz and Gibbs functions. The Maxwell relations. Concept of chemical potential. Applications to simple systems. Joule free expansion. Joule-Kelvin effect. Equilibrium conditions. Phase equilibria, Clausius-Clapeyron equation. The third law of thermodynamics and its consequences inaccessibility of the absolute zero. 2. Statistical Concepts and Statistical Basis of Thermodynamics Basic statistical concepts. Microscopic and macroscopic descriptions of thermodynamic systems. Statistical basis of Thermodynamics. Boltzmann entropy formula. Temperature and pressure. Statistical properties of molecules in a gas. Basic concepts of probability and probability distributions. Counting the number of ways to place objects in boxes. Distinguishable and indistinguishable objects. Stirling approximation(s). Schottkly defect, Spin 1/2 systems. System of harmonic oscillators. Gibbsian Ensembles. Canonical Ensemble. Gibbs entropy formula. Boltzmann distribution. Partition function. Semi-classical approach. Partition function of a single particle. Partition function of N non-interacting particles. Helmholtz free energy. Pauli paramagnetism. Semi Classical Perfect Gas. Equation of state. Entropy of a monatomic gas, Sackur-Tetrode equation. Density of states. Maxwell velocity distribution. Equipartition of Energy. Heat capacities. Grand Canonical Ensemble. 3. Quantum Statistics Classical and Quantum Counting of Microstates. Average occupation numbers: Fermi Dirac and Bose Einstein statistics. The Classical Limit. Black Body radiation and perfect photon gas. Plancks law. Einstein theory of solids. Debye theory of solids. Read more |
15 |

PH607 - Stars, Galaxies and the Universe
Aims: To provide, in combination with PH507, a balanced and rigorous course in Astrophysics for B.Sc. Physics with Astrophysics students, while forming a basis of the more extensive M.Phys. modules. SYLLABUS Physics of Stars Galaxies Inadequacy of Newton's Laws of Gravitation, principle of Equivalence, non-Euclidian geometry. Curved surfaces. Schwarzschild solution; Gravitational redshift, the bending of light and gravitational lenses; black holes. Brief survey of the universe. Robertson-Walker metric, field equations for cosmological and critical density. Friedmann models. The early universe. Dark Energy. Read more |
15 |

PH608 - The Sun, The Earth and Mars
Aims: To understand the nature of the solar activities, emissions and its properties, and its effects on the Earths atmosphere and the near-Earth space within which spacecraft operate. To have a familiarity with the modes of operation of remote sensing and communications satellites, understanding their function and how their instruments work To be familiar with the current space missions to Mars and their impact on our understanding of that planet. Solar Terrestrial physics The sun: Overall structure, magnetic field and solar activities. Interactions with Earth: plasma physics, solar wind, Earths magnetic field. Ionospheric physics. Terrestrial physics: Earths energy balance, Atmosphere. Environmental effects. Remote Sensing Modes of operation of remote sensing satellite instruments: radio, microwave, visual and infrared instruments. Basic uses of the instruments. Digital image processing, structure of digital images, image-processing overview, information extraction. environmental applications: UV radiation and Ozone concentration, climate and weather. Martian Science An overview of recent and future Mars space missions and their scientific aims. Discussions of the new data concerning Mars and the changing picture of Mars that is currently emerging. Read more |
15 |

PH611 - Numerical and Computational Methods
In Stage 1 and Stage 2, students frequently apply analytical methods to physical problem solving. This module provides a foundation in numerical approximations to analytical methods these techniques are essential for solving problems by computer. The following topics are covered: Linear equations, zeros and roots, least squares & linear regression, eigenvalues and eigenvectors, errors and finite differences, linear programming, interpolation and plotting functions, numerical integration, , numerical differentiation, solutions to ordinary differential equations using numerical methods. Read more |
15 |

PH618 - Image Processing
Introduction to Matlab Image representation, Image formation, Grey-scale transformation, Enhancement and extraction of image content, Fourier transforms and the frequency domain, Image restoration, geometrical transformations, Morphology and morphological transformations, Feature extraction, Segmentation. Read more |
15 |

PH621 - Analytical Mechanics
Minimisation problems and the Euler-Lagrange equation; Lagrange formulation of classical mechanics; Link between symmetries and conservation laws (Noether's theorem); Hamilton formulation of classical mechanics; Semi-classical mechanics and the link to quantum mechanics; Continuum mechanics and fluid dynamics; Dynamical systems and chaos Read more |
15 |

PS700 - Physical Science Research Investigation
Aims: Through two Colloquium Reports, students will learn to write high-impact articles with a critical analysis of research presented by others. They will exercise presentation skills and present critical reviews and referee's reports of the research of others.
SYLLABUS: The Research Project (60%) Identification of a research area and the issues to tackle Investigation of an unresolved issue comparing experiments and models, comparing approaches, assumptions and statistical methods. Production of a dissertation Proposal for future novel work as a short Case for Support for a PhD or research outside university environment Project Management: Scheduling research programmes, Gantt, PERT charts. Project Management: Costing of research, full economic cost, direct and indirect costs. Poster presentation of the research Research Review and Evaluation (40%) Evaluation of Research: Colloquium attendance/viewing. Science Communication: Preparation of two colloquium reports as a science magazine article with impact Referee report on the colloquiums: strengths, weaknesses of both the speaker and the research quality. Details of the work to be done will be announced by the convenor during the first two weeks of the academic year. Read more |
15 |

### Stage 4

Modules may include | Credits |
---|---|

PH700 - Physics Research Project
Aims: Syllabus All MPhys students undertake a laboratory, theoretical or computationally-based project related to their degree specialism. These projects may also be undertaken by Diploma students. A list of available project areas is made available during Stage 3, but may be augmented/revised at any time up to and including Week 1 of Stage 4. As far as possible, projects will be assigned on the basis of students' preferences but this is not always possible: however, the project abstracts are regarded as 'flexible' in the sense that significant modification is possible (subject only to mutual consent between student and supervisor). The projects involve a combination of some or all of: literature search and critique, laboratory work, theoretical work, computational physics and data reduction/analysis. The majority of the projects are directly related to the research conducted in the department and are undertaken within the various SPS research teams. Read more |
60 |

PH709 - Space Astronomy and Solar System Science
SYLLABUS: Space Astronomy Why use space telescopes; other platforms for non-ground-based astronomical observatories (sounding rockets, balloons, satellites); mission case study; what wavelengths benefit by being in space; measurements astronomers make in space using uv, x-ray and infra-red, and examples of some recent scientific missions. Exploration of the Solar System Mission types from flybys to sample returns: scientific aims and instrumentation: design requirements for a spacecraft-exploration mission; how to study planetary atmospheres and surfaces: properties of and how to explore minor bodies (e.g. asteroids and comets): current and future missions: mission case study; how space agencies liaise with the scientific community; how to perform calculations related to the orbital transfer of spacecraft. Solar System Formation and Evolution The composition of the Sun and planets will be placed in the context of the current understanding of the evolution of the Solar System. Topics include: Solar system formation and evolution; structure of the solar system; physical and orbital evolution of asteroids. Extra Solar Planets The evidence for extra Solar planets will be presented and reviewed. The implications for the development and evolution of Solar Systems will be discussed. Life in Space Introduction to the issue of what life is, where it may exist in the Solar System and how to look for it. Read more |
15 |

PH711 - Rocketry and Human Spaceflight
Flight Operations: Control of spacecraft from the ground, including aspects of telecommunications theory. Propulsion and attitude control: Physics of combustion in rockets, review of classical mechanics of rotation and its application to spacecraft attitude determination and control. Impact Damage: The mechanisms by which space vehicles are damaged by high speed impact will be discussed along with protection strategies. Human spaceflight: A review of human spaceflight programs (past and present). Life-support systems. An introduction to some major topics in space medicine; acceleration, pressurisation, radiation, etc. International Space Station: Status of this project/mission will be covered. Read more |
15 |

PH712 - Cosmology and Interstellar Medium
SYLLABUS: Interstellar Medium The major properties of the Interstellar Medium (ISM) are described. The course will discuss the characteristics of the gaseous and dust components of the ISM, including their distributions throughout the Galaxy, physical and chemical properties, and their influence the star formation process. The excitation of this interstellar material will be examined for the various physical processes which occur in the ISM, including radiative, collisional and shock excitation. The way in which the interstellar material can collapse under the effects of self-gravity to form stars, and their subsequent interaction with the remaining material will be examined. Finally the end stages of stellar evolution will be studied to understand how planetary nebulae and supernova remnants interact with the surrounding ISM. Extragalactic astrophysics Review of FRW metric; source counts; cosmological distance ladder; standard candles/rods. High-z galaxies: fundamental plane; Tully-Fisher; low surface brightness galaxies; luminosity functions and high-z evolution; the Cosmic Star Formation History Galaxy clusters: the Butcher-Oemler effect; the morphology-density relation; the SZ effect AGN and black holes: Beaming and superluminal motion; Unified schemes; Black hole demographics; high-z galaxy and quasar absorption and emission lines; Read more |
15 |

PH722 - Particle and Quantum Physics
Approximation Methods, perturbation theory, variational methods. Classical/Quantum Mechanics, measurement and the correspondence principle. Uncertainty Principle and Spin precession . Key Experiments in Modern Quantum Mechanics (Aharonov-Bohm, neutron diffractyion in a gravitational field, EPR paradox). Experimental methods in Particle Physics (Accelerators, targets and colliders, particle interactions with matter, detectors, the LHC). Feynman Diagrams, particle exchange, leptons, hadrons and quarks. Symmetries and Conservation Laws. Hadron flavours, isospin, strangeness and the quark model. Weak Interactions, W and Z bosons. Read more |
15 |

## Teaching and assessment

Teaching is by lecture, laboratory sessions, and project and console classes. You have approximately nine lectures a week, plus one day of practical work. In addition, you have reading and coursework and practical reports to prepare. In the MPhys final year, you work with a member of staff on an experimental or computing project.

Assessment is by written examination at the end of each year, plus continuous assessment of written coursework. Practical work is examined by continuous assessment.

Please note that there are degree thresholds at stages 2 and 3 that you will be required to pass in order to continue onto the next stages.

### Programme aims

The programme aims to:

- instil and/or enhance a sense of enthusiasm for physics by understanding the role of the discipline at the core of our intellectual knowledge of all aspects of nature, and as the foundation of many of the pure and applied sciences
- instil an appreciation of the subject's application in different contexts, in an intellectually stimulating research-led environment
- motivate and support students to realise their academic potential
- provide a balanced foundation of physics knowledge and practical skills, and an understanding of scientific methodology
- enable students to undertake and report on an experimental and/or theoretical investigation; in the case of the MPhys to base this in part on an extended research project
- develop the ability to apply skills, knowledge and understanding in physics to the solution of theoretical and practical problems in the subject
- provide knowledge and a skills base from which students can proceed to further studies in specialised areas of physics or multidisciplinary areas involving physical principles; the MPhys is particularly geared for those wishing to undertake physics research
- generate an appreciation of the importance of physics in the industrial, economic, environmental and social contexts
- instil an appreciation of the subject through its application in current research
- generate an appreciation of the importance of astronomy, astrophysics and space science and its role in understanding how the universe in which we live came about and how it continues to exist and develop
- provide a grounding in space systems and technology, and the overlap between the science and commercial drivers in the aerospace industry.

### Learning outcomes

#### Knowledge and understanding

You gain knowledge and understanding of:

- physical laws and principles, and their application to diverse areas of physics, including: electromagnetism, classical and quantum mechanics, statistical physics and thermodynamics, wave phenomena and the properties of matter as fundamental aspects, with additional material from nuclear and particle physics, condensed matter physics, materials, plasmas and fluids
- aspects of theory and practice, and a knowledge of key physics, the use of electronic data processing and analysis, and modern day mathematical and computational tools
- the fundamental laws and principles of physics and of astronomy, astrophysics and space science and their application.

#### Intellectual skills

You gain the following intellectual abilities:

- identify relevant principles and laws when dealing with problems, and make approximations necessary to obtain solutions
- solve problems in physics using appropriate mathematical tools
- execute and analyse critically the results of an experiment or investigation and draw valid conclusions, evaluate the level of uncertainty in these results and compare them with expected outcomes, theoretical predictions or with published data to evaluate the significance of the results in this context
- use mathematical techniques and analysis to model physical behaviour
- comment critically on how spacecraft are designed, their principles of operation, and their use to access and explore space, and how telescopes are designed, their principles of operation, and their use in astronomy and astrophysics research
- solve advanced problems in physics using appropriate mathematical tools, translate problems into mathematical statements and apply knowledge to obtain order of magnitude or more precise solutions
- interpret mathematical descriptions of physical phenomena
- plan an experiment or investigation under supervision and understand the significance of error analysis
- have a working knowledge of a variety of experimental, mathematical and/or computational techniques applicable to current research within physics
- enhanced knowledge of the science drivers that underpin government-funded research and the commercial activity that provides hardware or software solutions to challenging scientific problems in the fields of astronomy, space science and astrophysics.

#### Subject-specific skills

You gain subject-specific skills in the following:

- competent use of appropriate C&IT packages/systems for the analysis of data and information retrieval
- the ability to present and interpret information graphically
- communicating scientific information and producing clear and accurate scientific reports
- familiarity with laboratory apparatus and techniques
- the systematic and reliable recording of experimental data
- the ability to make use of appropriate texts, research-based materials or other learning resources
- fluency in C&IT at the level and range needed for project work such as familiarity with a programming language, simulation software or the use of mathematical packages for manipulation and numerical solution of equations
- the ability to communicate complex scientific ideas, the conclusion of an experiment, investigation or project concisely, accurately and informatively
- experimental methodology showing the competent use of specialised equipment, the ability to identify appropriate pieces of equipment and to master new techniques and equipment
- the ability to make use of research articles and other primary sources.

#### Transferable skills

You gain transferable skills in the following:

- problem-solving, an ability to formulate problems in precise terms and identify key issues, the confidence to try different approaches to make progress on challenging problems, and numeracy
- investigative skills in the context of independent investigation including the use of textbooks and other literature, databases, and interaction with colleagues to extract important information
- communication: dealing with surprising ideas and difficult concepts, including listening carefully, reading demanding texts and presenting complex information in a clear and concise manner
- analytical skills associated with the need to pay attention to detail, the ability to manipulate precise and intricate ideas, to construct logical arguments and use technical language correctly
- the ability to work independently, to use initiative, meet deadlines and to interact constructively with other people.

## Careers

### Graduate destinations

Our students go into areas such as:

- research and development
- technical management
- computing
- software design
- the media
- teaching.

Many also go on to postgraduate study.

### Professional recognition

This programme is recognised by the Institute of Physics.

## Entry requirements

### Home/EU students

The University will consider applications from students offering a wide range of qualifications. Typical requirements are listed below. Students offering alternative qualifications should contact us for further advice.

It is not possible to offer places to all students who meet this typical offer/minimum requirement.

### New GCSE grades

If you’ve taken exams under the new GCSE grading system, please see our conversion table to convert your GCSE grades.

Qualification | Typical offer/minimum requirement |
---|---|

A level | ABB including A level Mathematics and Physics at BB (not Use of Mathematics), including the practical endorsement of any science qualifications taken |

Access to HE Diploma | The University will not necessarily make conditional offers to all Access candidates but will continue to assess them on an individual basis. If we make you an offer, you will need to obtain/pass the overall Access to Higher Education Diploma and may also be required to obtain a proportion of the total level 3 credits and/or credits in particular subjects at merit grade or above. |

BTEC Level 3 Extended Diploma (formerly BTEC National Diploma) | The University will consider applicants holding/studying BTEC National Diploma and Extended National Diploma Qualifications (QCF; NQF; OCR) in a relevant science or engineering subject at 180 credits or more, on a case-by-case basis. Please contact us via the enquiries tab for further advice on your individual circumstances. |

International Baccalaureate | 34 points overall or 16 points at Higher including Physics 5 at HL or 6 at SL and Mathematics 5 at HL or 6 at SL (not Mathematics Studies) |

### International students

The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country.

If you need to increase your level of science/mathematics ready for undergraduate study, we offer a Foundation Year programme which can help boost your previous scientific experience.

#### Meet our staff in your country

For more advice about applying to Kent, you can meet our staff at a range of international events.

#### English Language Requirements

Please see our English language entry requirements web page.

Please note that if you are required to meet an English language condition, we offer a number of 'pre-sessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme.

### General entry requirements

Please also see our general entry requirements.

## Fees

The 2019/20 tuition fees have not yet been set. As a guide only, the 2018/19 annual tuition fees for this programme are:

UK/EU | Overseas | |
---|---|---|

Full-time |
£9250 | £18400 |

For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.*

### Your fee status

The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.

### General additional costs

Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.

## Funding

#### University funding

Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details.

#### Government funding

You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.

### Scholarships

#### General scholarships

Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.

#### The Kent Scholarship for Academic Excellence

At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence.

For 2018/19 entry, the scholarship will be awarded to any applicant who achieves a minimum of AAA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages.

The scholarship is also extended to those who achieve AAB at A level (or specified equivalents) where one of the subjects is either Mathematics or a Modern Foreign Language. Please review the eligibility criteria.