# Algebraic Methods - MA343

Looking for a different module?

## Module delivery information

Location Term Level1 Credits (ECTS)2 Current Convenor3 2020 to 2021
Canterbury
Autumn 4 15 (7.5) DR B Lemmens

## Overview

This module serves as an introduction to algebraic methods. These methods are central in modern mathematics and have found applications in many other sciences, but also in our everyday life. In this module, students will also gain an appreciation of the concept of proof in mathematics.

49 hours

## Method of assessment

80% examination, 20% coursework

A. Chetwynd & P. Diggle: Discrete Mathematics. Butterworth Heinemann, 1995.
A.G. Hamilton: Linear algebra: an introduction with concurrent examples. C.U.P, Cambridge, 1989.
L. Robbiano: Linear Algebra for everyone. ISBN: 978-88-470-1839-6 (online)
W.D. Wallis: A beginner's Guide to Discrete Mathematics. ISBN: 978-0-8176-8286-6 (online)

See the library reading list for this module (Canterbury)

## Learning outcomes

The intended subject specific learning outcomes.
On successfully completing the module students will be able to:
1 demonstrate knowledge of the underlying concepts and principles associated with basic algebraic methods;
2 demonstrate the capability to make sound judgements in accordance with the basic theories and concepts in the following areas, whilst demonstrating a reasonable level of skill in calculation and manipulation of the material: logic, basic set theory, functions, relations, systems of linear equations, matrices and determinants;
3 apply the underlying concepts and principles associated with basic algebraic methods in several well-defined contexts, showing an ability to evaluate the appropriateness of different approaches to solving problems in this area;
4 make appropriate use of Maple.

The intended generic learning outcomes.
On successfully completing the module students will be able to demonstrate an increased ability to:
1 manage their own learning and make use of appropriate resources;
2 understand logical arguments, identifying the assumptions made and the conclusions drawn;
3 communicate straightforward arguments and conclusions reasonably accurately and clearly;
4 manage their time and use their organisational skills to plan and implement efficient and effective modes of working;
5 solve problems relating to qualitative and quantitative information;
6 make use of information technology skills such as online resources (Moodle), internet communication;
7 communicate technical material competently;
8 demonstrate an increased level of skill in numeracy and computation.

## Notes

1. Credit level 4. Certificate level module usually taken in the first stage of an undergraduate degree.
2. ECTS credits are recognised throughout the EU and allow you to transfer credit easily from one university to another.
3. The named convenor is the convenor for the current academic session.