School of Mathematics, Statistics & Actuarial Science

About

Ian is Deputy Examinations Officer for undergraduate Mathematics programmes and serves on the School's Research Postgraduate Staff Student Consultative Committee.

Contact Information

Address

Room 132

Office hours: Tu 10:30-11:30/Th 14:30-15:30

back to top

Publications

Also view these in the Kent Academic Repository

Article
Brown, B. et al. (2017). Gap Localization of TE-Modes by Arbitrarily Weak Defects. Journal of the London Mathematical Society [Online] 95:942-962. Available at: http://dx.doi.org/10.1112/jlms.12046.
Brown, B. et al. (2017). Inverse problems for boundary triples with applications. Studia Mathematica [Online]. Available at: http://dx.doi.org/10.4064/sm8613-11-2016.
Judge, E., Naboko, S. and Wood, I. (2016). Eigenvalues for perturbed periodic Jacobi matrices by the Wigner-von Neumann approach. Integral Equations and Operator Theory [Online] 85:427-450. Available at: http://dx.doi.org/10.1007/s00020-016-2302-5.
Fischbacher, C., Naboko, S. and Wood, I. (2016). The Proper Dissipative Extensions of a Dual Pair. Integral Equations and Operator Theory [Online] 85:573-599. Available at: http://dx.doi.org/10.1007/s00020-016-2310-5.
Brown, B. et al. (2016). Detectable subspaces and inverse problems for Hain-Luest-type operators. Mathematische Nachrichten [Online]. Available at: http://dx.doi.org/10.1002/mana.201500231.
Brown, B. et al. (2015). On the spectrum of waveguides in planar photonic bandgap structures. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences [Online]. Available at: http://rspa.royalsocietypublishing.org/content/471/2176/20140673.abstract?ijkey=FLRWoEIYzrPaXy6&keytype=ref.
Abels, H., Grubb, G. and Wood, I. (2014). Extension Theory and Krein-type Resolvent Formulas for Nonsmooth Boundary Value Problems . Journal of Functional Analysis [Online] 266:4037-4100. Available at: http://www.sciencedirect.com/science/article/pii/S0022123614000342.
Brown, B. et al. (2014). Spectrum created by line defects in periodic structures. Mathematische Nachrichten [Online] 287:1972-1985. Available at: http://dx.doi.org/10.1002/mana.201300165.
Brown, B., Grubb, G. and Wood, I. (2009). M -functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems. Mathematische Nachrichten [Online] 282:314-347. Available at: http://dx.doi.org/10.1002/mana.200810740.
Brown, B. et al. (2009). The Abstract TITCHMARSH-WEYL M-Function for adjoint operator pairs and its relation to the Spectrum. Integral Equations and Operator Theory [Online] 63:297-320. Available at: http://dx.doi.org/10.1007/s00020-009-1668-z.
Brown, B., Eastham, M. and Wood, I. (2009). Conditions for the spectrum associated with an asymptotically straight leaky wire to comprise the interval (−∞, ∞). Journal of Physics A: Mathematical and Theoretical [Online] 42. Available at: http://dx.doi.org/10.1088/1751-8113/42/5/055207.
Brown, B., Eastham, M. and Wood, I. (2009). Estimates for the lowest eigenvalue of a star graph. Journal of Mathematical Analysis and Applications [Online] 354:24-30. Available at: http://dx.doi.org/10.1016/j.jmaa.2008.12.014.
Brown, B. et al. (2008). Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDES and block operator matrices. Journal of the London Mathematical Society [Online] 77:700-718. Available at: http://dx.doi.org/10.1112/jlms/jdn006.
Brown, B., Eastham, M. and Wood, I. (2008). Conditions for the spectrum associated with an asymptotically straight leaky wire to contain an interval [− α^2/4, ∞). Archiv der Mathematik [Online] 90:554-558. Available at: http://dx.doi.org/10.1007/s00013-008-2612-1.
Wood, I. (2007). Maximal L^p -regularity for the Laplacian on Lipschitz domains . Mathematische Zeitschrift [Online] 255:855-875. Available at: http://dx.doi.org/10.1007/s00209-006-0055-6.
Hieber, M. and Wood, I. (2007). The Dirichlet problem in convex bounded domains for operators in non-divergence form with L∞-coefficients. Differential Integral Equations 20:721-734.
Geissert, M. et al. (2005). The Ornstein-Uhlenbeck semigroup in exterior domains. Archiv der Mathematik [Online] 85:554-562. Available at: http://link.springer.com.chain.kent.ac.uk/article/10.1007%2Fs00013-005-1400-4.
Book section
Brown, B., Evans, W. and Wood, I. (2013). Some spectral properties of Rooms and Passages domains and their skeletons. in: Holden, H., Simon, B. and Teschl, G. eds. Spectral analysis, differential equations and mathematical physics: a festschrift in honor of Fritz Gesztesy's 60th birthday. Providence, RI, USA: AMS, pp. 69-85. Available at: http://www.ams.org.chain.kent.ac.uk/books/pspum/087/.
Brown, B. et al. (2011). Floquet-Bloch Theory for Elliptic Problems with Discontinuous Coefficients. in: Janas, J. et al. eds. Spectral Theory and Analysis: Conference on Operator Theory, Analysis and Mathematical Physics (OTAMP) 2008. Poland: Springer, pp. 1-20. Available at: http://dx.doi.org/10.1007/978-3-7643-9994-8_1.
Wood, I. (2009). The Ornstein-Uhlenbeck Semigroup in Bounded and Exterior Lipschitz Domains . in: Janas, J. et al. eds. Methods of Spectral Analysis in Mathematical Physics. Basel: Birkhaeuser, pp. 415-435. Available at: http://dx.doi.org/10.1007/978-3-7643-8755-6_21.
Brown, B. et al. (2009). On Spectral Bounds for Photonic Crystal Waveguides . in: Bandle, C. et al. eds. Inequalities and Applications. Basel: Birkhaeuser, pp. 23-30. Available at: http://dx.doi.org/10.1007/978-3-7643-8773-0_3.
Hieber, M. and Wood, I. (2003). Asymptotics of perturbations to the wave equation. in: Evolution equations. New York: Marcel Dekker, pp. 243-252.
Conference or workshop item
Brown, B., Eastham, M. and Wood, I. (2008). An example on the discrete spectrum of a star graph. in: Exner, P. et al. eds. Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, January 8-June 29, 2007. American Mathematical Society, pp. 331-336.
Book
Wood, I. (2005). Elliptic and Parabolic Problems in Non-Smooth Domains. [Online]. Berlin: Logos-Verlag. Available at: http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=1059&lng=deu&id=.
Edited book
Brown, B.M., Lang, J. and Wood, I. eds. (2012). Spectral Theory, Function Spaces and Inequalities: New Techniques and Recent Trends. [Online]. Basel: Birkhaeuser. Available at: http://www.springer.com/birkhauser/mathematics/book/978-3-0348-0262-8.
Forthcoming
Judge, E., Naboko, S. and Wood, I. (2018). Spectral results for perturbed periodic Jacobi matrices using the discrete Levinson technique. Studia Mathematica.
Total publications in KAR: 26 [See all in KAR]
back to top

Research Interests

Analysis of PDEs and spectral theory, in particular

  • study of spectral properties of non-selfadjoint operators via boundary triples and M-functions (generalised Dirichlet-to-Neumann maps)
  • regularity to solutions of PDEs in Lipschitz domains and
  • waveguides in periodic structures.
back to top

Teaching

MA5513: Real Analysis 2 back to top

Research Supervisees

back to top

School of Mathematics, Statistics and Actuarial Science (SMSAS), Sibson Building, Parkwood Road, Canterbury, CT2 7FS

Contact us

Last Updated: 05/02/2018