School of Mathematics, Statistics & Actuarial Science

About

Jing Ping serves on the School's Graduate Studies Committee as well as the Faculty Education Committee. She is Director of Studies for the MMath and MSc Mathematics and its Applications programmes.

Contact Information

Address

Room 247

Office hours: Tu 11:30-12:30/Fr 10:30-11:30

back to top

Publications

Also view these in the Kent Academic Repository

Article
Hay, M. et al. (2018). Remarks on certain two-component systems with peakon solutions. arXiv [online] [Online]. Available at: https://arxiv.org/pdf/1805.03323.pdf.
Carpentier, S., Mikhailov, A. and Wang, J. (2018). Rational recursion operators for integrable differential-difference equations. arXiv [Online] [Online]. Available at: https://arxiv.org/pdf/1805.09589.pdf.
Bury, R., Mikhailov, A. and Wang, J. (2017). Wave fronts and cascades of soliton interactions in the periodic two dimensional Volterra system. Physica D: Nonlinear Phenomena [Online] 347:21-41. Available at: http://dx.doi.org/10.1016/j.physd.2017.01.003.
Hone, A., Novikov, V. and Wang, J. (2017). Generalizations of the short pulse equation. Letters in Mathematical Physics [Online]. Available at: https://doi.org/10.1007/s11005-017-1022-3.
Hone, A., Novikov, V. and Wang, J. (2017). Two-component generalizations of the Camassa-Holm equation. Nonlinearity [Online] 30:622-658. Available at: http://iopscience.iop.org/article/10.1088/1361-6544/aa5490/meta;jsessionid=0AADAAD96C412EF897587E993641D098.c2.iopscience.cld.iop.org.
Tian, K. and Wang, J. (2017). Symbolic Representation and Classification of N = 1 Supersymmetric Evolutionary Equations. Studies in Applied Mathematics [Online] 138:467-498. Available at: http:/dx.doi.org/10.1111/sapm.12163.
Mikhailov, A., Papamikos, G. and Wang, J. (2016). Darboux transformation for the vector sine-Gordon equation and integrable equations on a sphere. Letters in Mathematical Physics [Online] 106:973-996. Available at: http://dx.doi.org/10.1007/s11005-016-0855-5.
Mikhailov, A., Papamikos, G. and Wang, J. (2016). Dressing method for the vector sine-Gordon equation and its soliton interactions. Physica D: Nonlinear Phenomena [Online] 325:53-62. Available at: http://dx.doi.org/10.1016/j.physd.2016.01.010.
Wang, J. (2015). Representations of sl(2,?) in category O and master symmetries. Theoretical and Mathematical Physics [Online] 184:1078-1105. Available at: http://link.springer.com/article/10.1007/s11232-015-0319-6.
Mikhailov, A., Papamikos, G. and Wang, J. (2014). Darboux transformation with dihedral reduction group. Journal of Mathematical Physics [Online] 55:113507. Available at: http://dx.doi.org/10.1063/1.4901224.
Khanizadeh, F., Mikhailov, A. and Wang, J. (2013). Darboux transformations and recursion operators for differential-difference equations. Theoretical and Mathematical Physics [Online] 177:1606-1654. Available at: http://dx.doi.org/10.1007/s11232-013-0124-z.
Beffa, G. and Wang, J. (2013). Hamiltonian evolutions of twisted polygons in RP^n. Nonlinearity [Online] 26:2515-2551. Available at: http://dx.doi.org/10.1088/0951-7715/26/9/2515.
Mansfield, E., Marí Beffa, G. and Wang, J. (2013). Discrete Moving Frames and Discrete Integrable Systems. Foundations of Computational Mathematics [Online] 13:545-582. Available at: http://dx.doi.org/10.1007/s10208-013-9153-0.
Wang, J. (2012). Recursion Operator of the Narita–Itoh–Bogoyavlensky Lattice. Studies in Applied Mathematics [Online] 129:309-327. Available at: http://dx.doi.org/10.1111/j.1467-9590.2012.00556.x.
Mikhailov, A., Wang, J. and Xenitidis, P. (2011). Recursion operators, conservation laws and integrability conditions for difference equations. Theoretical and Mathematical Physics 167:421-443.
Mikhailov, A., Wang, J. and Xenitidis, P. (2011). Cosymmetries and Nijenhuis recursion operators for difference equations. Nonlinearity [Online] 24:2079-2097. Available at: http://dx.doi.org/10.1088/0951-7715/24/7/009.
Mikhailov, A. and Wang, J. (2011). A new recursion operator for Adler's equation in the Viallet form. Physics Letters A [Online] 375:3960-3963. Available at: http://dx.doi.org/10.1016/j.physleta.2011.09.018.
Wang, J. (2010). The Hunter-Saxton equation: remarkable structures of symmetries and conserved densities. Nonlinearity 23:2009-2028.
Wang, J. (2009). Extension of integrable equations. Journal of Physics A: Mathematical and Theoretical [Online] 42:362004. Available at: http://dx.doi.org/10.1088/1751-8113/42/36/362004.
Wang, J. (2009). Lenard scheme for two-dimensional periodic Volterra chain. Journal of Mathematical Physics [Online] 50:23506. Available at: http://dx.doi.org/10.1063/1.3054921.
Hone, A. and Wang, J. (2008). Integrable peakon equations with cubic nonlinearity. Journal of Physics A: Mathematical and Theoretical [Online] 41. Available at: http://dx.doi.org/10.1088/1751-8113/41/37/372002.
Novikov, V. and Wang, J. (2007). Symmetry Structure of Integrable Nonevolutionary Equations. Studies in Applied Mathematics [Online] 119:393-428. Available at: http://dx.doi.org/10.1111/j.1467-9590.2007.00390.x.
Mikhailov, A., Novikov, V. and Wang, J. (2007). On classification of integrable nonevolutionary equations. Studies in Applied Mathematics [Online] 118:419-457. Available at: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9590.2007.00376.x.
Wang, J. (2006). On the structure of (2+1)-dimensional commutative and noncommutative integrable equations. Journal of Mathematical Physics [Online] 47:113508. Available at: http://dx.doi.org/10.1063/1.2375032.
Sanders, J. and Wang, J. (2006). Integrable systems in n-dimensional conformal geometry. Journal of Difference Equations and Applications [Online] 12:983-995. Available at: http://dx.doi.org/10.1080/10236190600986784.
Mikhailov, A., Novikov, V. and Wang, J. (2005). Partially integrable nonlinear equations with one higher symmetry. Journal of Physics A: Mathematical and General [Online] 38:L337-L341. Available at: http://dx.doi.org/10.1088/0305-4470/38/20/L02.
Sanders, J. and Wang, J. (2004). On the Integrability of Systems of second order Evolution Equations with two Components. Journal of Differential Equations [Online] 203:1-27. Available at: http://dx.doi.org/10.1016/j.jde.2004.04.010.
Hone, A. and Wang, J. (2003). Prolongation algebras and Hamiltonian operators for peakon equations. Inverse Problems [Online] 19:129-145. Available at: http://dx.doi.org/10.1088/0266-5611/19/1/307.
Wang, J. and Sanders, J. (2003). Integrable systems in n-dimensional Riemannian geometry. Moscow Mathematical Journal 3:1369-1393.
Olver, P., Sanders, J. and Wang, J. (2002). Ghost symmetries. Journal of Nonlinear Mathematical Physics [Online] 9:164-172. Available at: http://dx.doi.org/10.2991/jnmp.2002.9.s1.14.
Wang, J. (2002). A List of 1 + 1 Dimensional Integrable Equations and Their Properties. Journal of Nonlinear Mathematical Physics [Online] 9 - Su:213-233. Available at: http://dx.doi.org/10.2991/jnmp.2002.9.s1.18.
Sanders, J. and Wang, J. (2002). On a family of operators and their Lie algebras. Journal of Lie Theory 12:503-514.
Beffa, G., Sanders, J. and Wang, J. (2002). On integrable systems in 3-dimensional Riemannian geometry. Journal of Nonlinear Science [Online] 12:143-167. Available at: http://dx.doi.org/10.1007/s00332-001-0472-y.
Sanders, J. and Wang, J. (2001). On recursion operators. Physica D: Nonlinear Phenomena [Online] 149:1-10. Available at: http://dx.doi.org/10.1016/S0167-2789(00)00188-3.
Beukers, F., Sanders, J. and Wang, J. (2001). On integrability of systems of evolution equations. Journal of Differential Equations [Online] 172:396-408. Available at: http://dx.doi.org/10.1006/jdeq.2000.3859.
Sanders, J. and Wang, J. (2001). Integrable Systems and their Recursion Operators. Nonlinear Analysis: Theory, Methods & Applications [Online] 47:5213-5240. Available at: http://dx.doi.org/10.1016/S0362-546X(01)00630-7.
Olver, P. and Wang, J. (2000). Classification of Integrable One-Component Systems on Associative Algebras. Proceedings of the London Mathematical Society [Online] 81:566-586. Available at: http://dx.doi.org/10.1112/S0024611500012582.
Sanders, J. and Wang, J. (2000). On the Integrability of Non-Polynomial Scalar Evolution Equations. Journal of Differential Equations [Online] 166:132-150. Available at: http://dx.doi.org/10.1006/jdeq.2000.3782.
Sanders, J. and Wang, J. (1998). On the integrability of homogeneous scalar evolution equations. Journal of Differential Equations [Online] 147:410-434. Available at: http://dx.doi.org/10.1006/jdeq.1998.3452.
Sanders, J. and Wang, J. (1998). Combining Maple and Form to decide on integrability questions. Computer Physics Communications [Online] 115:1-13. Available at: http://dx.doi.org/10.1016/S0010-4655(98)00122-2.
Beukers, F., Sanders, J. and Wang, J. (1998). One symmetry does not imply integrability. Journal of Differential Equations [Online] 146:251-260. Available at: http://dx.doi.org/10.1006/jdeq.1998.3426.
Sanders, J. and Wang, J. (1997). Classification of conservation laws for KdV--like equations. Mathematics and Computers in Simulation [Online] 44:471-481. Available at: http://dx.doi.org/10.1016/S0378-4754(97)00076-1.
Sanders, J. and Wang, J. (1997). Hodge decomposition and conservation laws. Mathematics and Computers in Simulation [Online] 44:483-493. Available at: http://dx.doi.org/10.1016/S0378-4754(97)00077-3.
Book section
Sanders, J. and Wang, J. (2009). Number Theory and the Symmetry Classification of Integrable Systems. in: Mikhailov, A. V. ed. Integrability. USA: Princeton University Press.
Mikhailov, A., Novikov, V. and Wang, J. (2008). Symbolic representation and classification of integrable systems. in: MacCallum, M. A. H. and Mikhailov, A. V. eds. Algebraic Theory of Differential Equations. Cambridge: Cambridge university press, pp. 156-216.
Hereman, W. et al. (2005). Symbolic Computation of Polynomial Conserved Densities, Generalized Symmetries, and Recursion Operators for Nonlinear Differential-Difference Equations. in: Group Theory and Numerical Analysis. Amer. Math. Soc., pp. 133-148. Available at: http://www.ams.org/bookstore?fn=20&arg1=crmpseries&item=CRMP-39.
Sanders, J. and Wang, J. (2001). On Integrability of Evolution Equations and Representation Theory. in: Joshua, L. and Thierry, R. eds. The geometrical study of differential equations. America: American Mathematical Society, pp. 85-99.
Olver, P., Sanders, J. and Wang, J. (2001). Classification of symmetry-integrable evolution equations. in: Alan, C. et al. eds. Bäcklund and Darboux transformations. The geometry of solitons (Halifax, NS, 1999). Providence, RI: American Mathematical Society, pp. 363-372. Available at: http://bookshop.blackwell.co.uk/jsp/id/Backlund_and_Darboux_Transformations/9780821828038.
Conference or workshop item
Wang, J. (2003). Generalized Hasimoto Transformation and vector Sine-Gordon equation. in: Abenda, S., Gaeta, G. and Walcher, S. eds. Symmetry and Perturbation Theory, SPT 2002. World Scientific, pp. 277-285.
Sanders, J. and Wang, J. (2000). The symbolic method and cosymmetry integrability of evolution equations. in: Fiedler, B., Gröger, K. and Sprekels, J. eds. the International Conference on Differential Equations. Singapore: world scientific, pp. 824-831.
Sanders, J. and Wang, J. (1998). On the classification of integrable systems. in: Desanto, J. A. ed. Fourth International Conference on Mathematical and Numerical Aspects of Wave Propagation. Philadelphia: SIAM, pp. 393-397.
Total publications in KAR: 51 [See all in KAR]
back to top

Research Interests

  • Geometric and algebraic properties of nonlinear differential equations
  • Test and classification of integrable systems
  • Asymptotic normal forms of partial differential equations.
back to top

Research Supervisee

Nitin Serwa - Symbolic computation and integrable systems

 

back to top

School of Mathematics, Statistics and Actuarial Science (SMSAS), Sibson Building, Parkwood Road, Canterbury, CT2 7FS

Contact us

Last Updated: 05/02/2019