School of Mathematics, Statistics & Actuarial Science

About

Ana serves on the School's Athena SWAN Committee and is an EDI rep for the School.

Contact Information

Address

Room 364

Office hours: Please email me to make an appointment

back to top

Publications

Publications list (external link)

Also view these in the Kent Academic Repository

Article
Clarkson, P., Loureiro, A. and Van Assche, W. (2016). Unique positive solution for an alternative discrete Painlevé I equation. Journal of Difference Equations and Applications [Online]. Available at: http://www.tandfonline.com/doi/abs/10.1080/10236198.2015.1127917.
Loureiro, A. and Zeng, J. (2016). q-Differential equations for q-classical polynomials and q-Jacobi-Stirling numbers. q-Differential equations for q-classical polynomials and q-Jacobi-Stirling numbers [Online] 289:693-717. Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/mana.201400381/abstract.
Loureiro, A., Maroni, P. and Yakubovich, S. (2014). On a polynomial sequence associated with the Bessel operator. Proceedings of the American Mathematical Society [Online] 142:467-482. Available at: http://dx.doi.org/10.1090/S0002-9939-2013-11658-8.
Loureiro, A. and Yakubovich, S. (2013). Central factorials under the Kontorovich–Lebedev transform of polynomials. Integral Transforms and Special Functions [Online] 24. Available at: http://dx.doi.org/10.1080/10652469.2012.672325.
Loureiro, A. and Yakubovich, S. (2013). The Kontorovich-Lebedev transform as a map between d-orthogonal polynomials. Studies in Applied Mathematics [Online] 131:229-265. Available at: http://dx.doi.org/10.1111/sapm.12009.
Loureiro, A. and Maroni, P. (2012). Polynomial sequences associated with the classical linear functionals. Numerical Algorithms [Online] 60:297-314. Available at: http://dx.doi.org/10.1007/s11075-012-9573-y.
Loureiro, A. and Cardoso, J. (2011). On the convergence of Schröder iteration functions for pth roots of complex numbers. Applied Mathematics and Computation [Online] 217:8833-8839. Available at: http://dx.doi.org/10.1016/j.amc.2011.03.047.
Loureiro, A. and Maroni, P. (2011). Quadratic decomposition of Laguerre polynomials via lowering operators. Journal of Approximation Theory [Online] 163:888-903. Available at: http://dx.doi.org/10.1016/j.jat.2010.07.009.
Cardoso, J. and Loureiro, A. (2011). Iteration functions for pth roots of complex numbers. Numerical Algorithms [Online] 57:329-356. Available at: http://dx.doi.org/10.1007/s11075-010-9431-8.
Loureiro, A. and Maroni, P. (2011). Around q-Appell polynomial sequences. Ramanujan Journal [Online] 26:311-321. Available at: http://dx.doi.org/10.1007/s11139-011-9336-8.
Loureiro, A. (2010). New results on the Bochner condition about classical orthogonal polynomials. Journal of Mathematical Analysis and Applications [Online] 364:307-323. Available at: http://dx.doi.org/10.1016/j.jmaa.2009.12.003.
Loureiro, A. and Maroni, P. (2008). Quadratic decomposition of Appell sequences. Expositiones Mathematicae [Online] 26:177-186. Available at: http://dx.doi.org/10.1016/j.exmath.2007.10.002.
Loureiro, A., Maroni, P. and Rocha, Z. (2006). The generalised Bochner condition about classical orthogonal polynomials revisited. Journal of Mathematical Analysis and Applications [Online] 322:645-667. Available at: http://dx.doi.org/10.1016/j.jmaa.2005.09.026.
Book section
Loureiro, A. and Yakubovich, S. (2014). On especial cases of Boas-Buck type polynomial sequences. in: Milovanović, G. and Rassias, M. eds. Analytic Number Theory, Approximation Theory, and Special Functions. Springer New York, pp. 705-720. Available at: http://dx.doi.org/10.1007/978-1-4939-0258-3_26.
Thesis
Loureiro, A. (2008). Hahn's generalized problem and corresponding Appell sequences.
Edited journal
Loureiro, A.F. ed. (2012). Opuscula Mathematica - a special journal issue. Opuscula Mathematica [Online] 32. Available at: http://www.opuscula.agh.edu.pl/om-vol32iss4.
Forthcoming
Loureiro, A. and Xu, K. (2019). Volterra-type convolution of classical polynomials. arXiv:1804.10144.
Xu, K. and Loureiro, A. (2018). Spectral approximation of convolution operator. submitted.
Clarkson, P. et al. eds. (2018). Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) - Special Issue on Orthogonal Polynomials, Special Functions and Applications. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) - Special Issue on Orthogonal Polynomials, Special Functions and Applications [Online]. Available at: https://www.emis.de/journals/SIGMA/OPSFA2017.html.
Total publications in KAR: 19 [See all in KAR]
back to top

Research Interests

Orthogonal polynomials, special functions and integral transforms, as well as some aspects of combinatorics and approximation theory back to top

Teaching

MA568/MA7526: Orthogonal Polynomials and Special Functions
back to top

Research Supervisee

 

back to top

School of Mathematics, Statistics and Actuarial Science (SMSAS), Sibson Building, Parkwood Road, Canterbury, CT2 7FS

Contact us

Last Updated: 14/05/2018