Statistical Ecology
There has been research in the area of statistical ecology at Kent for many years. We are part of the National Centre for Statistical Ecology (NCSE), which was established in 2005.
Bayesian statistics
The research conducted in this area at Kent is mainly on Bayesian variable selection, Bayesian model fitting, Bayesian nonparametric methods, Markov chain Monte Carlo with applications.
Biological and health statistics
Research is focused on statistical modelling and inference in biology and genetics with applications in complex disease studies. Over the past few decades, large amounts of complex data have been produced by high through-put biotechnologies. The grand challenges offered to statisticians include developing scalable statistical methods for extracting useful information from the data, modelling biological systems with the data, and fostering innovation in global health research.
Machine learning
This theme encompasses both theory and applications. Theory is involved with supervised and unsupervised learning, matrix factorisation, modelling of high-dimensional time series, differential privacy, deep learning and networks, shape analysis and statistics on manifolds, and neuroimaging. Applications in biology, industry, medicine and psychiatry. Often new computational methods are the key to analysing complex big data problems.
Nonparametric statistics
In order to describe the data, it is common in statistics to assume a specific probability model. Unfortunately, in many practical applications (for instance in economics, population genetics and social networks) it is not possible to identify a specific structure for the data. Nonparametric methods provide statistical tools for addressing inference in these situations.
Economics and finance
At Kent there is particular interest in the use of nonparametric methods including quantile regression and Bayesian nonparametric approaches. Application areas include modelling of the business cycle and capacity utilisation, calculating sovereign credit ratings, modelling of stock return data, and predicting inflation.