This is an archived page and for reference purposes only
Spectacular advances in electronics, computing and communications have made a huge impact on modern life. Studying Electronic and Communications Engineering at Kent you become a part of this revolution, and gain the knowledge and skills to make your own mark in this exciting field.
Overview
Electronics-based products play a vital role in our daily lives. Examples include diagnostic equipment used in modern hospitals, broadband, satellite, and wireless communication technologies, and consumer electronics in the home. At Kent, our research led degrees mean our graduates can work at the forefront of the major areas of electronic engineering and you will combine theory with practical and project work, turning ideas into real systems.
We have strong links with the Royal Academy of Engineering and the Institution of Engineering and Technology (IET) and our student work has won international prizes. Also, our visiting industrial professors contribute a strong industrial relevance of our courses.
Applicants for September 2019 entry can apply for a scholarship of a £1,000 one off payment. For more information and to apply, see DA VINCI Academic scholarship.
Our degree programme
This programme covers all aspects of electronic engineering, which means on graduation you can enter any branch of electronics. By taking a year in industry, you gain invaluable workplace experience further enhancing your career.
Your first year lays the foundation for the rest of your studies and includes modules on computer systems, electronic circuits, engineering analysis and mathematics. You also complete a robotics project which gives you the chance to construct a robot.
In your second year, you further develop your understanding of the field, gaining further practical experience. As your knowledge grows you discover which areas particularly interest you, so that in your final year you can begin to specialise in preparation for your final-year project.
Student view
Electronic and Communications Engineering student Bradley talks about his course at the University of Kent.
Year in industry
The additional aims of our Year in Industry degree are to give students an opportunity to gain experience as engineers working in a professional environment and to develop employment-related skills. The Year in Industry opportunity develops students’ technical skills, employability and soft skills as well as increasing their awareness of the future context for employment.
Your Year in Industry takes place between your second and final year. The School’s dedicated employability officer helps you to identify organisations offering placements. Companies also visit the School to present their industrial placement opportunities and to interview candidates.
As well as gaining invaluable workplace experience, you also have the chance to evaluate a particular career path, and, if your Year in Industry goes well, you may be offered a job by that employer after graduation. For further details, see course structure.
BEng programme
It is possible to take this programme without a year in industry, Electronic and Communications Engineering.
MEng programme
We also offer Electronic and Communications Engineering MEng, a four-year programme which allows you to focus in depth on particular topics.
Foundation year
If you do not have the qualifications for direct entry on to one our degree programmes, you can take Electronic and Communications Engineering with a Foundation Year.
Study resources
We provide first-class facilities to support your studies, including:
- 120-seat multi-purpose engineering laboratory
- four air-conditioned computer suites housing around 150 high-end computers
- CAD and development software
- PCB and surface-mount facilities
- an anechoic chamber
- 3D body scanner
- motion-capture studio
- mechanical workshop staffed with skilled mechanical engineers.
Professional links
The School has strong links with the Royal Academy of Engineering and the Institution of Engineering and Technology (IET). We have several visiting industrial professors who contribute to the strong industrial relevance of our programmes.
Extra activities
There are many ways to get involved in School life. You could become a student representative, giving students a voice on School committees or become a student ambassador and work with us in secondary schools to promote engineering and technology.
We also host events where you can meet industry experts and former students.
In addition, you can take part in student-led societies including:
- TinkerSoc – a society that embraces all forms of technology, where you build, hack and make things.
Independent rankings
Electronic and Electrical Engineering at Kent scored 90.7 out of 100 in The Complete University Guide 2019.
In the National Student Survey 2018, over 86% of final-year Electronic and Electrical Engineering students who completed the survey, were satisfied with the overall quality of their course.
Of Electronic and Electrical Engineering students who graduated from Kent in 2017 and completed a national survey, over 94% were in work or further study within six months (DLHE).
Teaching Excellence Framework
All University of Kent courses are regulated by the Office for Students.
Based on the evidence available, the TEF Panel judged that the University of Kent delivers consistently outstanding teaching, learning and outcomes for its students. It is of the highest quality found in the UK.
Please see the University of Kent's Statement of Findings for more information.

Course structure
The following modules are indicative of those offered on this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.
On most programmes, you study a combination of compulsory and optional modules. You may also be able to take ‘elective’ modules from other programmes so you can customise your programme and explore other subjects that interest you.
Stage 1
Compulsory modules currently include | Credits |
---|---|
EL303 - Electronic Circuits
The module provides techniques to design electronic circuits containing active and passive components and to appreciate the power issues and frequency response of circuits containing reactive elements. An introduction will be given to Electromagnetism for engineering purposes. An understanding of the fundamentals of Electronic Engineering is assumed and the module proceeds via a sequence of lectures supported by simple exercises designed to give practical experience of the concepts introduced in the lectures. View full module details |
15 |
EL305 - Introduction to Electronics
The module provides an introduction to the basic knowledge required to understand, design and work with basic electronic circuits and the basic principles underlying the process of Electronic Engineering. No previous electronics experience is assumed and the module proceeds via a sequence of lectures supported by simple exercises designed to give practical experience of the concepts introduced in the lectures. View full module details |
15 |
EL311 - First Year Engineering Applications Project
The module provides a first attempt to translate a problem into a technical solution. An understanding of the relevant software and electronic hardware options to create a functional solution centred around a microcontroller will be developed. Design skills will be applied to define and fabricate the physical solution informed by the original requirement. An understanding of the fundamentals of Electronic Engineering is assumed and the module proceeds via lectures supported by supervision and technical advice. It is designed to give practical experience of the concepts introduced in the lectures of the prerequisite module. View full module details |
15 |
EL313 - Introduction to Programming
The module provides an introduction to the basic knowledge required to understand, design and write computer programs and the basic principles underlying the process of Software Engineering. No previous programming experience is assumed and the module proceeds via a sequence of lectures supported by simple exercises designed to give practical experience of the concepts introduced in the lectures. View full module details |
15 |
EL315 - Digital Technologies
This module provides an introduction to contemporary digital systems design. Starting with the fundamental building blocks of digital systems the module outlines both theoretical and practical issues for implementation. Practical work includes the use of digital simulation and analysis software for implementing real-world problems. View full module details |
15 |
EL318 - Engineering Mathematics
Mathematics is the fundamental language of engineering, allowing complex ideas to be formulated and developed. This course provides the sound basis of mathematical techniques and methods required by almost all other modules in the department's engineering courses. Topics covered include functions, set theory, complex numbers, calculus, linear algebra, statistics and probability. The lectures are supported by assessed examples classes, taken in small groups. View full module details |
15 |
EL319 - Engineering Analysis
This module expands the introductory mathematics covered in EL318 and provides students with the appropriate mathematical tools necessary for the further study of electronic, mechanical and computer systems. The main emphasis of the course is in applied calculus, which isused to solve real-world engineering problems.. The lectures are supported by assessed examples classes, taken in small groups. View full module details |
15 |
EL323 - Introduction to Mechanical Engineering and Design
Mechanics: Forces, moments and Equilibrium of rigid bodies Dynamics of linear and rotary motion Angular momentum, work and energy Elementary stress-strain analysis Engineering Design: Transformation of a client requirement into an engineering design statement Decomposition and evaluation of design requirements Consideration of the human and ergonomic factors in the design process CAD based drawings and models via CAD tools Realisation of CAD models using computer numerical control manufacturing machines View full module details |
15 |
Stage 2
Compulsory modules currently include | Credits |
---|---|
EL560 - Microcomputer Engineering
This is a highly practical module that starts with a typical programming language environment suitable for microcontrollers, looks at software engineering issues, methods for the programming of an 32-bit microcontroller and concludes with the input/output of data using polling and interrupts. There are supporting practicals. View full module details |
15 |
EL562 - Computer Interfacing Group Project
The module consists of a practical group project involving both hardware and software. Also included is a series of supporting lectures. Students work in groups of typically four. The project provides an opportunity for students to gain experience not only in technical areas such as PC based data acquisition, computer interfacing, visual programming and hardware design and construction but also in transferable skills including team working, project management, technical presentations and report writing. View full module details |
15 |
EL565 - Electronic Instrumentation and Measurement Systems
This module consists of a series of coherent lectures, laboratory sessions and examples classes. Technical topics covered in the module include basic error analysis, general principles of measurement and instrumentation, sensors and transducers, signal conditioning and data presentation elements, power supplies, and noise and screening. The students are taught to understand the role of the various elements of a measurement system and to specify and evaluate a measurement system for a given application. In practical laboratory sessions the students construct and test basic measurement systems using common sensors and electronic components. There is also a practical laboratory session on power supplies. Real-world case studies are provided to illustrate the applications and significance of measurement systems in industry. View full module details |
15 |
EL566 - Microwave Circuits and Electromagnetic Waves
This module provides students with a general knowledge of the principles of microwave communication technologies and how signals are transmitted via transmission lines. The module builds on this knowledge by introducing you to some of the microwave circuits used in modern communication systems. View full module details |
15 |
EL567 - Electronic and RF Circuit Design
This module builds on the knowledge of the circuit theory and electronic circuits learned in the first year and introduces more advanced analytical and computer-aided techniques of circuit analysis and design in both frequency- and time-domain as well as at very high frequencies (RF and microwaves). It uses these techniques to teach the operation and design principles of various advanced analogue electronic circuits (e.g. filters and oscillators). RF and microwave circuits and technology are also introduced, together with necessary analysis and design skills. Computer simulation and design software is used extensively to gain better understanding of the circuits. Practical experiments in the lab sessions are used so as to help students gain some practical skills in filter designs. View full module details |
15 |
EL568 - Digital Implementation
This module provides an overview of modern digital system implementation. It includes an introduction to CMOS circuit design, fabrication technologies, memory technologies, memory interfacing and an introduction to VHDL/Xilinx. View full module details |
15 |
EL569 - Signals and Systems
This module introduces basic concepts and techniques for describing and analysing continuous and discrete time signals and systems. It also introduces the fundamentals of feedback control systems, covering techniques for the analysis and design of such systems. View full module details |
15 |
EL570 - Communications Principles
This module introduces fundamental concepts of communication systems and communications networks, including baseband signals and noise, analogue modulation/demodulation, sampling and digitisation, digital modulation/demodulation, network architecture and topologies, link layer, local area network and Internet protocols. Extensive practical work is included. Examples classes also support student learning. View full module details |
15 |
Year in industry
You spend a year working in industry between Stages 2 and 3. You gain practical work experience, while assessing possible future career options and making contacts in the industry. Employers are always keen to employ graduates with knowledge of the work environment and some students receive job offers from their placement company.
We have a dedicated Employability Officer who will help you apply for placements; but please note that it is your responsibility to secure a placement, which cannot always be guaranteed. The School has excellent industrial links, providing students with many placement opportunities.
You are eligible to apply for a placement offered through the School's exchange agreement with Hong Kong City University.
Please note that progression thresholds apply. In particular, in order to be considered for an industrial placement, you need to achieve an overall mark at Stage 1 of at least 60%.
Compulsory modules currently include | Credits |
---|---|
EL791 - Year in Industry (Industrial Assessment)
Students spend a year (minimum 30 weeks) working in an industrial or commercial setting, applying and enhancing the skills and techniques they have developed and studied in the earlier stages of their degree programme. The work they do is entirely under the direction of their industrial supervisor, but support is provided via a dedicated Placement Support Officer and Placement Tutor within the School. This support includes ensuring that the work they are being expected to do is such that they can meet the learning outcomes of the module. Note that participation in this module is dependent on students obtaining an appropriate placement, for which guidance is provided through the School in the years leading up to the placement. Students who do not obtain a placement will be required to transfer to the appropriate programme without a Year in Industry. View full module details |
90 |
EL792 - Year in Industry (Academic Assessment)
Students spend a year (minimum 30 weeks) working in an industrial or commercial setting, applying and enhancing the skills and techniques they have developed and studied in the earlier stages of their degree programme. The work they do is entirely under the direction of their industrial supervisor, but support is provided via a dedicated Placement Support Officer and Placement Tutor within the School. This support includes ensuring that the work they are being expected to do is such that they can meet the learning outcomes of the module. Note that participation in this module is dependent on students obtaining an appropriate placement, for which guidance is provided through the School in the years leading up to the placement. Students who do not obtain a placement will be required to transfer to the appropriate programme without a Year in Industry. View full module details |
30 |
Stage 3
Compulsory modules currently include | Credits | |
---|---|---|
EL600 - Project
Introduction to the project, research techniques, poster design, report structure and writing. View full module details |
45 | |
EL665 - Communication Systems
This module presents the main principles of modern communication systems and how these are applied in real communications systems. The module provides specialist knowledge of examples of current systems, including antennas and propagation, mobile and satellite communication systems. In addition, you gain an awareness of some of the available products, systems, technologies and techniques in the field of communication systems. View full module details |
15 | |
EL671 - Product Development
This module introduces the issues relating to the development of commercial electronic products. Topics include design, production techniques, the commercial background of a company, quality, safety and electromagnetic compatibility standards, electromagnetic compatibility issues and product reliability, ethical and environmental issues. View full module details |
15 | |
EL677 - Digital Communication Systems
Information theory and Shannon capacity, information measure and mutual information, source coding and channel coding/decoding, multiuser communications. Network architecture, topology. Access networks, voice and data. Transport networks and multiplexing. Local are networks, Ethernet, WiFi. TCP/IP networks and the Internet. Optical communication systems. Propagation in optical fibres. Sources (LEDs, laser), modulation. Photodiodes, receivers. Optical components. System power budgets, noise and dispersion. View full module details |
15 |
Optional modules may include | Credits |
---|---|
EL673 - Digital Systems Design
This module looks at the methodology of designing and implementing large digital systems. Students taking this module will learn how to design reliable digital systems using synchronous design techniques, will learn how to design digital systems which are easily testable and will be able to use a range of software tools which synthesize digital systems using VHDL. View full module details |
15 |
EL676 - Digital Signal Processing and Control
This module continues the study of classical control and signal processing and further takes the classical control and signal processing developed in module EL569 into the digital domain. Tools are developed for analysis in the digital environment and there is a strong emphasis on design and evaluation. View full module details |
15 |
EL667 - Embedded Computer Systems
This module introduces the theory and practice of employing computers as the control and organisational centre of an electronic or mechanical system, and examines issues related to time critical systems. It also provides exposure to practical embedded systems design through practical work, with one assignment exploring the ideas of real-time operating systems introduced in the lectures and a second using a microcomputer programmed in 'C' to control the ignition timing of a simulated petrol engine. View full module details |
15 |
Teaching and assessment
Teaching includes practical work in conventional laboratory experiments or projects, lecture modules and examples classes, which develop your problem-solving skills, and staff hold regular ‘surgeries’ where you can discuss any questions you have. Practical work is carried out in air-conditioned laboratories, with state-of-the-art equipment and outstanding IT infrastructure.
Stage 1 modules are assessed by coursework and examination at the end of the year. Stage 2 and 3 modules, with the exception of the Stage 3 project, are assessed by a combination of coursework and examination. All years include project work to replicate industrial practice and develop skills to maximise employability.
Contact Hours
For a student studying full time, each academic year of the programme will comprise 1200 learning hours which include both direct contact hours and private study hours. The precise breakdown of hours will be subject dependent and will vary according to modules. Please refer to the individual module details under Course Structure.
Methods of assessment will vary according to subject specialism and individual modules. Please refer to the individual module details under Course Structure.
Programme aims
The programme aims to:
- educate students to become engineers, well-equipped for professional careers in development, research and production in industry and universities, who are well-adapted to meet the challenges of a rapidly changing subject
- produce professional electronic engineers with a well-balanced knowledge
- enable students to satisfy the professional requirements of the Institution of Engineering and Technology (IET)
- provide academic guidance and welfare support for students
- create an atmosphere of co-operation and partnership between staff and students, and an environment where students can develop their potential
- offer an opportunity for students to gain experience as an engineer working in a professional environment
- develop employment-related skills, including an understanding of how to relate to the structure and function in an organisation, via a year in industry.
Learning outcomes
Knowledge and understanding
You gain knowledge and understanding of:
- mathematical principles relevant to electronic and communications engineering
- relevant scientific principles and methodology
- advanced concepts of analogue and digital circuits and systems, telecommunications and instrumentation
- the value of intellectual property and contractual issues
- business and management techniques to achieve engineering objectives
- the need for a high level of professional and ethical conduct
- current manufacturing practice with particular emphasis on product safety and Electromagnetic Compatibility (EMC) standards and directives
- characteristics of materials, equipment, processes and products
- codes of practice, industry standards and quality issues
- contexts in which engineering knowledge can be applied
- aspects of the core subject areas from the perspective of a commercial or industrial organisation.
Intellectual skills
You gain the following intellectual abilities:
- analyse and solve problems using appropriate mathematical methods
- apply and integrate knowledge and understanding of other engineering disciplines to support the study of electronic engineering
- use of engineering principles and the ability to apply them to analyse key electronic engineering processes
- identify, classify and describe the performance of systems and components using analytical methods and modelling techniques
- understand and apply a systems approach to electronic engineering problems
- investigate and define a problem and identify constraints including cost drivers, economic, environmental, health and safety and risk assessment issues
- use creativity to establish innovative, aesthetic solutions while understanding customer and user needs, ensuring fitness for purpose of all aspects of the problem including production, operation, maintenance and disposal
- demonstrate the economic and environmental context of the engineering solution
- apply some of the intellectual skills specified for the programme from the perspective of a commercial or industrial organisation.
Subject-specific skills
You gain subject-specific skills in the following:
- using mathematical techniques to analyse problems
- the ability to work in an engineering laboratory environment and to use a wide range of electronic equipment, workshop equipment and computer aided design (CAD) tools for the practical realisation of electronic circuits
- working with technical uncertainty
- applying quantitative methods and computer software relevant to electronic engineering to solve engineering problems
- designing electronic circuits or systems to fulfil a product specification and devise tests to appraise performance
- awareness of the nature of intellectual property and contractual issues and an understanding of appropriate codes of practice and industry standards
- using technical literature and other information sources and applying it to a design
- applying management techniques to the planning, resource allocation and execution of a design project and evaluating outcomes
- preparing technical reports and presentations
- applying subject-specific skills specified for the programme from the perspective of a commercial or industrial organisation.
Transferable skills
You gain transferable skills in the following:
- generating, analysing, presenting and interpreting data
- using information and communications technology
- personal and interpersonal skills, and to work as part of a team
- communication by various means: written, verbal and visual
- learning effectively for the purpose of continuing professional development
- critical thinking, reasoning and reflection
- managing time and resources within an individual project and a group project.
Careers
Graduate destinations
Our graduates go into careers in areas such as:
- electronic engineering and computing
- telecommunications industries including radio, television and satellite communications;
- medical electronics, instrumentation and industrial process control.
They have gone on to work in companies including:
- BAE Systems
- Nokia
- the Royal Navy
- Xilinx
- British Energy
- RDDS.
Some graduates choose to go on to postgraduate study, for example, MSc Advanced Communication Engineering (RF Technology and Communications), Advanced Electronic Systems Engineering and Information Security and Biometrics.
Professional recognition
For over 30 years, our BEng and MEng courses in Electronic and Communications Engineering have been accredited by the Institution of Engineering and Technology (IET), which enables fast-track career progression as a professional engineer.
Help finding a job
Employers are always keen to employ graduates with knowledge of the work environment and some students receive job offers from their placement company.
The School of Engineering and Digital Arts holds an annual Employability and Careers Day where you can meet local and national employers and discuss career opportunities. Ongoing support is provided by the School’s dedicated Employability Officer.
The University also has a friendly Careers and Employability Service which can give you advice on how to:
- apply for jobs
- write a good CV
- perform well in interviews.
Career-enhancing skills
In addition to the technical skills you acquire on this programme, you also gain key transferable skills including:
- planning and organisation
- leadership
- effective communication.
You can gain extra skills by signing up for one of our Kent Extra activities, such as learning a language or volunteering.
The course didn’t just teach me the technical knowledge needed to be an engineer, it taught me how to solve problems and how to approach engineering challenges.
Scott Broadley Electronic and Communications Engineering MEng
Entry requirements
Home/EU students
The University will consider applications from students offering a wide range of qualifications. Typical requirements are listed below. Students offering alternative qualifications should contact us for further advice.
It is not possible to offer places to all students who meet this typical offer/minimum requirement.
New GCSE grades
If you’ve taken exams under the new GCSE grading system, please see our conversion table to convert your GCSE grades.
Qualification | Typical offer/minimum requirement |
---|---|
A level | BBB including B in Mathematics and a science/technology subject (Physics, Computing or Electronics) |
Access to HE Diploma | The University will not necessarily make conditional offers to all Access candidates but will continue to assess them on an individual basis. If we make you an offer, you will need to obtain/pass the overall Access to Higher Education Diploma and may also be required to obtain a proportion of the total level 3 credits and/or credits in particular subjects at merit grade or above. |
BTEC Level 3 Extended Diploma (formerly BTEC National Diploma) | Engineering: Distinction, Distinction, Merit including Distinction in Further Mathematics for Technicians |
International Baccalaureate | 34 points overall or 15 points at HL including Mathematics (not Mathematics Studies), and a science subject 5 at HL or 6 at SL |
International students
The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country.
However, please note that international fee-paying students cannot undertake a part-time programme due to visa restrictions.
If you need to increase your level of qualification ready for undergraduate study, we offer a number of International Foundation Programmes.
Meet our staff in your country
For more advice about applying to Kent, you can meet our staff at a range of international events.
English Language Requirements
Please see our English language entry requirements web page.
Please note that if you are required to meet an English language condition, we offer a number of 'pre-sessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme.
General entry requirements
Please also see our general entry requirements.
Fees
The 2019/20 annual tuition fees for this programme are:
UK/EU | Overseas | |
---|---|---|
Full-time | £9250 | £19000 |
For details of when and how to pay fees and charges, please see our Student Finance Guide.
For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.*
Your fee status
The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.
Fees for Year in Industry
For 2019/20 entrants, the standard year in industry fee for home, EU and international students is £1,385.
Fees for Year Abroad
UK, EU and international students on an approved year abroad for the full 2019/20 academic year pay £1,385 for that year.
Students studying abroad for less than one academic year will pay full fees according to their fee status.
General additional costs
Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.
Funding
University funding
Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details.
Government funding
You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.
Scholarships
General scholarships
Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.
DA VINCI Academic Scholarship
A one off payment for UK, EU and Overseas applicants who meet the criteria set by the School of Engineering and Digital Arts. For more information and to make an application, see DA VINCI Academic Scholarship.
The Kent Scholarship for Academic Excellence
At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence.
The scholarship will be awarded to any applicant who achieves a minimum of AAA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages.
The scholarship is also extended to those who achieve AAB at A level (or specified equivalents) where one of the subjects is either mathematics or a modern foreign language. Please review the eligibility criteria.