This is an archived page and for reference purposes only
Advances in electronics, computing and communications have made a huge impact on every aspect of modern life. This programme teaches you the skills and expertise needed to design the computer systems that shape the way we live.
Overview
The range of uses for computers is increasing all the time – from smartphones, games consoles and tablets to aircraft flight control systems, super computers, autonomous robots and global telecommunications. Our degree gives you up-to-date knowledge of computer hardware and software, and a background knowledge of electronics, communications systems and control theory. This programme contains leading-edge research, which is vital in a field that advances at such a fast pace.
The programme is accredited by the Institution of Engineering and Technology (IET), on behalf of the Engineering Council. This allows graduates to follow an approved process to gain Chartered Engineer status.
Applicants for September 2019 entry can apply for a scholarship of a £1,000 one off payment. For more information and to apply, see DA VINCI Academic scholarship.
Our degree programme
This degree develops the skills and expertise needed to design computer systems, covering up-to-date detailed knowledge of computer hardware and software including electronics, communications systems and interface technologies. Our courses are designed with strong industrial input and therefore students graduate with excellent career prospects.
Computer technology, telecommunications and consumer electronics are rapidly evolving, so experts in these fields are in great demand. This degree is based on leading-edge research and has been designed with strong industrial input.
In your first and second years, you are introduced to a wide range of computing and engineering modules. You can study the theoretical background of digital technologies, communications principles and object-oriented programming, and take modules in robotics, computer interfacing and engineering mathematics.
Your final year allows you to specialise in a particular topic of interest. This could include computer networks and communication, computer security and cryptography, digital signal processing, digital control, digital systems design and embedded computer systems.
All years include project work that replicates industrial practice to maximise the employability of our graduates.
Computer Systems Engineering student Fatima talks about her time at the University of Kent.
Year in industry
You can take a work placement between the second and third years of your degree. This provides valuable workplace experience and can increase your professional contacts. For more details, see Computer Systems Engineering with a Year in Industry.
Study resources
The School of Engineering and Digital Arts offers cutting-edge equipment and facilities, including:
- four air-conditioned computer suites with 150 high-end computers
- 120-seat engineering laboratory
- extensive professional CAD development software
- PCB and surface-mount facilities
- mechanical workshop
- Matlab for system modelling
- 3dMD 3D imaging scanner for general purpose capture and biometric research
- VICON Infrared Motion Capture System
- anechoic chamber for EMC (pre-compliance testing) and antenna characterisation.
Extra activities
Kent Union has a range of student-run clubs and societies to help you network, develop your skills and socialise with students from across the University.
Professional network
The School of Engineering and Digital Arts has a long history of collaboration with industry. We have a strong reputation for our placement year, matching dedicated students with a variety of organisations in the UK and overseas.
Independent rankings
Electronic and Electrical Engineering at Kent scored 90.7 out of 100 in The Complete University Guide 2019.
In the National Student Survey 2018, over 86% of final-year Electronic and Electrical Engineering students who completed the survey, were satisfied with the overall quality of their course.
Of Electronic and Electrical Engineering students who graduated from Kent in 2017 and completed a national survey, over 94% were in work or further study within six months (DLHE).
Teaching Excellence Framework
All University of Kent courses are regulated by the Office for Students.
Based on the evidence available, the TEF Panel judged that the University of Kent delivers consistently outstanding teaching, learning and outcomes for its students. It is of the highest quality found in the UK.
Please see the University of Kent's Statement of Findings for more information.
Course structure
The following modules are indicative of those offered on this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.
On most programmes, you study a combination of compulsory and optional modules. You may also be able to take ‘elective’ modules from other programmes so you can customise your programme and explore other subjects that interest you.
Stage 1
Compulsory modules currently include | Credits |
---|---|
CO320 - Introduction to Object-Oriented Programming
This module provides an introduction to object-oriented software development. Software pervades many aspects of most professional fields and sciences, and an understanding of the development of software applications is useful as a basis for many disciplines. This module covers the development of simple software systems. Students will gain an understanding of the software development process, and learn to design and implement applications in a popular object-oriented programming language. Fundamentals of classes and objects are introduced and key features of class descriptions: constructors, methods and fields. Method implementation through assignment, selection control structures, iterative control structures and other statements is introduced. Collection objects are also covered and the availability of library classes as building blocks. Throughout the course, the quality of class design and the need for a professional approach to software development is emphasised and forms part of the assessment criteria. View full module details |
15 |
EL303 - Electronic Circuits
The module provides techniques to design electronic circuits containing active and passive components and to appreciate the power issues and frequency response of circuits containing reactive elements. An introduction will be given to Electromagnetism for engineering purposes. An understanding of the fundamentals of Electronic Engineering is assumed and the module proceeds via a sequence of lectures supported by simple exercises designed to give practical experience of the concepts introduced in the lectures. View full module details |
15 |
EL305 - Introduction to Electronics
The module provides an introduction to the basic knowledge required to understand, design and work with basic electronic circuits and the basic principles underlying the process of Electronic Engineering. No previous electronics experience is assumed and the module proceeds via a sequence of lectures supported by simple exercises designed to give practical experience of the concepts introduced in the lectures. View full module details |
15 |
EL311 - First Year Engineering Applications Project
The module provides a first attempt to translate a problem into a technical solution. An understanding of the relevant software and electronic hardware options to create a functional solution centred around a microcontroller will be developed. Design skills will be applied to define and fabricate the physical solution informed by the original requirement. An understanding of the fundamentals of Electronic Engineering is assumed and the module proceeds via lectures supported by supervision and technical advice. It is designed to give practical experience of the concepts introduced in the lectures of the prerequisite module. View full module details |
15 |
EL315 - Digital Technologies
This module provides an introduction to contemporary digital systems design. Starting with the fundamental building blocks of digital systems the module outlines both theoretical and practical issues for implementation. Practical work includes the use of digital simulation and analysis software for implementing real-world problems. View full module details |
15 |
EL318 - Engineering Mathematics
Mathematics is the fundamental language of engineering, allowing complex ideas to be formulated and developed. This course provides the sound basis of mathematical techniques and methods required by almost all other modules in the department's engineering courses. Topics covered include functions, set theory, complex numbers, calculus, linear algebra, statistics and probability. The lectures are supported by assessed examples classes, taken in small groups. View full module details |
15 |
EL319 - Engineering Analysis
This module expands the introductory mathematics covered in EL318 and provides students with the appropriate mathematical tools necessary for the further study of electronic, mechanical and computer systems. The main emphasis of the course is in applied calculus, which isused to solve real-world engineering problems.. The lectures are supported by assessed examples classes, taken in small groups. View full module details |
15 |
EL323 - Introduction to Mechanical Engineering and Design
Mechanics: Forces, moments and Equilibrium of rigid bodies Dynamics of linear and rotary motion Angular momentum, work and energy Elementary stress-strain analysis Engineering Design: Transformation of a client requirement into an engineering design statement Decomposition and evaluation of design requirements Consideration of the human and ergonomic factors in the design process CAD based drawings and models via CAD tools Realisation of CAD models using computer numerical control manufacturing machines View full module details |
15 |
Stage 2
Compulsory modules currently include | Credits |
---|---|
EL560 - Microcomputer Engineering
This is a highly practical module that starts with a typical programming language environment suitable for microcontrollers, looks at software engineering issues, methods for the programming of an 32-bit microcontroller and concludes with the input/output of data using polling and interrupts. There are supporting practicals. View full module details |
15 |
EL561 - Image Analysis & Applications
The module introduces fundamental techniques employed in image processing and pattern recognition providing an understanding of how practical pattern recognition systems may be developed able to address the inherent difficulties present in real world situations. The material is augmented with a study of biometric and security applications looking at the specific techniques employed to recognise biometric samples. View full module details |
15 |
EL562 - Computer Interfacing Group Project
The module consists of a practical group project involving both hardware and software. Also included is a series of supporting lectures. Students work in groups of typically four. The project provides an opportunity for students to gain experience not only in technical areas such as PC based data acquisition, computer interfacing, visual programming and hardware design and construction but also in transferable skills including team working, project management, technical presentations and report writing. View full module details |
15 |
EL565 - Electronic Instrumentation and Measurement Systems
This module consists of a series of coherent lectures, laboratory sessions and examples classes. Technical topics covered in the module include basic error analysis, general principles of measurement and instrumentation, sensors and transducers, signal conditioning and data presentation elements, power supplies, and noise and screening. The students are taught to understand the role of the various elements of a measurement system and to specify and evaluate a measurement system for a given application. In practical laboratory sessions the students construct and test basic measurement systems using common sensors and electronic components. There is also a practical laboratory session on power supplies. Real-world case studies are provided to illustrate the applications and significance of measurement systems in industry. View full module details |
15 |
EL568 - Digital Implementation
This module provides an overview of modern digital system implementation. It includes an introduction to CMOS circuit design, fabrication technologies, memory technologies, memory interfacing and an introduction to VHDL/Xilinx. View full module details |
15 |
EL569 - Signals and Systems
This module introduces basic concepts and techniques for describing and analysing continuous and discrete time signals and systems. It also introduces the fundamentals of feedback control systems, covering techniques for the analysis and design of such systems. View full module details |
15 |
EL570 - Communications Principles
This module introduces fundamental concepts of communication systems and communications networks, including baseband signals and noise, analogue modulation/demodulation, sampling and digitisation, digital modulation/demodulation, network architecture and topologies, link layer, local area network and Internet protocols. Extensive practical work is included. Examples classes also support student learning. View full module details |
15 |
CO520 - Further Object-Oriented Programming
This module builds on the foundation of object-oriented design and implementation found in CO320 to provide both a broader and a deeper understanding of and facility with object-oriented program design and implementation. Reinforcement of foundational material is through its use in both understanding and working with a range of fundamental data structures and algorithms. More advanced features of object-orientation, such as interface inheritance, abstract classes, nested classes, functional abstractions and exceptions are covered. These allow an application-level view of design and implementation to be explored. Throughout the course, the quality of application design and the need for a professional approach to software development is emphasised. View full module details |
15 |
Stage 3
Compulsory modules currently include | Credits | |
---|---|---|
EL600 - Project
Introduction to the project, research techniques, poster design, report structure and writing. View full module details |
45 | |
EL667 - Embedded Computer Systems
This module introduces the theory and practice of employing computers as the control and organisational centre of an electronic or mechanical system, and examines issues related to time critical systems. It also provides exposure to practical embedded systems design through practical work, with one assignment exploring the ideas of real-time operating systems introduced in the lectures and a second using a microcomputer programmed in 'C' to control the ignition timing of a simulated petrol engine. View full module details |
15 | |
EL671 - Product Development
This module introduces the issues relating to the development of commercial electronic products. Topics include design, production techniques, the commercial background of a company, quality, safety and electromagnetic compatibility standards, electromagnetic compatibility issues and product reliability, ethical and environmental issues. View full module details |
15 | |
EL673 - Digital Systems Design
This module looks at the methodology of designing and implementing large digital systems. Students taking this module will learn how to design reliable digital systems using synchronous design techniques, will learn how to design digital systems which are easily testable and will be able to use a range of software tools which synthesize digital systems using VHDL. View full module details |
15 | |
EL676 - Digital Signal Processing and Control
This module continues the study of classical control and signal processing and further takes the classical control and signal processing developed in module EL569 into the digital domain. Tools are developed for analysis in the digital environment and there is a strong emphasis on design and evaluation. View full module details |
15 |
Optional modules may include | Credits |
---|---|
CO643 - Computing Law and Professional Responsibility
The scope of the module is outlined below. Note that topics will not necessarily be delivered in this order: Professional issues and professional organisations. Data privacy legislation, and other UK laws relating to the professional use of computer systems. Criminal law relating to networked computer use, including new Anti-Terrorism legislation; and their application Intellectual Property Rights, including Copyright, Patent and Contract Law. Health & Safety issues. Computer-based Projects, including the vendor-client relationship and professional responsibilities. View full module details |
15 |
Teaching and assessment
Teaching includes lectures, coursework and laboratory assignments, examples classes where you develop your problem-solving skills and regular staff ‘surgeries’. Practical work is carried out in air-conditioned laboratories, with state-of-the-art equipment and outstanding IT infrastructure.
Stage 1 modules are assessed by coursework and examination at the end of the year. Stage 2 and 3 modules, with the exception of the final-year project, are assessed by a combination of coursework and examination. All years include project work to replicate industrial practice and develop skills to maximise employability.
Contact Hours
For a student studying full time, each academic year of the programme will comprise 1200 learning hours which include both direct contact hours and private study hours. The precise breakdown of hours will be subject dependent and will vary according to modules. Please refer to the individual module details under Course Structure.
Methods of assessment will vary according to subject specialism and individual modules. Please refer to the individual module details under Course Structure.
Programme aims
The programme aims to:
- educate students to become engineers, well-equipped for professional careers in development, research and production in industry and universities, and capable of meeting the challenges of a rapidly changing subject
- produce computer systems engineers with specialist skills in hardware and software engineering, prepared for the complexities of modern computer system design
- enable students to satisfy the professional requirements of the IET
- provide academic guidance and welfare support for all students
- create an atmosphere of co-operation and partnership between staff and students, and offer students an environment where they can develop their potential.
Learning outcomes
Knowledge and understanding
You gain knowledge and understanding of:
- mathematical principles relevant to computer systems engineering
- scientific principles and methodology relevant to computer systems engineering
- advanced concepts of embedded systems, signals and image processing, control, computer communications and operating systems
- the value of intellectual property and contractual issues
- business and management techniques which may be used to achieve engineering objectives
- the need for a high level of professional and ethical conduct in computer systems engineering
- current manufacturing practice with particular emphasis on product safety and EMC standards and directives
- characteristics of materials, equipment, processes and products
- appropriate codes of practice, industry standards and quality issues
- contexts in which engineering knowledge can be applied.
Intellectual skills
You develop the following intellectual abilities:
- analysis and solution of hardware and software engineering problems using appropriate mathematical methods
- the ability to apply and integrate knowledge and understanding of other engineering disciplines to support study of computer systems engineering
- the use of engineering principles and how to apply them to analyse key computer systems engineering processes
- the ability to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
- the ability to apply and understand a systems approach to computer systems engineering problems
- the ability to investigate and define a problem and identify constraints including cost drivers, economic, environmental, health and safety and risk assessment issues
- the ability to use creativity to establish innovative, aesthetic solutions while understanding customer and user needs, and ensuring fitness for purpose of all aspects of the problem including production, operation, maintenance and disposal
- the ability to demonstrate the economic and environmental context of the engineering solution.
Subject-specific skills
You develop subject-specific skills including:
- the use of mathematical techniques to analyse and solve hardware and software problems
- the ability to work in an engineering laboratory environment and to use electronic and workshop equipment, and CAD tools to create electronic circuits
- the ability to work with technical uncertainty
- the ability to apply quantitative methods and computer software relevant to computer systems engineering in order to solve engineering problems
- the ability to implement software solutions using a range of structural and object- oriented languages
- the ability to design hardware or software systems to fulfil a product specification and devise tests to appraise performance
- awareness of the nature of intellectual property and contractual issues and an understanding of appropriate codes of practice and industry standards
- the ability to use technical literature and other information sources and apply it to a design
- the ability to apply management techniques to the planning, resource allocation and execution of a design project and evaluate outcomes
- the ability to prepare technical reports and presentations.
Transferable skills
You gain transferable skills including:
- the ability to generate, analyse, present and interpret data
- the use of information and communications technology
- personal and interpersonal skills and working as a member of a team
- effective communication (in writing, verbally and through drawings)
- effective learning for the purpose of continuing professional development
- critical thinking, reasoning and reflection
- how to manage time and resources within an individual project and a group project.
Careers
Graduate destinations
The School of Engineering and Digital Arts has an excellent record of student employability. Previous graduates have gone on to careers in:
- design of electronic and computer systems
- software engineering
- real-time industrial control systems
- computer communications networks.
Other graduates have gone on to work for a range of organisations including:
- BAE Systems
- RAF
- CISCO
- Defence Science and Technology Laboratory (MOD).
Help finding a job
The School of Engineering and Digital Arts holds an annual Employability and Careers Day where you can meet local and national employers and discuss career opportunities. Ongoing support is provided by the School's dedicated Employability Officer.
The University also has a friendly Careers and Employability Service which can give you advice on how to:
- apply for jobs
- write a good CV
- perform well in interviews.
Career-enhancing skills
Alongside specialist skills, you also develop the transferable skills graduate employers look for, including the ability to:
- think critically
- communicate your ideas and opinions
- work independently and as part of a team.
You can gain extra skills by signing up for one of our Kent Extra activities, such as learning a language or volunteering.
Professional recognition
Our programme is accredited by the Institution of Engineering and Technology (IET), which enables fast-track career progression as a professional engineer.
Entry requirements
Home/EU students
The University will consider applications from students offering a wide range of qualifications. Typical requirements are listed below. Students offering alternative qualifications should contact us for further advice.
It is not possible to offer places to all students who meet this typical offer/minimum requirement.
New GCSE grades
If you’ve taken exams under the new GCSE grading system, please see our conversion table to convert your GCSE grades.
Qualification | Typical offer/minimum requirement |
---|---|
A level | BBB including B in Mathematics and a science/techology subject (Physics, Computing or Electronics) |
Access to HE Diploma | The University will not necessarily make conditional offers to all Access candidates but will continue to assess them on an individual basis. If we make you an offer, you will need to obtain/pass the overall Access to Higher Education Diploma and may also be required to obtain a proportion of the total level 3 credits and/or credits in particular subjects at merit grade or above. |
BTEC Level 3 Extended Diploma (formerly BTEC National Diploma) | Engineering: Distinction, Distinction, Merit including Further Mathematics for Technicians module |
International Baccalaureate | 34 points overall or 15 at HL including Mathematics (not Mathematics Studies) and a science subject 5 at HL or 6 at SL |
International students
The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country.
However, please note that international fee-paying students cannot undertake a part-time programme due to visa restrictions.
If you need to increase your level of qualification ready for undergraduate study, we offer a number of International Foundation Programmes.
Meet our staff in your country
For more advice about applying to Kent, you can meet our staff at a range of international events.
English Language Requirements
Please see our English language entry requirements web page.
Please note that if you are required to meet an English language condition, we offer a number of 'pre-sessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme.
General entry requirements
Please also see our general entry requirements.
Fees
The 2019/20 annual tuition fees for this programme are:
UK/EU | Overseas | |
---|---|---|
Full-time | £9250 | £19000 |
For details of when and how to pay fees and charges, please see our Student Finance Guide.
For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.*
Your fee status
The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.
General additional costs
Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.
Funding
University funding
Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details.
Government funding
You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.
Scholarships
General scholarships
Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.
DA VINCI Academic Scholarship
A one off payment for UK, EU and Overseas applicants who meet the criteria set by the School of Engineering and Digital Arts. For more information and to make an application, see DA VINCI Academic Scholarship.
The Kent Scholarship for Academic Excellence
At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence.
The scholarship will be awarded to any applicant who achieves a minimum of AAA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages.
The scholarship is also extended to those who achieve AAB at A level (or specified equivalents) where one of the subjects is either mathematics or a modern foreign language. Please review the eligibility criteria.