Microbiology

Biology - BSc (Hons)

UCAS code C103

This is an archived page and for reference purposes only

2019

Biology is the study of living organisms and their interactions with the environment. This degree provides a broad survey of the various biological disciplines but with a focus on modern molecular techniques. You investigate life forms ranging from viruses and bacteria to complex animals and plants.

Overview

In the School of Biosciences, we have a community spirit and students learn with and from each other. We are also renowned for our innovative teaching methods, including:

  • new ways of using IT in lectures allow you to revisit the teaching at a later date
  • academic-developed animations to help explain tricky concepts
  • final year communication projects teaching you how to share scientific knowledge with the public.

Our Biology degree is accredited by the Royal Society of Biology (RSB).  

Our degree programme

In your first year, you are introduced to a broad survey of the various biological disciplines, including biochemistry, biodiversity, cell and molecular biology, evolution, genetics, human physiology, and field study work. You also take a skills course to gain more expertise in laboratory practical work, and the analysis and presentation of biological data.

In your second year, you develop your knowledge of gene regulation, cell biology, microbiology, animal and plant physiology, and human health and disease. The modules at this stage go into greater depth and subjects can include animal form and function, plant physiology and adaptation, gene expression, infection and immunity, microbial physiology and skills for bioscientists 2.

During the summer vacation after your second year, there are opportunities to work in one of our research labs on an eight-week Summer Studentship. The School attracts a large research income (about £4.5 million per year) and is ranked 7th in the UK for research intensity (outperforming 19 of the 24 Russell Group universities).

In your final year, the range of optional modules increases to allow you to specialise in subjects that interest you, such as neuroscience, virology, immunology, bioinformatics, cell signaling, aging, cancer, primate biology or climate change and conservation. You also complete an eight-week research project, which may be laboratory, business, computing or communication based.

Year in industry/Year abroad

On our related programme, Biology with a Sandwich Year, you spend a year working between Stages 2 and 3. You can also study or work abroad as part of your degree on our Biology with a Year Abroad programme.

Study resources

We recently spent £2 million on our laboratories to ensure that you develop your practical skills in a world-class environment. We give you extensive practical training and you spend up to three days a week in the laboratory during your final year project. 

New Institute for Biotechnology and Molecular Medicine

Biosciences' research excellence will be further enhanced by a new 'Institute of Biotechnology and Molecular Medicine' research facility. The new building will be completed in 2020, and will house additional staff and research facilities. 

Kent & Medway Medical School

Kent is moving forward with the Kent & Medway Medical School (KMMS), due to take the first cohort of students in September 2020.

The Medical School will be a significant addition to the University, with exciting opportunities for education and research in the School of Biosciences.

Extra activities

You can join BioSoc, a student-run society. Previous activities have included research talks and social events.

We also encourage our students to attend outside conferences and events. In 2015, Kent students competed with 280 teams and won the gold medal at the International Genetically Engineered Machine (iGEM) Giant Jamboree in the USA.

Professional networks

Our school collaborates with research groups in industry and academia throughout the UK and Europe. It also has excellent links with local employers, such as:

  • NHS
  • GSK
  • MedImmune
  • Eli Lilly
  • Lonza
  • Aesica Pharmaceuticals
  • Sekisui Diagnostics
  • Cairn Research
  • Public Health England.

Independent rankings

Biological Sciences at Kent scored 93.7 out of 100 and was ranked 17th in The Complete University Guide 2019.

In The Guardian University Guide 2019, over 91% of final-year Biosciences students were satisfied with the overall quality of their course.

Of Biology students who graduated from Kent in 2017 and completed a national survey, 96% were in work or further study within six months (DLHE).

Teaching Excellence Framework

All University of Kent courses are regulated by the Office for Students.

Based on the evidence available, the TEF Panel judged that the University of Kent delivers consistently outstanding teaching, learning and outcomes for its students. It is of the highest quality found in the UK.

Please see the University of Kent's Statement of Findings for more information.

TEF Gold logo

Course structure

The following modules are indicative of those offered on this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.  

On most programmes, you study a combination of compulsory and optional modules. You may also be able to take ‘elective’ modules from other programmes so you can customise your programme and explore other subjects that interest you.

Stage 1

Compulsory modules currently include Credits

This course will provide an introduction to biomolecules in living matter. The simplicity of the building blocks of macromolecules (amino acids, monosaccharides, fatty acids and purine and pyrimidine bases) will be contrasted with the enormous variety and adaptability that is obtained with the different macromolecules (proteins, carbohydrates, lipids and nucleic acids). The nature of the electronic and molecular structure of macromolecules and the role of non-covalent interactions in an aqueous environment will be highlighted. The unit will be delivered though lectures, formative practicals and related feedback sessions to ensure students fully understand what is expected of them. Short tests (formative assessment) will be used throughout the unit to test students' knowledge and monitor that the right material has been extracted from the lectures.

View full module details
15

This course aims to introduce the 'workers' present in all cells – enzymes, and their role in the chemical reactions that make life possible.

The fundamental characteristics of enzymes will be discussed – that they are types of protein that act as catalysts to speed up reactions, or make unlikely reactions more likely. Methods for analysis of enzymic reactions will be introduced (enzyme kinetics). Control of enzyme activity, and enzyme inhibition will be discussed.

Following on from this the pathways of intermediary metabolism will be introduced. Enzymes catalyse many biochemical transformations in living cells, of which some of the most fundamental are those which capture energy from nutrients. Energy capture by the breakdown (catabolism) of complex molecules and the corresponding formation of NADH, NADPH, FADH2 and ATP will be described. The central roles of the tricarboxylic acid cycle and oxidative phosphorylation in aerobic metabolism will be detailed. The pathways used in animals for catabolism and biosynthesis (anabolism) of some carbohydrates and fat will be covered, as well as their control. Finally how humans adapt their metabolism to survive starvation will be discussed.

View full module details
15

This module addresses key themes and experimental techniques in molecular and cellular illustrated by examples from a range of microbes animals and plants . It covers basic cell structure, and organisation including organelles and their functions, cytoskeleton, cell cycle control and cell division. The control of all living processes by genetic mechanisms is introduced and an opportunity to handle and manipulate genetic material provided in the laboratory. Monitoring of students' knowledge and progress will be provided by a multi-choice test and the laboratory report, with feedback.

Functional Geography of Cells: Introduction to cell organisation, variety and cell membranes. Molecular traffic in cells. Organelles involved in energy and metabolism. Eukaryotic cell cycle. Chromosome structure & cell division. Meiosis and recombination. Cytoskeleton.

Molecular biology: The structure and function of genetic material. Chromosomes, chromatin structure, mutations, DNA replication, DNA repair and recombination, Basic mechanisms of transcription, mRNA processing and translation.

Techniques in molecular and cellular biology: Methods in cell Biology - light and electron microscopy; cell culture, fractionation and protein isolation/electrophoresis; antibodies, radiolabelling. Gene Cloning – vectors, enzymes, ligation, transformation, screening; hybridisation, probes and blots, PCR, DNA sequencing. Applications of recombinant DNA technology.

Laboratory: PCR amplification of DNA and gel analysis.

View full module details
15

This module will consider the anatomy and function of normal tissues, organs and systems and then describe their major pathophysiological conditions. It will consider the aetiology of the condition, its biochemistry and its manifestation at the level of cells, tissues and the whole patient. It may also cover the diagnosis and treatment of the disease condition.

Indicative topics will include:

Cells and tissues

Membrane dynamics

Cell communication and homeostasis

Introduction to the nervous system

The cardiovascular system

The respiratory system

The immune system and inflammation

Blood cells and clotting

The Urinary system

The digestive system, liver and pancreas

View full module details
15

Subject-based and communication skills are relevant to all the bioscience courses. This module allows you to become familiar with practical skills, the analysis and presentation of biological data and introduces some basic mathematical and statistical skills as applied to biological problems. It also introduces you to the computer network and its applications and covers essential skills such as note-taking and essay writing.

View full module details
15

The aim of this module is to introduce the diversity of life, evolution and development of body form in a wide variety of organisms, including prokaryotes, animals and plants.

View full module details
15

This module is an introduction to Mendelian genetics and also includes human pedigrees, quantitative genetics, and mechanisms of evolution.

View full module details
15
Optional modules may include Credits

Students without A2 Chemistry (equivalent) on entry take Phases 1+2.

N.B. Students with A2 Chemistry or equivalent below grade C will follow Phases 1+2.

Phase 1: Autumn Term (5 lectures, 6 x 2 hr Workshops)

Basic chemical concepts for biology will be taught and applied through examples in a workshop atmosphere. The five workshop topics covered are: (i) Atoms and states of matter (ii) valence and bonding (iii) basic organic chemistry for biologists (iv) molecular shapes and isomerism in biology and (iv) chemical reactivity and chemical equations.

Assessment feedback of basic chemistry (1 session/lecture)

Phase 2: Autumn Term (9 lectures, 2 x 2 hr Workshop, 3 extra support lectures)

Chemical and biochemical thermodynamics. Topics covered are: (i) energetic and work, (ii) enthalpy, entropy and the laws of thermodynamics (iii) Gibbs free energy, equilibrium and spontaneous reactions, (iv) Chemical and biochemical equilibrium (including activity versus concentration and Le Chatelier's principle). The two hour workshop is designed to be delivered as small group sessions to cover the applications and practice of thermodynamics concepts.

Chemistry applied to biological concepts: bonding, valence, hybridisation as well as biological applied thermodynamic process (biomolecular association/dissociation).

Assessment feedback (1 session/lecture)

View full module details
15

Students with A2 Chemistry (equivalent) on entry take Phases 2+3.

Biology students with A2 Chemistry (or equivalent) will obtain additional chemical concepts (Phase 3) as their chemistry qualification at A2 will already furnish them with concepts from Phase 1. All students will participate in the core section: Phase 2.

Phases 2+3 students will use the Phase 1 coursework test as a formative assessment to recognise their required chemical knowledgebase as obtained at A2 level. This provides an opportunity to identify students requiring additional support.

This module links to Biological Chemistry B with identically designed phases (1, 2 and 3) to maximise teaching efficiency across all programs in the School of Biosciences.

Phase 2: Autumn Term (9 lectures, 2 x 2 hr Workshop, 3 extra support lectures)

Chemical and biochemical thermodynamics. Topics covered are: (i) energetic and work, (ii) enthalpy, entropy and the laws of thermodynamics (iii) Gibbs free energy, equilibrium and spontaneous reactions, (iv) Chemical and biochemical equilibrium (including activity versus concentration and Le Chatelier's principle). The two hour workshop is designed to be delivered as small group sessions to cover the applications and practice of thermodynamics concepts.

Chemistry applied to biological concepts: bonding, valence, hybridisation as well as biological applied thermodynamic process (biomolecular association/dissociation).

Assessment feedback (1 session/lecture)

Phase 3: Spring Term (17 lectures, 2 x 2 hr workshop)

Fundamental organic chemistry with biological examples. Topics covered: (i) Introduction and basic functional chemistry, (ii) Isomerism and stereochemistry, (iii) Reaction mechanisms, (iv) Alkanes/alkyl halides/alkenes/alkynes, (v) Aromatic compounds, (vi) Heterocyclic compounds, (vii) Amines and alcohols (viii) Carbonyl compounds and carboxylic acids and (ix) Biological inorganic chemistry. The two hour workshop is designed to be delivered as small group sessions to cover the applications of reaction mechanisms and reaction schemes.

View full module details
15

The broad aim of this module is to provide students with practical field experience in biodiversity monitoring and assessment methods. Specific aims are to introduce students to a range of basic field techniques and develop their skills in the collection, analysis and presentation of field data. The module provides an essential practical element of the Wildlife Conservation programme.

The module is spread over the term, allowing different groups of organisms to be examined as they become available for survey, and the dates may vary slightly from year to year. Groups of students will each undertake survey or monitoring projects under the supervision of a member of staff. Each project will assess the biodiversity of an appropriate taxonomic group (eg. birds, amphibians, reptiles, plants, etc.) in either a terrestrial or freshwater habitat. Students will be expected carry out a range of surveys, analyse the data and write-up their results.

View full module details
15

The module explores the geographic patterns of biological diversity around the world (biogeography), and the relationships between plants, animals and their environment (ecology). It begins with how the physiology and reproductive biology of plants has shaped the variety of habitats, ecosystems and biomes seen in the natural world today. Key concepts and theories concerning how these geographical patterns have been affected by complex historical and current factors will also be explored. The module continues with an introduction to ecological concepts that define how species are distributed within communities and across landscapes. It concludes with a discussion of how biogeographical and ecological principles inform global conservation strategies, and help us better understand how to manage threats to biodiversity from environmental change.

View full module details
15

Stage 2

Compulsory modules currently include Credits

The cell is the fundamental structural unit in living organisms. Eukaryotic cells are compartmentalized structures that like prokaryotic cells, must perform several vital functions such as energy production, cell division and DNA replication and also must respond to extracellular environmental cues. In multicellular organisms, certain cells have developed modified structures, allowing them to fulfil highly specialised roles. This module reviews the experimental approaches that have been taken to investigate the biology of the cell and highlights the similarities and differences between cells of complex multicellular organisms and microbial cells. Initially the functions of the cytoskeleton and certain cellular compartments, particularly the nucleus, are considered. Later in the unit, the mechanisms by which newly synthesised proteins are secreted or shuttled to their appropriate cellular compartments are examined.

View full module details
15

This module will consider the anatomy and function of the immune system and immunopathology and then consider the diseases and microorganisms that affect the different organs and tissues of the human body. Indicative topics will include inflammation, innate and adaptive immunity to pathogens, immune defence mechanisms against bacterial, viral and parasitic infections, antibody classes and functions, antigen processing and presentation, complement, the generation of antibody diversity, cell communication and immunopathology, including autoimmunity, hypersensitivity and transplant rejection. In the medical microbiology section of the module, indicative topics will include epidemiology, virology, parasitology, fungal infections, skin infections, GI tract infections, CNS infections, respiratory tract infections, UTI and STD infections.

View full module details
15

Reproductive System: Male and female reproductive systems; Endocrine control of reproduction; Fertilisation; Early embryogenesis; Pregnancy and Parturition; Reproductive disorders.

Muscle: Muscle types: skeletal, smooth and cardiac; Structure of muscle; Molecular basis of contraction; Regulation of contraction including neural control; Energy requirements of muscle; Types of movement: reflex, voluntary, rhythmic; Muscle disorders.

Nervous System: Cells of the nervous system- neurons and glia; Electrical properties of neurons- action potential generation and conduction; Synaptic structure and function- transmitters and receptors; Structural organization of the central nervous system (CNS) and function of individual regions; Organization and function of the peripheral nervous system (PNS)- somatic motor, autonomic (sympathetic and parasympathetic) and sensory; Sensory systems- vision, hearing, taste, smell, pain. Disorders of the nervous system.

Endocrine System: Endocrine glands; Classes of hormones; Mechanisms of hormone action; Regulation of hormone release; Endocrine disorders.

View full module details
15

Communication Skills in Biosciences: Essay writing, oral presentations, laboratory reports, the scientific literature and literature reviews. Working in groups.

Techniques in Biomolecular Science: Immunochemistry. Monoclonal and polyclonal antibody production, immuno-chromatography, ELISA and RIA. Electrophoresis, Immunoblotting, Protein Determination, Activity Assays, Purification.

Computing for Biologists: Bioinformatics, phylogenetic trees, database searches for protein/DNA sequences.

Mini-project – introduction to research skills: Students will work in groups of eight to undertake directed experimental work (Group Project) before extending the project further through self-directed experiments working as a pair (Mini Project).

Careers: The programme will be delivered by the Careers Advisory Service and will review the types of careers available for bioscience students. The sessions will incorporate personal skills, careers for bioscience graduates, records of achievement, curriculum vitae preparation, vacation work, postgraduate study, interview skills and action planning.

View full module details
15

You study the diversity of animal life throughout evolution, including elements of functional anatomy and physiology such as circulation and gaseous exchange, the digestive system, the nervous system and reproduction.

Topics:

Comparative physiology - in this section the diversity of different physiological systems will be studied including circulation, gaseous exchange, feeding and digestion, excretion, nervous tissue and the senses, reproduction and immunology.

Form and Function - in this section a diverse range of taxonomic groups and their characteristics will be studied to understand the relationship between structure and function. How these characteristics equip the animal to survive and succeed in its particular environment will be explored.

View full module details
15

Plant specific features of cellular organisation and processes – cell wall synthesis, cell division, endoreduplication, plasmadesmata

Photosynthesis – mechanism and regulation of photosynthesis, photorespiration, C3, C4 and CAM.

Plant hormones and signalling – e.g. auxins, gibberellins, cytokinins etc and their roles in tropism, photoperiodism, and flowering.

Adaptation and stress response – environmental stress, acclimatisation and adaptation.

View full module details
15

Introduction: The ecological, medical, scientific and commercial importance of bacteria. Bacterial evolution and taxonomy.

Microbial biodiversity at the structural level: Composition of the average bacterial cell and basic bacterial cell structure. Gram positive and gram negative. Archea. Organisation of DNA. Membranes and the transport of small molecules into and out of the cell. Peptidoglycan and LPS and their importance in pathogenesis. The location and function of proteins. Capsule, flagella and adhesins.

Introduction to growth, fuelling and biosynthesis: Division by binary fission, including growth equations. Growth in batch and chemostat cultures; liquid vs. solid media. Nutritional and non-nutritional factors affecting growth (temperature, osmolarity, pH and antibiotics). Physiological state and balanced growth. Adaptation to extreme conditions.

Microbial biodiversity at the physiological and biochemical level: The diversity in bacterial metabolism (nutrient sources (particularly carbon and nitrogen)), photosynthesis, aerobic and anaerobic growth and alternative terminal electron acceptors. Fermentation. The inverse relationship between growth factor requirements and biochemical complexity. The ecological significance of bacteria.

Synthesis, localisation and assembly of macromolecular structures: DNA replication and transcription. Translational and protein localisation, assembly of flagella and adhesins. Membranes, including LPS. Peptidoglycan. Antibiotics that inhibit peptidoglycan biosynthesis. Capsules.

Microbial communities and ecology: growth and survival in the real world (e.g. soils and sediments), studying populations and individuals. Biofilms and complex communities. Diauxie and growth.

Signalling and physiological control: Introduction to bacterial genetics. The regulation of gene expression at the transcriptional and post-transcriptional level in response to environmental factors Chemotaxis.

Practical: "Antibiotics" in which students follow the growth of bacteria upon treatment with bacteriostatic and bactericidal antibiotics and answer questions about data concerning the mode of action of antibiotic resistance presented in the laboratory manual.

Workshop: "Growth and viable counts" in which the students are given numerical data + growth equations and have to define factors such as (i) dilutions needed to give specific cell numbers, (ii) generations of growth to achieve specific cells numbers (iii) growth rate/doubling time. Designed to give students the skills required to manipulate bacterial cells to achieve correct cell density and growth phase for practical work.

View full module details
15
Optional modules may include Credits

This module will introduce students to the importance of genome-wide DNA sequence analysis in a range of different fields of study including forensic science, medical diagnosis and historical research. They will acquire a full grounding in the basic biology of how sequence data is acquired and analysed, and engage with up-to-date methods of DNA sequence analysis in the practical sessions. At the broad level, the module will be structured around the following 4 themes:

What is a genome? This addresses genome content and structure, including both functional and non-functional elements of the genome such as the simple "junk" DNA repeats used for forensic identification.

Understanding genomic variation. This addresses the molecular causes of genomic variation between individuals – i.e. what makes us all unique – and the technical methodologies used to detect genomic variation.

What are the implications of being able to read DNA? This covers the extent to which we can infer phenotype from genomic sequence – e.g. how much you can tell about a person once their genome has been sequenced. Specific examples may be drawn from forensic science, medical diagnosis and historical analysis.

What are the implications of being able to write or edit DNA? This addresses nascent and future technology for genome editing – what can it achieve, what are the risks, what are the ethical issues?

View full module details
15

The module deals with the molecular mechanisms of gene expression and its regulation in organisms ranging from viruses to man. This involves descriptions of how genetic information is stored in DNA and RNA, how that information is decoded by the cell and how this flow of information is controlled in response to changes in environment or developmental stage. Throughout, the mechanisms in prokaryotes and eukaryotes will be compared and contrasted and will touch on the latest developments in how we can analyse gene expression, and what these developments have revealed.

View full module details
15

Stage 3

Compulsory modules currently include Credits

A synopsis of the curriculum

1. Outline of microbial physiology and genetics part II

2. Microbial taxonomy and phylogenetics

3. Microbial homeostasis - regulation of primary and secondary metabolism

4. Genomic regulation - Transcriptional and post-transcriptional regulation of gene expression

5. Experimental approaches used to study microbial physiology, microbial genomes and gene expression

6. Microbial biochemistry

7. Microbial biodiversity and complex signalling in the environment

8. Application of microbes in biotechnology

Practical on bacterial transcriptional regulation using gene-expression reporter fusions

Group presentation of a research paper relating to topic areas on "Microbial biodiversity at the physiological and biochemical level".

View full module details
15

The module introduces the student to cell cycle and teaches how its precise regulation is essential for all life. The course will introduce to the students the current understanding of cellular reproduction and how it emerged. The initial lectures will describe the important breakthroughs in cell cycle research in their historical and experimental context. The course will go on to give the students a detailed understanding of the key events that occur and how they are regulated by mechanisms conserved from yeast to man. Key topics that will be discussed include:

• Mitotic kinases (including Cdks, Polo, aurora).

• Microtubule reorganisation (including spindle formation and regulation).

• Actin reorganisation (including regulation of cell growth, endocytosis, and cell division)

• Checkpoints (including Spindle assembly checkpoint, DNA damage checkpoint).

• Meiosis.

• Apoptosis.

• Organelle reorganisation (e.g. nuclear and golgi reorganisation).

• Cancer and the cell cycle.

• Cell cycle related pathologies.

The final lectures will then introduce the students to how generating computer models of the cell cycle are playing a crucial role in defining novel avenues for research into therapies for cell cycle related diseases.

View full module details
15

Early in the Autumn term, projects are assigned to students by the project co-ordinator (a member of academic staff), where possible in accordance with student choice. Students then meet with their project supervisor to discuss the objectives of the project and obtain guidance on background reading. During the Autumn term students write a brief formative literature review on the project topic providing them with a good background before embarking on the project work.

The main project activities take place in the Spring term. Students taking laboratory projects spend 192 hours (24 hours per week for 8 weeks) in the lab planning, carrying out and documenting experiments. A further 108 hours are allowed for background reading and report writing. There are informal opportunities to discuss the project work and relevant literature with the supervisor and other laboratory staff. Formal meetings may be arranged at the discretion of the student and supervisor. Students undertaking non-laboratory projects are based in the library or, occasionally, in the laboratory; they are expected to dedicate 300 hours to their project work. Non-laboratory students are strongly encouraged to meet with the supervisor at least once a week to discuss progress and ideas and to resolve problems. At the end of the formal project time, students are allowed time to complete the final project report, although they are encouraged to start writing as early as possible during the Spring term. The supervisor provides feedback on content and style of a draft of the report. In addition, students are expected to deliver their findings in presentation lasting 10 minutes with 5 minutes of questions.

• Wet/Dry Laboratory and Computing: practical research undertaken in the teaching laboratories, or on computers followed by preparation of a written report

• Dissertation: library-based research leading to production of a report in the style of a scientific review

• Business: development of a biotechnology business plan

• Communication: similar to dissertation projects but with an emphasis on presenting the scientific topic to a general, non-scientist audience

View full module details
30
Optional modules may include Credits

A synopsis of the curriculum

The module begins by overviewing the diverse mechanisms used by cells to communicate, considering the main modes of cell-cell communication, the major classes of signalling molecules and the receptor types upon which they act. It then focuses on nuclear, G-protein coupled, and enzyme linked receptors covering in molecular detail these receptors and their associated signal transduction pathways.

Introduction:

Principles of Cell Signalling.

Cell Adhesion and Cell Communication (adhesion and gap junctions).

Signalling Molecules: Hormones, neurotransmitters, growth factors.

Receptor Types: Nuclear, G-protein coupled, Ion-channel linked, Enzyme-linked.

Nuclear Receptors:

Cellular location and molecular organisation of receptors. Structure/function/activity relationships. Receptors as sequence-specific DNA binding proteins.

G-Protein Coupled Receptors:

Receptors coupled to heterotrimeric guanine nucleotide binding proteins (G proteins). Composition and classification of G-proteins, their activation and modulation by toxins and disease.

Second Messengers and Protein Phosphorylation (kinases and phosphatases).

Cyclic Nucleotide-Dependent Systems: G proteins in regulation of adenylyl cyclase-cAMP-protein kinase A (PKA) and guanylyl cyclase-cGMP pathways. Physiological roles e.g. in visual transduction and glycogen metabolism.

Inositol lipids in signal transduction: Regulation of phospholipase C. Inositol polyphosphates (e.g. IP3) and diacylglycerol (DAG) in regulation of Ca++-dependent kinases. Roles in specific cellular responses e.g. regulation of protein kinase C.

Interactions of Signalling Pathways:

'Cross-Talk' between different pathways and messenger molecules.

Enzyme Linked Receptors:

Receptor tyrosine kinases (RTKs), e.g. epidermal growth factor receptor (EGF) family and insulin receptor, and their varied roles in cellular metabolism, cell behaviour, development and disease.

Molecular organisation of receptors, autophosphorylation of intracellular domains.

Intracellular signalling pathways: activation of monomeric G-protein Ras, leading to activation of the mitogen activated protein (MAP) kinase cascade.

Integration of signalling components: Role of adapter proteins (e.g. GRB2) and their protein-protein interaction domains (SH2, SH3 etc.) in linking ligand-receptor complexes to intracellular proteins.

Practical: Characterisation of G-protein coupled receptors using a cAMP-linked reporter gene assay.

View full module details
15

Cells and subcellular compartments are separated from the external milieu by lipid membranes with protein molecules inserted into the lipid layer. The aim of this module is to develop understanding of both the lipid and protein components of membranes as dynamic structures whose functions are integrated in cellular processes.

View full module details
15

Part A: Eukaryotic pathogens (parasites)

Parasites and pathogenicity, transmission and diversity.

• Parasites and pathogenicity, transmission and diversity.

• Mechanisms of Pathogenesis and methods for studying them.

• Microbial pathogenicity: variations on a common theme.

• Definitions on parasitic lifestyle.

• Investigations on worldwide parasitic outbreaks and their socio-economical effects.

• Eukaryotic pathogens and their effect in the microbiome.

Part B: Bacterial pathogens

• Methodology of studying bacterial pathogenesis.

• Virulence factors including toxins and adhesins.

• Applications of virulence factors in the treatment and prevention of disease.

Part C: Viral pathogens

• Viruses and Human Disease - transmission and spread, overview of important human virus infections, mechanisms of transmission (Aerosol, Oral-faecal, Sexual etc.), epidemiology - patterns of endemic and epidemic disease.

• Mechanisms of Pathogenesis - spread in the body, disease mechanisms, mechanisms of cell killing (Herpes simplex and Polio), immunopathology and auto-immune disease.

• Virus infection – long term consequences for the host, escape through mutation and natural selection, disabling the immune system, avoidance mechanisms.

• Viruses and Cancer - mechanisms of virus transformation (EBV, Retroviruses & Papilloma), viruses and human cancer (Cervical carcinoma, Hepatocellular Carcinoma & Burkitt Lymphoma).

Part D: Human fungal pathogens

• Fungi and Human Disease - overview of major human fungal infections, clinical picture, diagnosis and mechanisms of transmission, epidemiological aspects of fungal infections.

• Mechanisms of Fungal Pathogenesis - adherence, invasion of eukaryotic cells, morphogenesis, virulence factors.

• Host resistance to infection and antifungal chemotherapy - host defence mechanisms to fungal infections, role of the humoral and cellular immune response, antifungal chemotherapy: azoles, polyenes, echinocandines and antimetabolites, future developments for the treatment of fungal infections.

View full module details
15

The module aims to develop understanding and analytical skills in virology, based around interactive seminars wherein students will analyse, present, and discuss the relevant research literature. The students will gain experience in scientific design, literature analysis, scientific communication, and the analysis of experimental data.

View full module details
15

The aim of this Advanced Immunology module is to review topical aspects of advanced immunology with emphasis on the regulation of the immune response, and the role of dysfunctional immune systems in the aetiology of a variety of disease states. Indicative topics include antigen processing and presentation, transplant rejection, autoimmunity, hypersensitivity, cell migration homing and extravasation, cytokines, tumour immunology, mucosal immunology and autophagy.

View full module details
15

Bioinformatics Data sources & Sequence analysis: Databases and data availability. Using sequence data for analysis – sequence searching methods, multiple sequence alignments, residue conservation, Protein domains and families.

Protein Bioinformatics Methods: Protein structure and function prediction. Prediction of binding sites/interfaces with small ligands and with other proteins. Bioinformatics analyses using protein data.

Genomics: An introduction to the analysis of genomic data, primarily focussing on the data available from genome sequencing – how it can be used to study genetic variants and compare genomes (i.e. comparative and functional genomics).

View full module details
15

The module aims to develop understanding and analytical skills in oncology, based around interactive seminars wherein students will analyse, present, and discuss the relevant research literature. The students will gain experience in scientific design, literature analysis, scientific communication, and the analysis of experimental data.

View full module details
15

A synopsis of the curriculum

The module overviews the importance of studying ageing, the organisms and methods used to do so and considers how organisms age together with providing a detailed understanding of the processes and molecular mechanisms that govern ageing.

Introduction

Importance and principles of ageing research

Why do organisms age and theories of ageing: e.g. Damage theory, telomeres, genetics and trade off theories.

How ageing and lifespan is measured

Overview of processes and pathways controlling ageing

Methods in ageing research

Model Organisms: Benefits and problems associated with studying ageing in model organisms. Including: Yeast, worms, flies, mice, primates.

Systems approaches to studying ageing: e.g. high throughput DNA/RNA sequencing, high throughput proteomics and, metabolomics. Pros and cons of these methods, what we have learned from them.

Signalling pathways that control ageing

Insulin signalling pathway and Target of Rapamycin (ToR) pathway

Organisation of pathways and the molecules involved, how they were discovered to be implicated in lifespan and ageing, ways of modelling and studying their molecular detail in animals e.g. genetic/ epistasis analysis

The processes downstream of these pathways that allow them to control lifespan/ageing e.g. stress resistance, autophagy, reduced translation, enhanced immunity etc…

Cross-talk between pathways.

Dietary restriction, lifespan and ageing

How dietary restriction works in different organisms, what signalling pathways and processes it affects.

Diseases of ageing

What these are e.g. Alzheimers, Huntington's

Overview of 'normal ageing’ associated processes e.g. muscle weakening.

How they can be studied in model organsims and the importance of ageing research for treating these disorders.

Ethics of ageing research

Pros and cons of studying ageing with a goal of extending human lifespan e.g. insurance, health system, social, psychological implications.

Workshop 1: Group discussion of key ageing research paper(s) (small groups).

Workshop 2: Data analysis session (whole class or 2-3 groups).

Workshop 3: Overview of the module in preparation for revision/exam (whole class).

View full module details
15

This module is designed to provide students across the university with access to knowledge, skill development and training in the field of entrepreneurship with a special emphasis on developing a business plan in order to exploit identified opportunities. Hence, the module will be of value for students who aspire to establishing their own business and/or introducing innovation through new product, service, process, project or business development in an established organisation. The module complements students' final year projects in Computing, Law, Biosciences, Electronics, Multimedia, and Drama etc.

View full module details
15

This module will inform students how climate has influenced the diversity of life on Earth, from past to present, and its likely future impacts. We will begin with a summary of the physical science basis of contemporary climate change and the role that anthropogenic factors have played since the commencement of the industrial era. We will then explore the biological and ecological impacts of climate change on individual organisms, populations and communities, with particular emphasis given to understanding how species are responding. The module will then explore how conservation biologists are using particular interventions to ameliorate the most harmful and destabilising effects of climate change. From a more general perspective, the social, economic and political ways in which climate change can be mitigated will be assessed

View full module details
15

This module will provide the fundamental theoretical and comparative perspective that lies at heart of biology, with a particular focus on the order Primates. Particular attention will be paid to the evolutionary history of the primates and comparative primate (skeletal) anatomy, both placed in an evolutionary ecological context (e.g. a consideration of dentition in relation to diet and feeding; post-cranial anatomy in relation to locomotion and phylogenetic trends). The module covers latest discoveries and developments in these areas, engaging students with primary literature. Extensive use of casts of primate skeletal material will provide hands-on 'experiential' learning. The module will provide a detailed treatment of natural and sexual selection as key components of evolutionary theory that shape the adaptations of organisms, and the way adaptations are used to make sense of the diversity of organisms with particular reference to the primates.

View full module details
15

Teaching and assessment

Teaching includes lectures, laboratory classes, workshops, problem-solving sessions and tutorials. You have an Academic Adviser who you meet with at regular intervals to discuss your progress, and most importantly, to identify ways in which you can improve your work further so that you reach your full potential.

Most modules are assessed by a combination of continuous assessment and end-of-year exams. Exams take place at the end of the academic year and count for 50% or more of the module mark. Stage 1 assessments do not contribute to the final degree classification, but all stage 2 and 3 assessments do, meaning that your final degree award is an average of many different components. On average, 29% of your time is spent in an activity lead by an academic; the rest of your time is for independent study.

Contact Hours

For a student studying full time, each academic year of the programme will comprise 1200 learning hours which include both direct contact hours and private study hours.  The precise breakdown of hours will be subject dependent and will vary according to modules.  Please refer to the individual module details under Course Structure.

Methods of assessment will vary according to subject specialism and individual modules.  Please refer to the individual module details under Course Structure.

Programme aims

The programme aims to:

  • instil a sense of enthusiasm for the application of different methods and disciplines to biology, confront the scientific, moral and ethical issues raised by the study of biology, and engage in critical assessment of the subject material
  • provide a broad and balanced foundation of the science that underpins general biology and methodology in a modern society, including detailed knowledge of the biological techniques and methods of assay, analysis and examination used by biologists, the essential biomolecular and organismal knowledge required for understanding life at all levels of complexity
  • provide a stimulating, research-active environment in which you are supported and motivated to achieve your academic and personal potential
  • educate you in the theoretical (subject-specific knowledge) and practical (laboratory skills and methods) aspects of biology
  • facilitate the learning experience through a variety of teaching methods
  • give you the ability to undertake an independent research project
  • prepare you for further study, or training, and employment in biology and non-biology based careers, by developing key transferable and cognitive skills
  • develop the qualities required for employment in situations requiring the exercise of professionalism, independent thought, personal responsibility and decision making in complex and unpredictable circumstances
  • provide access to as wide a range of students as practicable.

Learning outcomes

Knowledge and understanding

You gain knowledge and understanding of:

  • the chemistry that underlies biochemical reactions and the techniques used to investigate them
  • the principles that determine the three-dimensional structure of biological macromolecules and be able to explain detailed examples of how structure enables function
  • the molecular basis of genetics, and be able to explain some detailed examples
  • gene expression, with detailed knowledge of specific examples: the structure, arrangement, expression and regulation of genes, and relevant experimental methods
  • a wide range of cells (both prokaryotic and eukaryotic) and be able to explain critically how they develop and how their properties suit them for their biological function, and how they could be investigated experimentally
  • suitable experimental methods for the investigation of relevant areas of biochemistry, organismal biology, ecology and molecular biology
  • the chemical and thermodynamic principles underlying biological catalysis and the role of enzymes and other proteins in determining the function and fate of cells and organisms
  • the analysis of the impact of external influences on growth, development and reproduction, and explain reproductive strategies
  • the interactions of structure and metabolic function at cellular and organismal levels
  • the significance of internal and external influences on the integration of metabolism for survival and health
  • the methods and principles underlying taxonomy and classification
  • the principles and processes governing interactions of organisms and their environment.

Intellectual skills

You gain the following intellectual abilities:

  • recognising and applying subject-specific theories, paradigms, concepts or principles. For example, the relationship between genes and proteins, or the nature of essential nutrients in microbes, cells, plants and animals
  • analysing, synthesising and summarising information critically, including published research or reports
  • obtaining and integrating several lines of subject-specific evidence to formulate and test hypotheses
  • applying subject knowledge and understanding to address familiar and unfamiliar problems
  • recognising the moral and ethical issues of investigations and appreciating the need for ethical standards and professional codes of conduct.

Subject-specific skills

You gain subject-specific skills in the following:

  • designing, planning, conducting and reporting on investigations, which may involve primary or secondary data such as from a survey database. Data may be obtained through individual or group projects using appropriate techniques in the field and/or laboratory in a responsible, safe and ethical manner. For example, you must pay due attention to risk assessment, relevant health and safety regulations, and procedures for obtaining informed consent
  • an appreciation of the complexity and diversity of life processes through the study of organisms, their molecular, cellular and physiological processes, their genetics and evolution, and the interrelationships between them and their environment
  • the ability to handle biological material and chemicals in a safe way, thus being able to assess any potential hazards associated with biological experimentation
  • perform risk assessments before the execution of an experimental protocol
  • the ability to use basic and advanced experimental equipment in executing the core practical techniques used by biologists
  • find information on biological topics from a wide range of information sources and maintain an effective information retrieval strategy
  • plan, execute and assess the results from experiments
  • identify the best method for presenting and reporting on biological investigations using written, data manipulation/presentation and computer skills
  • be aware of the employment opportunities for biology graduates.

Transferable skills

You gain transferable skills in the following:

  • identifying individual and collective goals and responsibilities and performing in a manner appropriate to these roles
  • recognising and respecting the views and opinions of other team members, negotiating skills
  • evaluating performance as an individual and a team member, and evaluating the performance of others
  • an appreciation of the interdisciplinary nature of science and of the validity of different points of view
  • receiving and responding to a variety of sources of information: textual, numerical, verbal and graphical
  • communicating to a variety of audiences using different formats and approaches
  • citing and referencing work in an appropriate manner
  • sample selection; recording and analysing data in the field and/or the laboratory; validity, accuracy, calibration, precision, replicability and uncertainty during collection
  • preparing, processing, interpreting and presenting data, using qualitative and quantitative techniques, statistical programmes, spreadsheets and programs for presenting data visually
  • solving problems by a variety of methods, including the use of computers
  • use of the internet and other electronic sources critically as a means of communication and a source of information
  • the ability to work independently, effective time management and organisation
  • identifying and working towards targets for personal, academic and career development
  • possess an adaptable, flexible, and effective approach to study and work.

Careers

Graduate destinations

Our graduates have gone on to work in:

  • commercial, government and hospital laboratories
  • scientific publishing
  • science writing
  • event management
  • science communication.

Recent graduates have also worked in a wide range of non-scientific careers including teaching, marketing, sales, banking, accountancy, the police force and social work.

Help finding a job

The School of Biosciences runs employability events with talks from alumni outlining their career paths since graduation.

The University has a friendly Careers and Employability Service, which can give you advice on how to:

  • apply for jobs
  • write a good CV
  • perform well in interviews.

Career-enhancing skills

You graduate with an excellent grounding in scientific knowledge and extensive laboratory experience. In addition, you also develop the key transferable skills sought by employers, such as:

  • excellent communication skills
  • work independently or as part of a team
  • the ability to solve problems and think analytically
  • time management.

You can also gain new skills by signing up for one of our Kent Extra activities, such as learning a language or volunteering.

Professional recognition

All of our Biology degrees are accredited by the Royal Society of Biology (RSB), and our four-year Biology with a Sandwich Year programme has Advanced Accreditation. Students graduating from Society of Biology recognised courses are eligible for Associate Membership and are entitled to two years’ Associate Membership at half price.

Entry requirements

Home/EU students

The University will consider applications from students offering a wide range of qualifications, typical requirements are listed below. Students offering alternative qualifications should contact the Admissions Office for further advice. It is not possible to offer places to all students who meet this typical offer/minimum requirement.

Qualification Typical offer/minimum requirement
A level

BBB including Biology or Human Biology grade B or Double Award Applied Science at grade BB including the practical endorsement of any science qualifications taken.

GCSE

Mathematics grade C

Access to HE Diploma

The University will not necessarily make conditional offers to all access candidates but will continue to assess them on an individual basis. If an offer is made, candidates will be required to pass the Access to Higher Education Diploma with 36 level 3 credits at distinction and 9 at merit, and to obtain a proportion of the total level 3 credits in particular subjects at distinction or merit grade.

BTEC Level 3 Extended Diploma (formerly BTEC National Diploma)

The University will consider applicants holding BTEC National Diploma and Extended National Diploma Qualifications (QCF; NQF;OCR) on a case by case basis. Typical offers when made are Distinction, Distinction, Distinction. Please contact us via the enquiries tab for further advice on your individual circumstances.

International Baccalaureate

34 points overall or 15 points at HL including Biology 5 at HL or 6 at SL and Mathematics 4 at HL or SL

International students

The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country. 

However, please note that international fee-paying students cannot undertake a part-time programme due to visa restrictions.

If you need to increase your level of qualification ready for undergraduate study, we offer a number of International Foundation Programmes.

Meet our staff in your country

For more advice about applying to Kent, you can meet our staff at a range of international events.

English Language Requirements

Please see our English language entry requirements web page.

Please note that if you are required to meet an English language condition, we offer a number of 'pre-sessional' courses in English for Academic Purposes. You attend these courses before starting your degree programme. 

General entry requirements

Please also see our general entry requirements.

Fees

The 2019/20 annual tuition fees for this programme are:

UK/EU Overseas
Full-time £9250 £19000

For details of when and how to pay fees and charges, please see our Student Finance Guide.

For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* 

Your fee status

The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.

General additional costs

Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.

Funding

University funding

Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details. 

Government funding

You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.

Scholarships

General scholarships

Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.

The Kent Scholarship for Academic Excellence

At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence. 

The scholarship will be awarded to any applicant who achieves a minimum of AAA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages

The scholarship is also extended to those who achieve AAB at A level (or specified equivalents) where one of the subjects is either mathematics or a modern foreign language. Please review the eligibility criteria.

The Key Information Set (KIS) data is compiled by UNISTATS and draws from a variety of sources which includes the National Student Survey and the Higher Education Statistical Agency. The data for assessment and contact hours is compiled from the most populous modules (to the total of 120 credits for an academic session) for this particular degree programme. 

Depending on module selection, there may be some variation between the KIS data and an individual's experience. For further information on how the KIS data is compiled please see the UNISTATS website.

If you have any queries about a particular programme, please contact information@kent.ac.uk.