Programme Specification

Graduate Certificate in Endangered Species Management

1. Awarding Institution/Body  University of Kent
2. Teaching Institution  Durrell Wildlife Conservation Trust
3. School responsible for management of the programme  School of Anthropology and Conservation
4. Teaching Site  Durrell Conservation Academy, Durrell Wildlife Conservation Trust, Jersey
5. Mode of Delivery  Full-time (12 weeks)
6. Programme accredited by  N/A
7. Final Award  Graduate Certificate
8. Programme  Endangered Species Management
9. UCAS Code (or other code)  
10. Credits/ECTS Value  60 credits/ECTS equivalent – 30 credits
11. Study Level  Undergraduate (6) level
12. Relevant QAA subject benchmarking group(s)  No applicable QAA benchmarking statement.
13. Date of creation/revision  Revised version Nov 2013/Jan 2014
14. Intended Start Date of Delivery of this Programme  February 2014

15. Educational Aims of the Programme
The programme aims to:

1. generate a cadre of international conservation practitioners better equipped to play central roles in determining the future outlook for species conservation and biodiversity management within their country or region;
2. develop an innovative approach of teaching and learning catalysed by new findings in the theory and practice of species conservation and biodiversity management;
3. create a fusion of the theory and practice of species conservation by attracting a combination of high achieving practitioners as students from the global conservation community;
4. develop the lateral thinking abilities of the students through exposure to cross-disciplinary approaches to problem-solving in conservation;
5. enhance the critical and analytical powers of the students to facilitate more informed decision making;
6. underpin the decision-making and adaptive management skills of the students with sound scientific reasoning to encourage more efficient and effective use of limited resources within the field;
7. enhance the employability of the students within the field of species conservation and biodiversity management through the acquisition of excellent communication skills and the
confidence to work both as part of a dynamic team and alone;

8. create a supportive and dynamic learning environment in which students are encouraged to think “out of the box” and to challenge current thinking and practice, and given the confidence to make improvements;

9. provide high quality teaching in a supportive environment incorporating highly experienced conservation practitioners and scientists with a track record of success with skilled facilitators able to manage the learning process.

16 Programme Outcomes
The programme provides opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas.

A. Knowledge and Understanding of:
   A1. the concepts of biodiversity and ecosystems services, their values, and threats to them;
   A2. the concept of endangerment, its measurement and causes of it;
   A3. small population biology and conservation genetics and their relevance to biodiversity conservation;
   A4. the potential and limitations of ex-situ species management as a tool in support of in-situ conservation;
   A5. the application of captive management skills to in-situ recovery of critically endangered species;
   A6. the role of conservation medicine and the management of animal health in species conservation;
   A7. the value of priority setting and strategic planning in guiding conservation action;
   A8. the importance of project management in efficient utilisation of finite resources;
   A9. the theory and practice of conservation education and its potential role as a conservation tool;
   A10. the opportunities and limitations of community-based conservation as a long-term species management tool.

Teaching/learning and assessment methods and strategies used to enable outcomes to be achieved and demonstrated

Teaching/Learning:
A combination of lectures and small group activities used throughout. For the small group activities, students will be given questions to discuss, topics to research, problem-solving scenarios etc., later reporting back to plenary. This not only develops knowledge and understanding, but also fosters group and effective communication skills. Students are encouraged to consider contentious and innovative solutions to species conservation with objectivity and rational thinking during group discussions. Students will also develop some of these outcomes through their tutor-assisted research and funding proposals. Students are also encouraged to carry out self-directed learning and given ample further reading material.

Assessment:
(1) Two written exam papers (one short answer, one essay-based) will assess learning and understanding of these outcomes.
(2) Written project and funding proposals, and the oral presentations associated with these, also in part assess these outcomes.
(3) All the above assessments are double-marked, blind where this is practical.
Skills and Other Attributes

B. Intellectual Skills:

B11. synthesise information from various written and spoken sources to gain a coherent understanding of conservation biology theory and practice;

B12. critically analyse and evaluate the ‘value’ of research findings from a wide body of literature;

B13. prioritise and organise knowledge and examples into well-structured and clear oral and written presentations;

B14. design and present a concise and original research proposal for review;

B15. utilise problem-solving and analytical skills to critique pre-prepared data sets;

B16. adopt a holistic approach to problem-solving considering the different cultural, spiritual, scientific and experiential viewpoints of other students.

Teaching/learning and assessment methods and strategies used to enable outcomes to be achieved and demonstrated

Teaching/Learning:

A combination of introductory lectures, practical skills workshops and small group activities. Students will be given problem-solving tools and encouraged to consider the ‘bigger picture’ of why species are declining and how we can intervene through well-planned long-term species management and recovery programmes. With tutor support, students will develop their skills in research, literature searching, collating information from multiple sources, and develop concise project and funding proposals.

Assessment:

These skills are assessed through the written exam papers and through the written and oral project and funding proposals. Paper 1 in particular tests skills in analysing and interpreting information. Paper 2 in particular tests skills in collating information from multiple sources and synthesising a cohesive critical evidence-based argument.

C. Subject-specific Skills:

C17. techniques for manipulating reproduction in- and ex-situ;

C18. best practice in animal husbandry (nutrition, health, welfare);

C19. population monitoring skills (programme design, sampling, survey techniques, minimising bias etc.);

C20. experimental design and principles of statistical analysis for conservation;

C21. managing stakeholder participation (design and use of questionnaires, stakeholder analyses and engagement);

C22. investigative veterinary techniques (bacterial culturing, analysing blood samples, principles of conducting post-mortems etc.).

Teaching/learning and assessment methods and strategies used to enable outcomes to be achieved and demonstrated

Teaching/Learning:

A combination of lectures, tours, workshops, practical field activities, practical laboratory work, and small group activities used throughout. Individual data analysis problem-solving exercises with one-to-one support are also used. Students are also encouraged to carry out self-directed learning and given ample further reading material.
Assessment:
The two written exam papers (one short answer, one essay-based) assess learning and understanding of these outcomes. The written project and funding proposals, and the oral presentations of these, also in part assess these outcomes. Skills in data manipulation and statistical analysis are assessed through an exam paper specifically on that topic.

D. Transferable Skills:
   D23. cross-cultural communication techniques using different mediums (verbal, written, diagrammatic etc.);
   D24. enhanced IT skills in using Microsoft Word, Excel and Powerpoint (or open-source equivalents), basic statistics packages, GIS software, and population monitoring software;
   D25. presentation skills;
   D26. grant-writing skills;
   D27. facilitation skills;
   D28. process design skills (how to manage group work effectively).

Teaching/Learning:
A combination of introductory lectures, practical skills workshops and numerous small group activities is used. IT skills are taught through computer-based workshops (designed to allow students with different levels of ability to progress at different rates through differentiation). Considerable use is made of small group activities with problem-based learning scenarios, in which students are encouraged to consider contentious and innovative solutions to species conservation with objectivity and rational thinking during group discussions.

Assessment:
Assessed through written funding proposal, oral presentations of project and funding proposals, and data manipulation and statistical analysis exam. Facilitation and communication skills are assessed through a written reflective learning journal.

For information on which modules provide which skills, see the module map at the end of this document, or the separate module specifications.
Please see the module specifications for more detailed information on assessment methods.
17 Programme Structures and Requirements, Levels, Modules, Credits and Awards

The Graduate Certificate is studied over a 12-week period, full-time and residential. Because of the residential nature of the programme, some practical activities may take place during weekends and evenings. It is a single-stage programme comprising two compulsory modules, each of 30 credits in value at level 6.

Students must successfully complete each module in order to be awarded the specified number of credits for that module. One credit corresponds to approximately ten hours of ‘learning time’ (including all classes and all private study and research). Thus obtaining the 60 credits in this course requires around 600 hours of overall learning time. For further information on modules and credits refer to the Credit Framework at http://www.kent.ac.uk/teaching/qa/credit-framework/creditinfo.html. Both modules are designed to be at level 6. For further information of the levels, refer to Annex 2 of the Credit Framework at http://www.kent.ac.uk/teaching/qa/credit-framework/creditinfoannex2.html.

The first seven weeks of study will be predominately Module 1 (XX300), comprising 300 hours of learning time focusing on the application of conservation biology theory and consisting of an initial five week block of teaching, structured discussion groups and computer-based learning. In addition, students are given a five-day period (entitled ‘Skills Development Task’) in which they can develop enhanced practical skills or knowledge in a particular topic of relevance to them. For many students, this may involve practical work within Durrell Wildlife Park (e.g. practical experience in animal husbandry, veterinary work, or conservation education). For all such work, students are given 1-to-1 support and personalised learning objectives are set and agreed upon before the work commences. There will be a maximum of 35 hours per week contact time with training staff with an additional minimum of 8 hours per week for personal study related to this module. In total, students will receive 230 hours contact time and 70 hours personal study time.

The second module (XX301), comprising 300 hours of learning time, is devoted to developing the multi-disciplinary transferable skills of the students and is spread throughout the 12 weeks but predominates in the final five weeks. It is anticipated that during the first five weeks of the programme eight hours per week of personal study time are spent on this module in preparation. During the latter five weeks it comprises sessions on Human Management Skills for Conservation (35 hours contact time, 15 hours personal study time) and Facilitation and Communication Skills (49 hours contact time, 7 hours personal study, over 7 days). These two sessions have been designed to equip students with the skills to both manage their own staff within their organisations and manage the process of stakeholder participation and group dynamics. Also included in this module are three weeks devoted to grant writing skills, research proposal development and data analysis and evaluation (14 hours contact time, 32 hours per week personal study time in total). Students will attend workshops and be tutored through these activities but will also be expected to undertake significant time periods of personal study and project development. In total, students will receive 140 hours contact time and 160 hours personal study time.

Both modules must be passed (pass mark = 40%). The ‘averaging’ system will be used to award credit. As the programme comprises two modules that contribute 50% each to the overall credits, there is no system for compensation or condonement within the programme.

All assessed work is marked in accordance with the University’s Credit Framework (www.kent.ac.uk/teaching/qa/credit-framework).
**UNIVERSITY OF KENT**

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Level</th>
<th>Credits</th>
<th>Term(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX300</td>
<td>Application of conservation biology theory</td>
<td>6</td>
<td>30</td>
<td>Feb - May</td>
</tr>
<tr>
<td>XX301</td>
<td>Transferable skills for conservation managers</td>
<td>6</td>
<td>30</td>
<td>Feb - May</td>
</tr>
</tbody>
</table>

*Please note that there are no optional modules, and that this is a single-stage programme.*

### 18 Work-Based Learning

**Disability Statement**

Work-based learning on this programme comprises tours of the Wildlife Park led by relevant staff, and the above-mentioned 5-day Skills Development Task. The vast majority of the Wildlife Park is designed to be accessible to visitors with impaired mobility, so we are able to provide tours where this is not an issue. Staff also have experience of supervising and giving tours to visually-impaired students and visitors. For students with hearing impairments or specific learning difficulties, then audio recordings or written transcripts of guided tours can be provided where necessary.

The 5-day Skills Development Task is fully customised around the learning objectives and needs of each individual student. Therefore, any specific needs or disability issues are factored in to the task design and supervisory arrangements. The small cohort size (~12 students) allows us to give considerable 1:1 support to our students.

See also Section 18 of the two Module Specifications for further information on disability support in this programme.

Where relevant to the programme of study, provide details of any work-based learning element, inclusive of employer details, delivery, assessment and support for students:

This course includes practical elements which are conducted within the facilities of Durrell Wildlife Conservation Trust. As such, they are integral parts of the teaching and learning experience, rather than a separate placement element. All students receive short practical teaching sessions as part of XX300. In addition, students are given a five-day period (entitled ‘Skills Development Task’) in which they can develop enhanced practical skills or knowledge in a particular topic of relevance to them. For many students, this may involve practical work within Durrell Wildlife Park (e.g. practical experience in animal husbandry, veterinary work, or conservation education). For all such work, students are given 1-to-1 support and personalised learning objectives are set and agreed upon before the work commences.

### 19 Support for Students and their Learning

- Durrell Conservation Academy induction programme to facilities, organisation, staff and learning opportunities;
- Detailed module and assessment handbooks (including links to further support on the University’s website);
- On-site conservation library with wide range of books, journals, newsletters and research reports;
- Access to wide range of relevant current and back-issue conservation journals;
- On-site computing facilities – all students provided with 24 hour access to computer, internet, printing services and a suite of relevant software;
- A minimum of one tutor per student to provide support for personal project work;
- Open-door policy provided by all staff - students encouraged to seek support whenever required, both learning-related and personal;
Disability and dyslexia support provided if necessary, with specialist advice from nearby Highlands College, in line with the University's Student Support and Wellbeing service (see www.kent.ac.uk/ddss/);

English language support provided if necessary by TEFL-trained staff member, with further advice from the University's Centre for English and World Languages (see www.kent.ac.uk/cewl/index.html) as necessary;

Medical help arranged as necessary by staff, either through local GPs or the General Hospital.

Students are encouraged to take advantage of the learning advice provided on the website of the University's Student Learning Advisory Service (www.kent.ac.uk/uelt/about/slas.html).

---

### 20 Entry Profile

The minimum age to study a degree programme at the university is normally at least 17 years old by 20 September in the year the course begins. There is no upper age limit.

#### 20.1 Entry Route

For fuller information, please refer to the University prospectus

- An honours degree or equivalent in a conservation-related subject; or
- An honours degree in other subject combined with relevant practical experience, or
- Applicants will also be considered without a degree but with the ability to demonstrate equivalent academic standard through their professional career.

#### 20.2 What does this programme have to offer?

- An excellent grounding in the theory and practice of endangered species conservation and management;
- First-hand experience of the species conservation work conducted by one of the world's foremost species conservation organisations;
- Exposure to ground-breaking techniques for species conservation at the interface between captive and wild population management;
- A multi-disciplinary team of lecturers with proven track records in species conservation and facilitation;
- An opportunity to learn from conservation colleagues from around the world through the multi-national group of students and visiting lecturers who attend the course;
- The chance to become part of an international alumni network of conservationists providing ongoing support following the course;
- The development of a broad suite of transferable skills required for modern-day species conservation management.

#### 20.3 Personal Profile

- A demonstrable and active interest in species conservation and biodiversity management through current occupation;
- A proficiency in spoken and written English and a willingness to participate actively in group activities and oral presentations;
- A willingness to develop existing skills in IT and research design.

### 21 Methods for Evaluating and Enhancing the Quality and Standards of Teaching and Learning
21.1 **Mechanisms for review and evaluation of teaching, learning, assessment, the curriculum and outcome standards**

- Written student evaluations of each module and of the programme as a whole;
- Formal assessment results (exams, proposal submissions, oral presentations etc.);
- Individual and group meetings between training staff and students;
- Maintaining an “open door” policy throughout the course to deal with any student concerns;
- Peer observation and team teaching;
- Annual staff appraisals;
- Annual programme and module monitoring reports, see [http://www.kent.ac.uk/teaching/qa/codes/taught/annexe.html](http://www.kent.ac.uk/teaching/qa/codes/taught/annexe.html);
- External Examiners system, see [http://www.kent.ac.uk/teaching/qa/codes/taught/annexk.html](http://www.kent.ac.uk/teaching/qa/codes/taught/annexk.html);
- Periodic programme review, [http://www.kent.ac.uk/teaching/qa/codes/taught/annexf.html](http://www.kent.ac.uk/teaching/qa/codes/taught/annexf.html).

21.2 **Committees with responsibility for monitoring and evaluating quality and standards**

- School Graduate Studies Committee;
- Faculty Graduate Studies Committee;
- Faculty Board;
- Board of Examiners.
- Programme Committee (combined equivalent, with University approval, of ‘Board of Studies’ and ‘Teaching and Learning Committee’);
- Staff/Student Liaison Committee;
- Disciplinary Committee;
- Concessions Committee.

21.3 **Mechanisms for gaining student feedback on the quality of teaching and their learning experience**

- Written student evaluations of each module and of the programme as a whole;
- Individual and group meetings between training staff and students;
- Maintaining an “open door” policy throughout to deal with any student concerns;
- Staff/Student Liaison Committee (one meeting per module).

21.4 **Staff Development priorities include:**

- Qualified teacher status (e.g. PGCE, PGCHE, or City & Guilds PTLLS course);
- Staff appraisal scheme;
- Attendance at relevant national/international conferences;
- Direct exposure to field programmes and understanding of conservation research initiatives within the organisation and its partners;
- Peer observation and team teaching;
- Regular programme team meetings.

22 **Indicators of Quality and Standards**

- Results of periodic programme review (last PPR was held in May 2013);
- Annual External Examiner reports;
- Annual programme and module monitoring reports;
- Continued approval of programme by the University of Kent.

22.1 **The following reference points were used in creating these specifications:**

- Programme specification for the University of Kent MSc in Conservation Biology;
- Validation documentation for the DWCT Diploma in Endangered Species Management.
Graduate Certificate in Endangered Species Management – Module Map (Single Stage, 2 Modules)

<table>
<thead>
<tr>
<th>Programme Learning outcomes</th>
<th>XX300 (Module 1)</th>
<th>XX301 (Module 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Knowledge and Understanding:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1 the concepts of biodiversity and ecosystems services, their values, and threats to them</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>A2 the concept of endangerment, its measurement and causes of it</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>A3 small population biology and conservation genetics and their relevance to biodiversity conservation</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>A4 the potential and limitations of ex-situ species management as a tool in support of in-situ conservation</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>A5 the application of captive management skills to in-situ recovery of critically endangered species</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>A6 the role of conservation medicine and the management of animal health in species conservation</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>A7 the value of priority setting and strategic planning in guiding conservation action</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>A8 the importance of project management in efficient utilisation of finite resources</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>A9 the theory and practice of conservation education and its potential role as a conservation tool</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>A10 the opportunities and limitations of community-based conservation as a long-term species management tool</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td><strong>Intellectual Skills:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B11 synthesise information from various sources to gain a coherent understanding of conservation biology theory and practice</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>B12 critically analyse and evaluate the ‘value’ of research findings from a wide body of literature</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>B13 prioritise and organise knowledge and examples into well-structured and clear oral and written presentations</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>B14 design and present a concise and original research proposal for review</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>B15 utilise problem-solving and analytical skills to critique pre-prepared data sets</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>B16 adopt a holistic approach to problem-solving considering different cultural, spiritual, scientific and experiential viewpoints</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td><strong>Subject-specific Skills:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17 techniques for manipulating reproduction in- and ex-situ</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C18 best practice in animal husbandry (nutrition, health, welfare)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C19 population monitoring skills (programme design, sampling, survey techniques, minimising bias etc.)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C20 experimental design and principles of statistical analysis for conservation</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C21 managing stakeholder participation (design and use of questionnaires, stakeholder analyses and engagement)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>C22 investigative veterinary techniques (bacterial culturing, analysing blood samples, principles of post-mortems etc.)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td><strong>Transferable Skills:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D23 cross-cultural communication techniques using different mediums (verbal, written, diagrammatic etc.)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>D24 enhanced IT skills</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>D25 presentation skills</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>D26 grant-writing skills</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>D27 facilitation skills</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>D28 process design skills (how to manage group work effectively)</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>