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Quantum 2× 2 matrices

The coordinate ring of quantum 2× 2 matrices

Oq(Mm,p(C)) := C
[
a b
c d

]
is generated by four indeterminates

a, b, c, d subject to the following rules:

ab = qba, cd = qdc

ac = qca, bd = qdb

bc = cb, ad− da = (q − q−1)cb.

The quantum determinant ad− qbc is a central element
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The algebra of m× p quantum matrices

• R = Oq (Mm,p(C)) := C

 X1,1 . . . X1,p
... · · · ...
Xm,1 . . . Xm,p

,

where each 2× 2 sub-matrix is a copy of Oq (M2(C)).

• Oq (Mm,p(C)) is an iterated Ore extension and so is a noethe-

rian integral domain.

• In the square case

Dq =
∑
σ∈Sn

(−q)l(σ)X1,σ(1) . . . Xn,σ(n)

is the quantum determinant, a central element.
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Quantum minors of R = Oq(Mm,p(C))

Quantum minors are quantum determinants of square subma-

trices of Oq(Mm,p(C))

If I and J are row and column sets of the same size then the

quantum minor, [I | J], is the quantum determinant of the

quantum matrix subalgebra formed using rows I and columns J

For example,

[12|23] = X12X23 − qX13X22

is the quantum minor of R associated with rows 1 and 2, and

columns 2 and 3.
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• There is an action of the torus H = (C∗)m+p on Oq(Mm,p(C))

given by multiplication of each row or column by a nonzero scalar

• Quantum minors are H-eigenvectors

Example: With h = (α1, α2, α3, β1, β2, β3),

h · [12|23] = h · (X12X23 − qX13X22)

= (α1β2X12).(α2β3X23)− q(α1β3X1,3).(α2β2X22)

= α1α2β2β3(X12X23 − qX13X22)
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From now on, assume that the deformation parameter q is

a nonroot of unity

Quantum matrices fall into a general class of algebras, known as

CGL extensions, or quantum nilpotent algebras, for which

there is a general strategy, known as the Goodearl-Letzter

stratification theory for studying the prime spectrum of al-

gebras.

In such algebras, there is an action of a torus, H, and under-

standing the H-invariant prime ideals is key to understanding the

whole of the prime spectrum.
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• The prime ideals in quantum matrices are all completely

prime; that is, R/P is an integral domain (Goodearl-Letzter)

• There are only finitely many H-prime ideals (Goodearl-Letzter)

• The H-prime ideals are in bijection with Cauchon diagrams

(definition to come soon) (Cauchon)

• The H-prime ideals are each generated by the quantum mi-

nors that they contain (Goodearl-Lenagan, Launois, Yakimov,

Casteels)
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Cauchon diagrams (Total nonegativitists: Le-diagrams)

A Young diagram with entries coloured black or white is said to

be a Cauchon diagram if it satisfies the following rule: if there

is a black in a given square then either each square to the left is

also coloured black or each square above is also coloured black
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Cauchon diagrams

A Young diagram with entries coloured black or white is said to

be a Cauchon diagram if it satisfies the following rule: if there

is a black in a given square then either each square to the left is

also coloured black or each square above is also coloured black
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Goodearl, Launois, Lenagan There is a very close connection

between the behaviour of totally nonnegative cells in the space

of totally nonnegative matrices and the H-prime spectrum of

quantum matrices

A set of minors is the set of minors that are zero on elements

in a totally nonnegative cell if and only if the corresponding set

of quantum minors is the set of quantum minors in an H-prime

ideal of quantum matrices
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Example For quantum 2× 2 matrices, there are 16 black/white

fillings of the 2×2 Young diagram, and only two fail the Cauchon

test; so there are 14 H-prime ideals in quantum 2× 2 matrices

• These 14 H-prime ideals can easily be found by hand, and each

is generated by quantum minors

• For example, the ideal generated by the 2× 2 quantum deter-

minant ad− qbc is an H-prime ideal
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The quantum grassmannian Oq(G(k, n))

• The quantum grassmannian Oq(G(k, n)) is the subalgebra of

Oq(M(k, n)) generated by the maximal k × k quantum minors.

• Denote by [I] the quantum minor [1 . . . k|I].

• There is a torus action of H = (C∗)n given by column multipli-

cation

• The k× k quantum minors are the quantum Plücker coordi-

nates of the quantum grassmannian
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• The quantum grassmannian is a deformation of the homoge-

neous coordinate ring of the classical grassmannian

• We will see that the behaviour of the H-prime spectrum of the

quantum grassmannian mirrors the behaviour of the cell structure

of the totally nonnegative grassmannian
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Example Oq(G(2,4)) is generated by the six quantum minors

[12], [13], [14], [23], [24], [34]

Most quantum minors q•-commute, for example,

[14] [23] = [23] [14] , [12] [13] = q [13] [12] , [12] [34] = q2 [34] [12]

However,

[13] [24] = [24] [13] + (q − q−1) [14] [23]

and there is a quantum Plücker relation

[12] [34]− q [13] [24] + q2 [14] [23] = 0.
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Aim: Describe H− Spec(Oq(G(k, n)))

Snag: Goodearl-Letzter theory can’t be used directly since Oq(G(k, n))

is not usually CGL extension (or a factor of one)
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Nevertheless, one might hope that:

• There are only finitely many H-primes

• All H-primes are completely prime

• We can specify the quantum minors in a given H-prime

• Each H-prime is generated by the quantum minors that it

contains

• We can describe the containments between H-primes
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Launois, Lenagan and Rigal There is a bijection be-

tween H − Spec(Oq(G(k, n))) (ignoring the irrelevant

ideal) and Cauchon-Le diagrams on Young diagrams that

fit inside a k × (n− k) array

The theorem is proved by defining quantum algebras with a

straightening law, quantum Schubert varieties, quantum Schu-

bert cells, partition subalgebras of quantum matrices and using

a noncommutative version of dehomogenisation.
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Cauchon-Le diagrams

A Young diagram with entries coloured black or white is said to

be a Cauchon-Le diagram if it satisfies the following rule: if

there is a black in a given square then either each square to the

left is also coloured black or each square above is also coloured

black
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Quantum Schubert variety corresp to [135]
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q-Schubert cell: use noncommutative dehomogenisation at [135]
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Noncommutative dehomogenisation

Suppose that A = A0⊕A1⊕A2⊕ . . . is an N-graded algebra and

that u ∈ A1 is a nonzero normal element (ie. uA = Au).

We can invert u to obtain a Z-graded algebra A[u−1]. The zero

component A[u−1]0 is the noncommutative dehomogenisa-

tion of A at u, written Dhomu(A)

Theorem A[u−1] ∼= Dhomu(A)[x±1;σ], where σ is the automor-

phism of A given by the commutation rule for u.

Example Let u be the Plücker coordinate u = [12 . . . k] then

Oq(G(k, n))[u−1] ∼= Oq
(
Mk,n−k(C)

)
[x±1;σ]
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• For each invariant prime ideal P of the quantum grassmannian,

there is a unique quantum Plücker coordinate [I] such that

[I] 6∈ P, while [J] ∈ P for all J 6≥ I

(this follows from the fact that the quantum grassmannian is a

quantum algebra with a straightening law)

• The invariant prime ideal P then belongs to the quantum Schu-

bert cell corresponding to the quantum Plücker coordinate [I]
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• In more detail, if we denote the quantum Schubert cell by R[I],

and the ideal generated by quantum Plücker coordinates J with

J 6≥ I by Π[I] then

Oq(G(k, n))

Π[I]
[[I]−1] ∼= R[I][x

±;σ]

and the prime P passes through this isomorphism to the quantum

Schubert cell R[I]

• As Π[I] is generated by H-eigenvectors, there is an induced

action of the torus H on the quantum Schubert cells. So, to

understand the H-prime spectum of Oq(G(k, n)) we need to un-

derstand the H-prime spectum of quantum Schubert cells, and

this is where Cauchon-Le diagrams come into play
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Schubert cell for [135]

1

2
3

4
5

6

m̃11 m̃12 m̃13

m̃21 m̃22

m̃31

H-prime in Schubert cell [135]

1

2
3

4
5

6

m̃ij := [???] · [135]
−1

obey quantum matrix rules

(eg. m̃11 = [356] · [135]
−1

)
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Postnikov graph

1

2
3

4
5

6

• •

• •

•

1

2
3

4
5

6

• •

• •

•

30



Speculation

1

2
3

4
5

6

• •

• •

•

There is a vertex disjoint set

of paths from {1,3} to {2,4}

so [245] is not in the prime.

There is no vertex disjoint set

of paths from {1,3} to {4,6}

so [456] is in the prime.

• We hope to prove this conjecture by using the path methods

that Casteels developed in the quantum matrices setting

31



The i-order: i ≤i i+ 1 ≤i . . . ≤i n ≤i 1 ≤i . . . ≤i i− 1
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The four orderings on Oq(G(2,4))

• The quantum grassmannian is a quantum algebra with a straight-

ening law with respect to each of the n orderings
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Fix an invariant prime P in Oq(G(k, n))

• For each i-order there is a unique quantum minor [Ii] such that

[Ii] 6∈ P but [J] ∈ P for each J 6≥i Ii

Let Πi(P ) denote {[J] | J 6≥i Ii}. Then

Π(P ) :=
n⋃
i=1

Πi(P ) ⊆ P

Conjecture: Π(P ) is the set of quantum minors belonging to

P , and P is generated as an ideal by Π(P )

• We hope to prove this conjecture by using the path methods

that Casteels developed in the quantum matrices setting
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Continuing with the notation on the previous slide:

• The quantum minors I1, I2, . . . , In form a Grassmann neck-

lace, Neck(P )

• Given a Cauchon diagram for an invariant prime P , we can

construct Neck(P )

• If P ′ ⊆ P then Neck(P ′) ≤ Neck(P )

Conjecture The converse is true
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• In Oq(G(2,4)) consider the Grassmann necklace

(I1, I2, I3, I4) = (12,12,14,14)
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• Grassmann necklace: (I1, I2, I3, I4) = (12,12,14,14)
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• The H-prime P with this necklace is P = 〈[13], [23], [24], [34]〉

• Note that Oq(G(2,4))/P ∼= C
[
[12], [14]

]
is a quantum plane, so

P is prime.
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