Invariant prime ideals in the quantum grassmannian

Tom Lenagan

Canterbury, Kent, January 2016

- Joint work at various times with: Karel Casteels, Ken Goodearl, Ann Kelly, Stéphane Launois, Laurent Rigal, and Ewan Russell
- Partially supported by a Leverhulme Emeritus Fellowship and EPSRC grant EP/K035827/1

Quantum 2×2 matrices

The coordinate ring of quantum 2×2 matrices
$\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right):=\mathbb{C}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is generated by four indeterminates a, b, c, d subject to the following rules:

$$
\begin{gathered}
a b=q b a, \quad c d=q d c \\
a c=q c a, \quad b d=q d b \\
b c=c b, \quad a d-d a=\left(q-q^{-1}\right) c b .
\end{gathered}
$$

The quantum determinant $a d-q b c$ is a central element

The algebra of $m \times p$ quantum matrices

- $R=O_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right):=\mathbb{C}\left[\begin{array}{lll}X_{1,1} & \ldots & X_{1, p} \\ \vdots & \ldots & \vdots \\ X_{m, 1} & \ldots & X_{m, p}\end{array}\right]$,
where each 2×2 sub-matrix is a copy of $O_{q}\left(\mathcal{M}_{2}(\mathbb{C})\right)$.
- $O_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$ is an iterated Ore extension and so is a noetherian integral domain.
- In the square case

$$
D_{q}=\sum_{\sigma \in S_{n}}(-q)^{l(\sigma)} X_{1, \sigma(1)} \ldots X_{n, \sigma(n)}
$$

is the quantum determinant, a central element.

Quantum minors of $R=\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$

Quantum minors are quantum determinants of square submatrices of $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$

If I and J are row and column sets of the same size then the quantum minor, $[I \mid J]$, is the quantum determinant of the quantum matrix subalgebra formed using rows I and columns J

For example,

$$
\text { [12|23] }=X_{12} X_{23}-q X_{13} X_{22}
$$

is the quantum minor of R associated with rows 1 and 2 , and columns 2 and 3.

- There is an action of the torus $\mathcal{H}=\left(\mathbb{C}^{*}\right)^{m+p}$ on $\mathcal{O}_{q}\left(\mathcal{M}_{m, p}(\mathbb{C})\right)$ given by multiplication of each row or column by a nonzero scalar
- Quantum minors are \mathcal{H}-eigenvectors

Example: With $h=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right)$,

$$
\begin{aligned}
h \cdot[12 \mid 23] & =h \cdot\left(X_{12} X_{23}-q X_{13} X_{22}\right) \\
& =\left(\alpha_{1} \beta_{2} X_{12}\right) \cdot\left(\alpha_{2} \beta_{3} X_{23}\right)-q\left(\alpha_{1} \beta_{3} X_{1,3}\right) \cdot\left(\alpha_{2} \beta_{2} X_{22}\right) \\
& =\alpha_{1} \alpha_{2} \beta_{2} \beta_{3}\left(X_{12} X_{23}-q X_{13} X_{22}\right)
\end{aligned}
$$

From now on, assume that the deformation parameter q is a nonroot of unity

Quantum matrices fall into a general class of algebras, known as CGL extensions, or quantum nilpotent algebras, for which there is a general strategy, known as the Goodearl-Letzter stratification theory for studying the prime spectrum of algebras.

In such algebras, there is an action of a torus, \mathcal{H}, and understanding the \mathcal{H}-invariant prime ideals is key to understanding the whole of the prime spectrum.

- The prime ideals in quantum matrices are all completely prime; that is, R / P is an integral domain (Goodearl-Letzter)
- There are only finitely many \mathcal{H}-prime ideals (Goodearl-Letzter)
- The \mathcal{H}-prime ideals are in bijection with Cauchon diagrams (definition to come soon) (Cauchon)
- The \mathcal{H}-prime ideals are each generated by the quantum minors that they contain (Goodearl-Lenagan, Launois, Yakimov, Casteels)

Cauchon diagrams (Total nonegativitists: Le-diagrams)

A Young diagram with entries coloured black or white is said to be a Cauchon diagram if it satisfies the following rule: if there is a black in a given square then either each square to the left is also coloured black or each square above is also coloured black

Cauchon diagrams

A Young diagram with entries coloured black or white is said to be a Cauchon diagram if it satisfies the following rule: if there is a black in a given square then either each square to the left is also coloured black or each square above is also coloured black

Goodearl, Launois, Lenagan There is a very close connection between the behaviour of totally nonnegative cells in the space of totally nonnegative matrices and the \mathcal{H}-prime spectrum of quantum matrices

A set of minors is the set of minors that are zero on elements in a totally nonnegative cell if and only if the corresponding set of quantum minors is the set of quantum minors in an \mathcal{H}-prime ideal of quantum matrices

Example For quantum 2×2 matrices, there are 16 black/white fillings of the 2×2 Young diagram, and only two fail the Cauchon test; so there are $14 \mathcal{H}$-prime ideals in quantum 2×2 matrices

- These $14 \mathcal{H}$-prime ideals can easily be found by hand, and each is generated by quantum minors
- For example, the ideal generated by the 2×2 quantum determinant $a d-q b c$ is an \mathcal{H}-prime ideal

The quantum grassmannian $\mathcal{O}_{q}(G(k, n))$

- The quantum grassmannian $\mathcal{O}_{q}(G(k, n))$ is the subalgebra of $\mathcal{O}_{q}(\mathcal{M}(k, n))$ generated by the maximal $k \times k$ quantum minors.
- Denote by $[I]$ the quantum minor $[1 \ldots k \mid I]$.
- There is a torus action of $\mathcal{H}=\left(\mathbb{C}^{*}\right)^{n}$ given by column multiplication
- The $k \times k$ quantum minors are the quantum Plücker coordinates of the quantum grassmannian
- The quantum grassmannian is a deformation of the homogeneous coordinate ring of the classical grassmannian
- We will see that the behaviour of the \mathcal{H}-prime spectrum of the quantum grassmannian mirrors the behaviour of the cell structure of the totally nonnegative grassmannian

Example $\mathcal{O}_{q}(G(2,4))$ is generated by the six quantum minors

$$
[12], \quad[13], \quad[14], \quad[23], \quad[24], \quad[34]
$$

Most quantum minors q^{\bullet}-commute, for example,

$$
[14][23]=[23][14], \quad[12][13]=q[13][12], \quad[12][34]=q^{2}[34][12]
$$

However,

$$
[13][24]=[24][13]+\left(q-q^{-1}\right)[14][23]
$$

and there is a quantum Plücker relation

$$
[12][34]-q[13][24]+q^{2}[14][23]=0 .
$$

Aim: Describe $\mathcal{H}-\operatorname{Spec}\left(\mathcal{O}_{q}(G(k, n))\right)$

Snag: Goodearl-Letzter theory can't be used directly since $\mathcal{O}_{q}(G(k, n))$ is not usually CGL extension (or a factor of one)

Nevertheless, one might hope that:

- There are only finitely many \mathcal{H}-primes
- All \mathcal{H}-primes are completely prime
- We can specify the quantum minors in a given \mathcal{H}-prime
- Each \mathcal{H}-prime is generated by the quantum minors that it contains
- We can describe the containments between \mathcal{H}-primes

> Launois, Lenagan and Rigal There is a bijection between $\mathcal{H}-\operatorname{Spec}\left(\mathcal{O}_{q}(G(k, n))\right.$) (ignoring the irrelevant ideal) and Cauchon-Le diagrams on Young diagrams that fit inside a $k \times(n-k)$ array

The theorem is proved by defining quantum algebras with a straightening law, quantum Schubert varieties, quantum Schubert cells, partition subalgebras of quantum matrices and using a noncommutative version of dehomogenisation.

Cauchon-Le diagrams

A Young diagram with entries coloured black or white is said to be a Cauchon-Le diagram if it satisfies the following rule: if there is a black in a given square then either each square to the left is also coloured black or each square above is also coloured black

Quantum Schubert variety corresp to [135]

q-Schubert cell: use noncommutative dehomogenisation at [135]

Noncommutative dehomogenisation

Suppose that $A=A_{0} \oplus A_{1} \oplus A_{2} \oplus \ldots$ is an \mathbb{N}-graded algebra and that $u \in A_{1}$ is a nonzero normal element (ie. $u A=A u$).

We can invert u to obtain a \mathbb{Z}-graded algebra $A\left[u^{-1}\right]$. The zero component $A\left[u^{-1}\right]_{0}$ is the noncommutative dehomogenisation of A at u, written $\operatorname{Dhom}_{u}(A)$

Theorem $A\left[u^{-1}\right] \cong \operatorname{Dhom}_{u}(A)\left[x^{ \pm 1} ; \sigma\right]$, where σ is the automorphism of A given by the commutation rule for u.

Example Let u be the Plücker coordinate $u=[12 \ldots k]$ then

$$
\mathcal{O}_{q}(G(k, n))\left[u^{-1}\right] \cong O_{q}\left(\mathcal{M}_{k, n-k}(\mathbb{C})\right)\left[x^{ \pm 1} ; \sigma\right]
$$

- For each invariant prime ideal P of the quantum grassmannian, there is a unique quantum Plücker coordinate [I] such that

$$
[I] \notin P, \text { while }[J] \in P \text { for all } J \nsupseteq I
$$

(this follows from the fact that the quantum grassmannian is a quantum algebra with a straightening law)

- The invariant prime ideal P then belongs to the quantum Schubert cell corresponding to the quantum Plücker coordinate [I]
- In more detail, if we denote the quantum Schubert cell by $R_{[I]}$, and the ideal generated by quantum Plücker coordinates J with $J \nsupseteq I$ by $\Pi_{[I]}$ then

$$
\frac{\mathcal{O}_{q}(G(k, n))}{\Pi_{[I]}}\left[[I]^{-1}\right] \cong R_{[I]}\left[x^{ \pm} ; \sigma\right]
$$

and the prime P passes through this isomorphism to the quantum Schubert cell $R_{[I]}$

- As $\Pi_{[I]}$ is generated by \mathcal{H}-eigenvectors, there is an induced action of the torus \mathcal{H} on the quantum Schubert cells. So, to understand the \mathcal{H}-prime spectum of $\mathcal{O}_{q}(G(k, n))$ we need to understand the \mathcal{H}-prime spectum of quantum Schubert cells, and this is where Cauchon-Le diagrams come into play

Schubert cell for [135] \mathcal{H}-prime in Schubert cell [135]

$$
\begin{aligned}
& \widetilde{m_{i j}}:=\overline{[? ? ?]} \cdot \overline{[135]}^{-1} \text { obey quantum matrix rules } \\
& \left(\text { eg. } \widetilde{m_{11}}=\overline{[356]} \cdot \overline{[135]}^{-1}\right)
\end{aligned}
$$

Postnikov graph

Speculation

There is a vertex disjoint set of paths from $\{1,3\}$ to $\{2,4\}$ so [245] is not in the prime.

There is no vertex disjoint set of paths from $\{1,3\}$ to $\{4,6\}$ so [456] is in the prime.

- We hope to prove this conjecture by using the path methods that Casteels developed in the quantum matrices setting

The i-order: $\quad i \leq_{i} i+1 \leq_{i} \ldots \leq_{i} n \leq_{i} 1 \leq_{i} \ldots \leq_{i} i-1$

The four orderings on $\mathcal{O}_{q}(G(2,4))$

- The quantum grassmannian is a quantum algebra with a straightening law with respect to each of the n orderings

Fix an invariant prime P in $\mathcal{O}_{q}(G(k, n))$

- For each i-order there is a unique quantum minor $\left[I_{i}\right]$ such that $\left[I_{i}\right] \notin P$ but $[J] \in P$ for each $J \not ¥_{i} I_{i}$

Let $\Pi_{i}(P)$ denote $\left\{[J] \mid J \not ¥_{i} I_{i}\right\}$. Then

$$
\Pi(P):=\bigcup_{i=1}^{n} \Pi_{i}(P) \quad \subseteq P
$$

Conjecture: $\Pi(P)$ is the set of quantum minors belonging to P, and P is generated as an ideal by $\Pi(P)$

- We hope to prove this conjecture by using the path methods that Casteels developed in the quantum matrices setting

Continuing with the notation on the previous slide:

- The quantum minors $I_{1}, I_{2}, \ldots, I_{n}$ form a Grassmann necklace, $\operatorname{Neck}(P)$
- Given a Cauchon diagram for an invariant prime P, we can construct $\operatorname{Neck}(P)$
- If $P^{\prime} \subseteq P$ then $\operatorname{Neck}\left(P^{\prime}\right) \leq \operatorname{Neck}(P)$

Conjecture The converse is true

- In $\mathcal{O}_{q}(G(2,4))$ consider the Grassmann necklace

$$
\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(12,12,14,14)
$$

- Grassmann necklace: $\left(I_{1}, I_{2}, I_{3}, I_{4}\right)=(12,12,14,14)$

- The \mathcal{H}-prime P with this necklace is $P=\langle[13],[23],[24],[34]\rangle$
- Note that $\mathcal{O}_{q}(G(2,4)) / P \cong \mathbb{C}[[12],[14]]$ is a quantum plane, so P is prime.

