On-shell diagrams in $\mathcal{N}=4$ SYM beyond the planar limit

Total Positivity: a bridge between Representation Theory and Physics

- University of Kent -
based on:
hep-th/1502.02034 - Franco, Galloni, BP, Wen

Brenda Penante
Queen Mary University of London Humboldt University of Berlin

Overview

- Scattering amplitudes in planar N=4 SYM admit a description in terms of the positive Grassmannian. Arkani-Hamed, Cachazo, Cheung, Kaplan / Mason, Skinner

Loop leading singularities are residues of a Grassmannian integral.

- All-loop integrand determined via the BCFW recursion relation.
Britto, Cachazo, Feng, Witten / Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka
... but how to go beyond planar $\mathrm{N}=4$ SYM?

No ordering = No positivity

$S U(N)$ gauge group
Planar limit: $N \rightarrow \infty$, with $\lambda=g_{\mathrm{YM}}^{2} N$ fixed

$$
\mathcal{A}_{n}=\sum_{\sigma \in S_{n} / \mathbb{Z}_{n}} \operatorname{Tr}(t^{\left.a_{\sigma(1)} t^{a_{\sigma(2)}} \ldots t^{a_{\sigma(n)}}\right) \underbrace{A_{n}(\sigma(1), \sigma(2), \ldots, \sigma(n))}_{\begin{array}{l}
\text { Partial amplitude } \\
\text { (colour ordered) }
\end{array}})}
$$

(Finite N corrections \propto multiple traces)

Planar loop integrand

- Tree-level amplitudes enjoy Yangian symmetry

Drummond, Henn, Plefka
[[Yangian = Superconformal + Dual Superconformal]]
Drummond, Henn, Korchemsky, Sokatchev

Loop level:

- Yangian symmetry broken due to IR divergences
- Loop integrand \square
$\int d^{4} \ell_{1} \ldots d^{4} \ell_{L} \times$ Rational function of external and loop momenta
ℓ_{i} dummy variables, but must be defined consistently among various terms

Planar loop integrand

Ambiguities:

- Planar loop integrand well defined: dual variables x_{i}

State of the art in the planar limit

All-loop integrand determined by the all-loop recursion relation Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka

- Dual variables x_{i} allow different terms in recursion relation to be combined in a non-ambiguous way

State of the art in the planar limit

All-loop integrand determined by the all-loop recursion relation Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka

- Dual variables x_{i} aHtow different terms in recursion relation to be combined in a non-ambiguous way

Unavailable for non-planar integrands

Non-planar integrand not well-defined

Can still study non planar Leading Singularities Eden, Landshoff, Olive, Polkinghorne / Britto, Cachazo, Feng

Leading Singularities

"Cut" propagators: $\quad \frac{1}{P^{2}} \longrightarrow \delta\left(P^{2}\right)$
Compute residue of the integrand
Leading singularities: Maximal number of propagators cut (4xL)
Ex: 1-loop

$$
=\int d^{4} \ell \frac{1}{\ell^{2}\left(\ell-K_{1}\right)^{2}\left(\ell-K_{1}-K_{2}\right)^{2}\left(\ell+K_{4}\right)^{2}}
$$

cut 4 propagators

Planar

In the planar limit \exists basis of dual conformal integrands with "unit leading singularity"

LS are sufficient to determine the all-loop integrand!

All planar LS are residues of a (positive) Grassmannian integral

Positive Grassmannian parametrised by
planar on-shell diagrams

Planar

In the planar limit \exists basis of dual conformal integrands with
"unit leading singularity"
[[Arkani-Hamed, Bourjaily, Cachazo, Trnka - 2010]]

LS are sufficient to determine the all-loop integrand!

All planar LS are residues of a (positive) Grassmannian integral

Positive Grassmannian parametrised by planar on-shell diagrams

Non-planar integrand not well defined

Consider non-planar LS

Residues of a
Grassmannian integral

Parametrised by non-planar on-shell diagrams

Motivation

- Grassmannian formulation is linked to on-shell diagrams
Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka
Region of the Grasmmannian + dlog on-shell form

Non-planar on-shell diagrams are the natural objects to study

Outline

1. Grassmannian formulation for amplitudes

Review of planar
Non-planar corrections
2. On-shell diagrams

Review of planar
Generalised face variables
General boundary measurement
A new type of singularity
Equivalence, reductions, and polytopes
3. Conclusions + more possible applications

Notation

$$
\begin{aligned}
& \longrightarrow \text { SU(N) colour generators } \\
& \mathcal{A}_{n}=\mathcal{A}_{n}\left(p_{\mu}^{i}, \epsilon_{\mu}^{i}, t_{i}^{a}\right) \quad i=1, \ldots, n \\
& \text { Kinematics } \longleftarrow \quad \longrightarrow \text { Polarisation vectors }
\end{aligned}
$$

Spinor variables
(kinematics and polarisation)

$$
\begin{aligned}
& p_{\mu} \rightarrow p_{\alpha \dot{\alpha}}=\sigma_{\alpha \dot{\alpha}}^{\mu} p_{\mu} \xrightarrow{\text { massless }} \lambda_{\alpha} \widetilde{\lambda}_{\dot{\alpha}} \\
& \text { Spinor products }<\begin{array}{l}
\langle a b\rangle=\epsilon^{\alpha \beta} \lambda_{\alpha}^{a} \lambda_{\beta}^{d} \\
{[a b]=\epsilon^{\dot{\alpha}} \widetilde{\lambda}_{\dot{\alpha}}^{a} \widetilde{\lambda}_{\dot{\beta}}^{b}}
\end{array}
\end{aligned}
$$

Partial amplitude: $A_{n}\left(\eta^{i}, \lambda^{i}, \widetilde{\lambda}^{i}\right)$ (colour ordered) $\quad \longrightarrow$ Auxiliary fermionic variables (helicity)
$A=1,2,3,4 \in S U(4)_{\mathrm{R}}$
$\Phi(p, \eta):=g^{+}(p)+\eta_{A} \lambda^{A}(p)+\frac{\eta_{A} \eta_{B}}{2!} \phi^{A B}(p)+\epsilon^{A B C D} \frac{\eta_{A} \eta_{B} \eta_{C}}{3!} \bar{\lambda}_{D}(p)+\eta_{1} \eta_{2} \eta_{3} \eta_{4} g^{-}(p)$

Grassmannian Formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]
[[Mason, Skinner - 2009]]

The geometry of momentum conservation

** External data: $\lambda^{a}, \widetilde{\lambda}^{a}, \eta^{a}$ for each particle $a=1,2, \ldots, n$

* Organise them in the $\Lambda, \widetilde{\Lambda}$ 2-planes in \mathbb{C}^{n} :
$\Lambda \equiv\binom{\vec{\lambda}_{1}}{\vec{\lambda}_{2}}=\left(\begin{array}{llll}\lambda_{1}^{1} & \lambda_{1}^{2} & \ldots & \lambda_{1}^{n} \\ \lambda_{2}^{1} & \lambda_{2}^{2} & \ldots & \lambda_{2}^{n}\end{array}\right) \quad \widetilde{\Lambda} \equiv\binom{\overrightarrow{\tilde{\lambda}}_{1}}{\widetilde{\lambda}_{2}}=\left(\begin{array}{llll}\widetilde{\lambda}_{1}^{1} & \widetilde{\lambda}_{1}^{2} & \ldots & \widetilde{\lambda}_{1}^{n} \\ \widetilde{\lambda}_{2}^{1} & \widetilde{\lambda}_{2}^{2} & \ldots & \widetilde{\lambda}_{2}^{n}\end{array}\right)$
and a fermionic 4-plane η :

$$
\eta \equiv\left(\begin{array}{c}
\vec{\eta}_{1} \\
\vec{\eta}_{2} \\
\vec{\eta}_{3} \\
\vec{\eta}_{4}
\end{array}\right)=\left(\begin{array}{cccc}
\eta_{1}^{1} & \eta_{1}^{2} & \ldots & \eta_{1}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
\eta_{4}^{1} & \eta_{4}^{2} & \ldots & \eta_{4}^{n}
\end{array}\right)
$$

The geometry of momentum conservation

* (Super) momentum conservation:

$$
\begin{aligned}
& \sum_{a=1}^{n} \lambda^{a} \widetilde{\lambda}^{a}=0 \Rightarrow \Lambda \perp \widetilde{\Lambda} \\
& \sum_{a=1}^{n} \lambda^{a} \eta^{a}=0 \Rightarrow \Lambda \perp \eta
\end{aligned}
$$

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]

DEF: Grassmannian $G r_{k, n}$ is the space of k-planes in \mathbb{C}^{n}

* Element of $G r_{k, n}$: choose $k n$-vectors:

$$
C_{\alpha a}=\left(\begin{array}{cccc}
C_{11} & C_{12} & \ldots & C_{1 n} \\
C_{21} & C_{22} & \ldots & C_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{k 1} & C_{k 2} & \ldots & C_{k n}
\end{array}\right)
$$

* $G L(k)$ gauge redundancy $\longrightarrow \operatorname{dim}\left(G r_{k, n}\right)=n k-k^{2}$

For us: Scattering of gluons g^{+}, g^{-} n : total number of gluons k : number of gluons g^{-}

$$
\begin{aligned}
& \text { Recall: } \\
& \mathrm{k}=0,1, \mathrm{n}-1, \mathrm{n} \longrightarrow \mathrm{Amp}=0 \\
& \begin{array}{lll}
k=2 \\
k=n-2
\end{array} \rightarrow \frac{M H V}{M H V}
\end{aligned}
$$

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]

$$
C_{\alpha a}=\left(\begin{array}{cccc}
C_{11} & C_{12} & \ldots & C_{1 n} \\
C_{21} & C_{22} & \ldots & C_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{k 1} & C_{k 2} & \ldots & C_{k n}
\end{array}\right)
$$

* Coordinates in $G r_{k, n} \longrightarrow$ Maximal minors (Plücker coords.)

$$
\Delta_{i_{1}, i_{2}, \ldots, i_{k}}=\left(i_{1} i_{2} \cdots i_{k}\right)=\operatorname{det}\left(\begin{array}{cccc}
C_{1 i_{1}} & C_{1 i_{2}} & \cdots & C_{1 i_{k}} \\
C_{2 i_{1}} & C_{2 i_{2}} & \cdots & C_{2 i_{k}} \\
\vdots & & & \vdots \\
C_{k i_{1}} & C_{k i_{2}} & \cdots & C_{k i_{k}}
\end{array}\right)
$$

Plücker relations:
Ex: $G r_{2,4} \rightarrow \Delta_{1,2} \Delta_{3,4}+\Delta_{1,3} \Delta_{4,2}+\Delta_{1,4} \Delta_{2,3}=0$
Positive Grassmannian $G r_{k, n}^{+} \rightarrow \Delta_{i_{1}, i_{2}, \ldots, i_{k}}>0\left\{\begin{array}{l}\forall C_{\alpha a}>0 \\ i_{1}<i_{2}<\cdots<i_{k}\end{array}\right.$

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]
Planar LS are residues of the following integral over $G r_{k, n}^{+}$

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{Vol}(G L(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \widetilde{\Lambda}) \delta\left(C^{\perp} \cdot \Lambda\right) \delta(C \cdot \eta)}{(1 \ldots k)(2 \ldots k+1) \ldots(n \ldots k-1)}
$$

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]
Planar LS are residues of the following integral over $G r_{k, n}^{+}$

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{Vol}(G L(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \widetilde{\Lambda}) \delta\left(C^{\perp} \cdot \Lambda\right) \delta(C \cdot \eta)}{(1 \ldots k)(2 \ldots k+1) \ldots(n \ldots k-1)}
$$

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]
Planar LS are residues of the following integral over $G r_{k, n}^{+}$

$\mathcal{L}_{n, k}=\frac{1}{\operatorname{Vol}(G L(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \widetilde{\Lambda}) \delta\left(C^{\perp} \cdot \Lambda\right) \delta(C \cdot \eta)}{(1 \ldots k)(2 \ldots k+1) \ldots(n \ldots k-1)}$
Gauge fix k^{2} entries of C

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]
Planar LS are residues of the following integral over $G r_{k, n}^{+}$

$k \times k$ consecutive minors of C

$$
\text { Ex: }(12 \ldots k)=\operatorname{det}\left(\begin{array}{cccc}
C_{11} & C_{12} & \cdots & C_{1 k} \\
C_{21} & C_{22} & \cdots & C_{2 k} \\
\vdots & & & \vdots \\
C_{k 1} & C_{k 2} & \cdots & C_{k k}
\end{array}\right)
$$

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]
Planar LS are residues of the following integral over $G r_{k, n}^{+}$

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{Vol}(G L(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \widetilde{\Lambda}) \delta\left(C^{\perp} \cdot \Lambda\right) \delta(C \cdot \eta)}{(1 \ldots k)(2 \ldots k+1) \ldots(n \ldots k-1)}
$$

* Non-zero only if the plane C is orthogonal to $\widetilde{\Lambda}, \eta$ and contains Λ

Note:

For $k=0,1$ impossible to have $C \supset \Lambda$
For $k=n-1, n$ impossible to have $C \perp \widetilde{\Lambda}$ \Rightarrow Amplitudes automatically zero!

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{Vol}(G L(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \widetilde{\Lambda}) \delta\left(C^{\perp} \cdot \Lambda\right) \delta(C \cdot \eta)}{(1 \ldots k)(2 \ldots k+1) \ldots(n \ldots k-1)}
$$

Poles when consecutive
Non-planar minors vanish
[[Galloni, Franco, BP, Wen - 2015]]

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{Vol}(G L(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \widetilde{\Lambda}) \delta\left(C^{\perp} \cdot \Lambda\right) \delta(C \cdot \eta)}{(1 \ldots k)(2 \ldots k+1) \ldots(n \ldots k-1)} \times \mathcal{F}
$$

$G L(k)$ invariance: cross ratio of minors

$$
E x: k=3 \quad \mathcal{F}=\frac{(123)(245)}{(124)(235)}
$$

No notion of ordering or positivity in non-planar case \rightarrow

On-shell diagrams

[[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka - 2012]]

On-shell formulation

[[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka - 2012]]

Bi-coloured graphs made of the building blocks:

Edges:

on-shell momentum $p_{a}=\lambda^{a} \widetilde{\lambda}^{a}$

MHV amplitude
$\leftrightarrow G r_{2,3}$
$\widetilde{\lambda}^{a} \propto \widetilde{\lambda}^{b} \propto \tilde{\lambda}^{c}$
$\overline{\mathrm{MHV}}$ amplitude
$\leftrightarrow G r_{1,3}$
$\lambda^{a} \propto \lambda^{b} \propto \lambda^{c}$

Constructing on-shell diagrams

* To connect two nodes, integrate over on-shell phase space of edge in common:

$$
d \Omega_{I}=\frac{d^{2} \lambda^{I} d^{2} \widetilde{\lambda}^{I} d^{4} \eta^{I}}{\underbrace{\operatorname{Vol}(G L(1))_{I}}_{\text {Little group }}}
$$

* Can construct more complicated diagrams
* Each node has two degrees of freedom

Constructing on-shell diagrams

Examples:

Constructing on-shell diagrams

Examples:

Planar:

Can be embedded on a disk

Constructing on-shell diagrams

Examples:

Planar:

Can be embedded on a disk

Non planar:
Can be embedded on a surface with multiple boundaries/ higher genus

Equivalence Moves

* On-shell diagrams are equivalent if they are related by the following moves:
Merger:

$$
\lambda^{a} \propto \lambda^{b} \propto \lambda^{c} \propto \lambda^{d}
$$

$$
\widetilde{\lambda}^{a} \propto \widetilde{\lambda}^{b} \propto \tilde{\lambda}^{c} \propto \widetilde{\lambda}^{d}
$$

Square move:

** Note that every on-shell diagram can be made bipartite

Fusing Grassmannians

* An on-shell diagram with n_{B} black nodes, n_{W} white nodes and n_{I} internal edges is associated to $G r_{k, n}$, where:

$$
k=2 n_{B}+n_{W}-n_{I}
$$

Ex:

$$
\begin{aligned}
n_{B} & =2 & & k=2 \times 2+2-4=2 \\
n_{W} & =2 & & n=4 \\
n_{I} & =4 & & G r_{2,4}
\end{aligned}
$$

Boundary measurement

On-shell diagram

Bipartite technology

Bipartite technology

Perfect matching
Choice of edges such that every internal node is the endpoint of only one edge

Perfect matchings:

Oriented perfect matchings:

Oriented perfect matchings:

Flows:

Boundary measurement

Flows:

Map between on-shell diagram and element of the Grassmannian

$$
C=C_{i j}=\sum_{\Gamma\{i \rightsquigarrow j\}}(-1)^{s_{\Gamma}} \mathfrak{p}_{2}\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 0 & \bullet & \bullet \\
0 & 1 & \bullet & \bullet
\end{array}\right) \quad \begin{array}{|c}
\{i \rightsquigarrow j\} \\
\\
\end{array}
$$

Boundary measurement

$(-1)^{s_{\Gamma}} \rightarrow$ Plücker coordinates are positive in planar case and are a sum of flows with corresponding source set.

Ex: $\Delta_{1,2}=\mathfrak{p}_{2}, \Delta_{2,4}=\mathfrak{p}_{6}+\mathfrak{p}_{7}$

Important

On-shell diagrams parametrise regions of the Grassmannian

Equivalent diagrams parametrise the same region:

Graph is reducible if possible to delete edges while preserving region.

Planar: set of non-zero minors preserved
This changes for non-planar graphs!
Otherwise graph is reduced.

Parametrising on-shell diagrams

Planar:

* On-shell dlog form: variables unfixed by delta-functions mapped to loop integration variables.
* \# degrees of freedom of a planar on-shell diagram is $d=F-1$
* Bases for expressing flows: Edges and Faces

Generalised face variables

[[Galloni, Franco, BP, Wen - 2015]]

$$
d=\underbrace{(F-1)}_{f_{i}}+\underbrace{(B-1)}_{b_{a}}+\underbrace{2 g}_{\left.\alpha_{m}, \beta_{m}\right\}}=F-\xi \quad \begin{array}{ll}
F=\text { \# faces } \\
B=\text { \# boundaries } \\
g=\text { genus }
\end{array}
$$

$f_{i}, i=1, \ldots, F \quad \prod_{i=1}^{F} f_{i}=1 \quad$ Faces
$b_{a}, a=1, \ldots, B-1$
$\left\{\alpha_{m}, \beta_{m}\right\}, m=1, \ldots g$

Paths connecting different boundaries

Fundamental cycles

Ex: Genus 1

Generalised face variables

[[Galloni, Franco, BP, Wen - 2015]]

$$
d=\underbrace{(F-1)}_{f_{i}}+\underbrace{(B-1)}_{b_{a}}+\underbrace{2 g}_{\left.\alpha_{m}, \beta_{m}\right\}}=F-\xi \quad \begin{array}{ll}
F=\text { \# faces } \\
B=\text { \# boundaries } \\
g=\text { genus }
\end{array}
$$

$f_{i}, i=1, \ldots, F \quad \prod_{i=1}^{F} f_{i}=1 \quad$ Faces
$b_{a}, a=1, \ldots, B-1$
$\left\{\alpha_{m}, \beta_{m}\right\}, m=1, \ldots g$

Paths connecting different boundaries

Fundamental cycles
dog on-shell form:

$$
\frac{d X_{1}}{X_{1}} \frac{d X_{2}}{X_{2}} \cdots \frac{d X_{d}}{X_{d}} \quad \prod_{i=1}^{F-1} \frac{d f_{i}}{f_{i}} \prod_{a=1}^{B-1} \frac{d b_{a}}{b_{a}} \prod_{m=1}^{g} \frac{d \alpha_{m}}{\alpha_{m}} \frac{d \beta_{m}}{\beta_{m}}
$$

Some properties of planar graphs

[[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka - 2012]]

* If it is impossible to remove an edge of a graph without sending some Plücker coord to zero, the graph is reduced.
\Rightarrow (Positroid stratification of $G r_{k, n}^{+}$)
* Boundaries of the regions in the positive Grassmannian are always $\Delta_{i}=0$

Recall:

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{Vol}(G L(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \widetilde{\Lambda}) \delta\left(C^{\perp} \cdot \Lambda\right) \delta(C \cdot \eta)}{(1 \ldots k)(2 \ldots k+1) \ldots(n \ldots k-1)}
$$

Non-planar novelties

[[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014, Galloni, Franco, BP, Wen - 2015]]

A non-planar novelty:

* It is possible to remove an edge of a reduced graph without sending any Plücker coord to zero!

$\mathcal{F}=\frac{\begin{array}{c}\text { Recall: Deformation from planar } \\ \text { Grassmannian integrand }\end{array}}{(136)(236)[(124)(346)(365)-(456)(234)(136)]}$

Method for determining \mathcal{F} : generalisation of
OBS: [[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014]] from $k=2$ leading singularities to higher k

Reducibility \& Equivalence: Non-planar

[[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014, Galloni, Franco, BP, Wen - 2015]]

A non-planar novelty:

* It is possible to remove an edge of a reduced graph without sending any Plücker coord to zero!

\longrightarrow Recall: Deformation from planar
$\mathcal{F}=\frac{(346)^{2}(356)(123)(612)}{(136)(236)[(124)(346)(365)-(456)(234)(136)]}$
Removal of an edge does not set any $\Delta_{i, j, k}$ to zero, but gives rise to the relation

$$
\Delta_{1,2,4} \Delta_{3,4,6} \Delta_{3,6,5}=\Delta_{4,5,6} \Delta_{2,3,4} \Delta_{1,3,6}
$$

Reducibility \& Equivalence: Non-planar

[[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014, Galloni, Franco, BP, Wen - 2015]]
A non-planar novelty:

* It is possible to remove an edge of a reduced graph without sending any Plücker coord to zero!

\longrightarrow Recall: Deformation from planar
$\mathcal{F}=\frac{(346)^{2}(356)(123)(612)}{(136)(236)[(124)(346)(365)-(456)(234)(136)]}$
$(1,(34) \cap(56),(24) \cap(36))=0$

Polytopes

Notions of equivalence/reduction can be rephrased in terms of polytopes:
[[Postnikov, Speyer, Williams - 2008, Franco, Galloni, Mariotti - 2013]]]

Non-vanishing minors and relations can be seen from the polytopes

Characterisation of on-shell diagrams

Cell of the Grassmannian characterised by a zig zag path

Non-planar without extra constraints on Plücker coordinates
*. Equivalent graphs have the same matroid polytope

* Reduction of a diagram removes 1 dof while preserving the matroid polytope
* A graph is reduced if it is impossible to remove edges while preserving the matroid polytope.

Constraints and polytopes: example

 [[Galloni, Franco, BP, Wen - 2015]]

Before removal: 40 perfect matchings

$$
\begin{array}{cc|cc}
\Delta_{1,2,4} & p_{7}, p_{1} & \Delta_{4,5,6} & p_{4} \\
\Delta_{3,4,6} & p_{2} & \Delta_{2,3,4} & p_{5} \\
\Delta_{3,5,6} & p_{3} & \Delta_{1,3,6} & p_{6}
\end{array}
$$

After removal: 33 perfect matchings

Before and after removal: $p_{1} p_{2} p_{3}=p_{4} p_{5} p_{6}$

After removal
p_{7} disappears

$$
\Delta_{1,2,4} \Delta_{3,4,6} \Delta_{3,6,5}=\Delta_{4,5,6} \Delta_{2,3,4} \Delta_{1,3,6}
$$

Concluding remarks \& Outlook

1) Physical interpretation:

Planar: All tree level amplitudes and loop integrands
via BCFW recursion relation.

Britto, Cachazo, Feng, Witten /
Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka
dlog form of the loop integrand:

Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka

Concluding remarks \& Outlook

1) Physical interpretation:

Planar: All tree level amplitudes and loop integrands via BCFW recursion relation.

Britto, Cachazo, Feng, Witten /
Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka
dlog form of the loop integrand:

$$
\mathcal{A}^{L=1}=\mathcal{A}^{L=0} \times \mathcal{A}^{L=0} \times \int d^{4} \ell \frac{\left(p_{1}+p_{2}\right)^{2}\left(p_{1}+p_{3}\right)^{2}}{\ell^{2}\left(\ell+p_{1}\right)^{2}\left(\ell+p_{1}+p_{2}\right)^{2}\left(\ell-p_{4}\right)^{2}}
$$

Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka
Non planar: Leading singularities of the loop integrand
? Non-planar loop integrand
? Non-planar Grassmannian formulation
[[Arkani-Hamed, Bourjaily, Cachazo, Trnka - 2014]]

Conjecture: Non-planar amps have only log singularities and no poles at infinity.

Concluding remarks \& Outlook

2) Non-planar diagrams parametrise regions of $G r_{k, n}$ with hidden relations between Plücker coordinates.
ζ ? Method for finding representative graph given a constraint

Concluding remarks \& Outlook

2) Non-planar diagrams parametrise regions of $G r_{k, n}$ with hidden relations between Plücker coordinates.
ζ ? Method for finding representative graph given a constraint
3) MHV non-planar leading singularities are sums of planar ones.
[[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014]]
Same not true for Non-MHV, however similar method can be used to find the deformation of the integrand \mathcal{F}.

Concluding remarks \& Outlook

2) Non-planar diagrams parametrise regions of $G r_{k, n}$ with hidden relations between Plücker coordinates.
ζ ? Method for finding representative graph given a constraint
3) MHV non-planar leading singularities are sums of planar ones.
[[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014]]
Same not true for Non-MHV, however similar method can be used to find the deformation of the integrand \mathcal{F}.
4) Positive Grassmannian $\mathrm{Gr}_{k, n}^{+} \rightarrow$ Amplituhedron
? Non-planar generalisation
[[Evidence: Bern, Herrmann, Litsey, Stankowicz, Trnka - 2015]]
