On-shell diagrams in $\mathcal{N} = 4$ SYM beyond the planar limit

Total Positivity: a bridge between Representation Theory and Physics

- University of Kent -

based on: hep-th/1502.02034 - Franco, Galloni, BP, Wen

Brenda Penante Queen Mary University of London Humboldt University of Berlin

12/01/16

- Scattering amplitudes in planar N=4 SYM admit a description in terms of the positive Grassmannian. Arkani-Hamed, Cachazo, Cheung, Kaplan / Mason, Skinner
- Loop leading singularities are residues of a Grassmannian integral.
- All-loop integrand determined via the BCFW recursion relation.
 Britto, Cachazo, Feng, Witten / Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka
 - ... but how to go beyond planar N=4 SYM?

No ordering = No positivity

SU(N) gauge group

Planar limit: $N \to \infty$, with $\lambda = g_{\rm YM}^2 N$ fixed

(Finite N corrections \propto multiple traces)

Planar loop integrand

 Tree-level amplitudes enjoy Yangian symmetry Drummond, Henn, Plefka

> [[Yangian = Superconformal + Dual Superconformal]] Drummond, Henn, Korchemsky, Sokatchev

Loop level:

Yangian symmetry broken due to IR divergences

Loop integrand

 $\int d^4 \ell_1 \dots d^4 \ell_L \times \left(\begin{array}{c} \text{Rational function of} \\ \text{external and loop momenta} \end{array} \right)$

 ℓ_i dummy variables, but must be defined consistently among various terms

Planar loop integrand

Ambiguities:

Planar loop integrand well defined: dual variables x_i

State of the art in the planar limit

All-loop **integrand** determined by the all-loop recursion relation Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka

Dual variables x_i allow different terms in recursion relation to be combined in a non-ambiguous way

State of the art in the planar limit

All-loop **integrand** determined by the all-loop recursion relation Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka

Dual variables x_i allow different terms in recursion relation to be combined in a non-ambiguous way

Unavailable for non-planar integrands

Non-planar integrand not well-defined

Can still study non planar Leading Singularities Eden, Landshoff, Olive, Polkinghorne / Britto, Cachazo, Feng

Leading Singularities

[[Eden, Landshoff, Olive, Polkinghorne / Britto, Cachazo, Feng]]

"Cut" propagators:
$$\frac{1}{P^2} \longrightarrow \delta(P^2)$$

Compute residue of the integrand

Leading singularities: Maximal number of propagators cut (4xL)

Ex: 1-loop

Motivation

 Grassmannian formulation is linked to on-shell diagrams
 Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka

Region of the Grasmmannian + dlog on-shell form

[[Arkani-Hamed, Bourjaily, Cachazo, Trnka]] -

Conjecture: Non-planar amps have only log singularities and no poles at infinity.

Non-planar on-shell diagrams are the natural objects to study

1. Grassmannian formulation for amplitudes

Review of planar Non-planar corrections

2. On-shell diagrams

Review of planar Generalised face variables General boundary measurement A new type of singularity Equivalence, reductions, and polytopes

3. Conclusions + more possible applications

Notation

$$\mathcal{A}_{n} = \mathcal{A}_{n}(p_{\mu}^{i}, \epsilon_{\mu}^{i}, t_{i}^{a}) \qquad i = 1, \dots, n$$
Kinematics \leftarrow Polarisation vectors
$$\mathcal{A}_{n} = \mathcal{A}_{n}(p_{\mu}^{i}, \epsilon_{\mu}^{i}, t_{i}^{a}) \qquad i = 1, \dots, n$$
Kinematics \leftarrow Polarisation vectors
$$\mathcal{A}_{n} = \mathcal{A}_{n}(p_{\mu}^{i}, \epsilon_{\mu}^{i}, t_{i}^{a}) \qquad i = 1, \dots, n$$
Kinematics \leftarrow Polarisation vectors
$$\mathcal{A}_{n} = \mathcal{A}_{n}(p_{\mu}^{i}, \epsilon_{\mu}^{i}, t_{i}^{a}) \qquad p_{naises} = \mathcal{A}_{n}(p_{\mu}^{i}, \lambda_{i}^{a})$$
Spinor variables
$$\mathcal{A}_{n} = \mathcal{A}_{n}(p_{\mu}^{i}, \lambda_{i}^{i}, \lambda_{i}^{i})$$
(colour ordered)
$$\mathcal{A}_{n} = 1, 2, 3, 4 \in SU(4)_{\mathbb{R}}$$

$$\Phi(p, \eta) := g^{+}(p) + \eta_{A} \lambda^{A}(p) + \frac{\eta_{A} \eta_{B}}{2!} \phi^{AB}(p) + \epsilon^{ABCD} \frac{\eta_{A} \eta_{B} \eta_{C}}{3!} \overline{\lambda}_{D}(p) + \eta_{1} \eta_{2} \eta_{3} \eta_{4} g^{-}(p)$$

Grassmannian Formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]] [[Mason, Skinner - 2009]]

The geometry of momentum conservation

- * External data: $\lambda^a, \widetilde{\lambda}^a, \eta^a$ for each particle $a = 1, 2, \ldots, n$
- * Organise them in the $\,\Lambda,\,\widetilde{\Lambda}\,$ 2-planes in \mathbb{C}^n :

$$\Lambda \equiv \begin{pmatrix} \vec{\lambda}_1 \\ \vec{\lambda}_2 \end{pmatrix} = \begin{pmatrix} \lambda_1^1 & \lambda_1^2 & \dots & \lambda_1^n \\ \lambda_2^1 & \lambda_2^2 & \dots & \lambda_2^n \end{pmatrix} \qquad \widetilde{\Lambda} \equiv \begin{pmatrix} \vec{\lambda}_1 \\ \vec{\lambda}_2 \end{pmatrix} = \begin{pmatrix} \widetilde{\lambda}_1^1 & \widetilde{\lambda}_1^2 & \dots & \widetilde{\lambda}_1^n \\ \widetilde{\lambda}_2^1 & \widetilde{\lambda}_2^2 & \dots & \widetilde{\lambda}_2^n \end{pmatrix}$$

and a fermionic 4-plane η :

$$\eta \equiv \begin{pmatrix} \vec{\eta}_1 \\ \vec{\eta}_2 \\ \vec{\eta}_3 \\ \vec{\eta}_4 \end{pmatrix} = \begin{pmatrix} \eta_1^1 & \eta_1^2 & \dots & \eta_1^n \\ \vdots & \vdots & \ddots & \vdots \\ \eta_4^1 & \eta_4^2 & \dots & \eta_4^n \end{pmatrix}$$

The geometry of momentum conservation

* (Super) momentum conservation:

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]

DEF: Grassmannian $Gr_{k,n}$ is the space of k-planes in \mathbb{C}^n

* Element of $Gr_{k,n}$: choose k n-vectors:

$$C_{\alpha a} = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{k1} & C_{k2} & \dots & C_{kn} \end{pmatrix}$$

* GL(k) gauge redundancy $\longrightarrow \dim(Gr_{k,n}) = nk - k^2$

For us: Scattering of gluons $g^+, g^$ n : total number of gluons k : number of gluons g^-

Recall:

$$k=0, 1, n-1, n \rightarrow Amp = 0$$

 $k=2 \rightarrow MHV$
 $k=n-2 \rightarrow \overline{MHV}$

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]

$$C_{\alpha a} = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1n} \\ C_{21} & C_{22} & \dots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{k1} & C_{k2} & \dots & C_{kn} \end{pmatrix}$$

* Coordinates in $Gr_{k,n} \longrightarrow$ Maximal minors (Plücker coords.)

$$\Delta_{i_1,i_2,\ldots,i_k} = (i_1 i_2 \cdots i_k) = \det \begin{pmatrix} C_{1i_1} & C_{1i_2} & \cdots & C_{1i_k} \\ C_{2i_1} & C_{2i_2} & \cdots & C_{2i_k} \\ \vdots & & & \vdots \\ C_{ki_1} & C_{ki_2} & \cdots & C_{ki_k} \end{pmatrix}$$

Plücker relations:

Ex:
$$Gr_{2,4} \rightarrow \Delta_{1,2}\Delta_{3,4} + \Delta_{1,3}\Delta_{4,2} + \Delta_{1,4}\Delta_{2,3} = 0$$

Positive Grassmannian $Gr_{k,n}^+ \rightarrow \Delta_{i_1,i_2,...,i_k} > 0 \begin{cases} \forall C_{\alpha a} > 0 \\ i_1 < i_2 < \cdots < i_k \end{cases}$

Planar LS are residues of the following integral over $Gr_{k,n}^+$

$$\mathcal{L}_{n,k} = \frac{1}{\operatorname{Vol}(GL(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \widetilde{\Lambda}) \,\delta(C^{\perp} \cdot \Lambda) \,\delta(C \cdot \eta)}{(1 \dots k)(2 \dots k+1) \dots (n \dots k-1)}$$

Planar LS are residues of the following integral over $Gr^+_{k,n}$

Planar LS are residues of the following integral over $Gr_{k,n}^+$

$$\mathcal{L}_{n,k} = \frac{1}{\operatorname{Vol}(GL(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \tilde{\Lambda}) \, \delta(C^{\perp} \cdot \Lambda) \, \delta(C \cdot \eta)}{(1 \dots k)(2 \dots k + 1) \dots (n \dots k - 1)}$$

$$\bigcup$$
Gauge fix k^2 entries of C

Planar LS are residues of the following integral over $Gr_{k,n}^+$

Planar LS are residues of the following integral over $Gr^+_{k,n}$

$$\mathcal{L}_{n,k} = \frac{1}{\operatorname{Vol}(GL(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \widetilde{\Lambda}) \,\delta(C^{\perp} \cdot \Lambda) \,\delta(C \cdot \eta)}{(1 \dots k)(2 \dots k+1) \dots (n \dots k-1)}$$

st Non-zero only if the plane C is orthogonal to $\widetilde{\Lambda}$, η and contains Λ

(Momentum conservation)

Note:
For
$$k = 0, 1$$
 impossible to have $C \supset \Lambda$
For $k = n - 1, n$ impossible to have $C \perp \widetilde{\Lambda}$
 \implies Amplitudes automatically zero!

Grassmannian formulation

[[Arkani-Hamed, Cachazo, Cheung, Kaplan - 2009]]

[[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka - 2012]]

On-shell formulation [[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka - 2012]]

Bi-coloured graphs made of the building blocks:

 To connect two nodes, integrate over on-shell phase space of edge in common:

$$d\Omega_{I} = \frac{d^{2}\lambda^{I}d^{2}\widetilde{\lambda}^{I}d^{4}\eta^{I}}{\underbrace{\operatorname{Vol}(GL(1))_{I_{\star}}}_{\text{Little group}}}$$

- Can construct more complicated diagrams
- * Each node has two degrees of freedom

Examples:

Examples:

Examples:

Equivalence Moves

On-shell diagrams are *equivalent* if they are related by the following moves:

Merger:

$$\lambda^a \propto \lambda^b \propto \lambda^c \propto \lambda^d$$

$$\widetilde{\lambda}^a \propto \widetilde{\lambda}^b \propto \widetilde{\lambda}^c \propto \widetilde{\lambda}^d$$

Square move:

* Note that every on-shell diagram can be made bipartite

Fusing Grassmannians

* An on-shell diagram with n_B black nodes, n_W white nodes and n_I internal edges is associated to $Gr_{k,n}$, where:

$$k = 2n_B + n_W - n_I$$

Bipartite technology

Perfect matching

Choice of edges such that every internal node is the endpoint of only one edge Perfect orientation

Bipartite technology

Perfect matching

Choice of edges such that every internal node is the endpoint of only one edge

Perfect orientation

Perfect matchings:

Oriented perfect matchings:

Boundary measurement

Boundary measurement

 $(-1)^{s_{\Gamma}} \rightarrow$

Plücker coordinates are positive in planar case and are a sum of flows with corresponding source set.

Ex:
$$\Delta_{1,2} = \mathfrak{p}_2, \ \Delta_{2,4} = \mathfrak{p}_6 + \mathfrak{p}_7$$

Important

On-shell diagrams parametrise regions of the Grassmannian

Equivalent diagrams parametrise the same region:

Graph is *reducible* if possible to delete edges while preserving region.

Planar: set of non-zero minors preserved This changes for non-planar graphs!

Otherwise graph is reduced.

Parametrising on-shell diagrams

Planar:

- On-shell dlog form: variables unfixed by delta-functions mapped to loop integration variables.
- * # degrees of freedom of a planar on-shell diagram is d=F-1

faces

* Bases for expressing flows: Edges and Faces

Generalised face variables

[[Galloni, Franco, BP, Wen - 2015]]

$$d = \underbrace{(F-1)}_{f_i} + \underbrace{(B-1)}_{b_a} + \underbrace{2g}_{\{\alpha_m, \beta_m\}} = F - \xi \qquad \begin{array}{c} F = \# \text{ faces} \\ B = \# \text{ boundaries} \\ g = \text{ genus} \end{array}$$

$$f_i, i = 1, \dots, F \qquad \prod_{i=1}^F f_i = 1 \qquad \text{Faces} \\ b_a, a = 1, \dots, B - 1 \qquad Paths \text{ connecting different boundaries} \end{array}$$

$$\{\alpha_m, \beta_m\}, m = 1, \dots g$$

Fundamental cycles

Ex: Genus 1

Generalised face variables

[[Galloni, Franco, BP, Wen - 2015]]

$d = \underbrace{(F-1)}_{f_i} + \underbrace{(B-1)}_{b_a} + \underbrace{(B-1)}_{\{\alpha_r\}} + \underbrace{(B-1)}_{\{$	$2g = F - \xi$, β_m	F = # faces B = # boundaries g = genus
$f_i, i = 1, \dots, F$ $\prod_{i=1}^F f_i = 1$	Faces	
$b_a, a = 1, \dots, B - 1$	Paths connecting di	fferent boundaries
$\{\alpha_m, \beta_m\}, m = 1, \dots g$	Fundamental cycles	
dlog on-shell form:		
$\frac{dX_1}{X_1}\frac{dX_2}{X_2}\cdots\frac{dX_d}{X_d} \longleftrightarrow$	$\prod_{i=1}^{F-1} \frac{df_i}{f_i} \prod_{a=1}^{B-1} \frac{db_a}{b_a} \prod_{m=1}^{g} \frac{df_i}{dt_i} \prod_{m=1}^{g} $	$\prod_{m=1} \frac{d\alpha_m}{\alpha_m} \frac{d\beta_m}{\beta_m}$

Some properties of planar graphs

[[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka - 2012]]

If it is impossible to remove an edge of a graph without sending some Plücker coord to zero, the graph is *reduced*.

 \implies (Positroid stratification of $Gr_{k,n}^+$)

* Boundaries of the regions in the positive Grassmannian are always $\Delta_i = 0$

Recall:

$$\mathcal{L}_{n,k} = \frac{1}{\operatorname{Vol}(GL(k))} \int d^{k \times n} C_{\alpha a} \frac{\delta(C \cdot \widetilde{\Lambda}) \,\delta(C^{\perp} \cdot \Lambda) \,\delta(C \cdot \eta)}{(1 \dots k)(2 \dots k+1) \dots (n \dots k-1)}$$

Non-planar novelties

[[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014, Galloni, Franco, BP, Wen - 2015]]

A non-planar novelty:

It is possible to remove an edge of a reduced graph without sending any Plücker coord to zero!

Recall: Deformation from planar Grassmannian integrand $\mathcal{F} = \frac{(346)^2(356)(123)(612)}{(136)(236)[(124)(346)(365) - (456)(234)(136)]}$ Method for determining \mathcal{F} : generalisation of [[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014]] from k=2 leading singularities to higher k

Reducibility & Equivalence: Non-planar

[[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014, Galloni, Franco, BP, Wen - 2015]]

A non-planar novelty:

* It is possible to remove an edge of a **reduced** graph without sending any Plücker coord to zero!

Recall: Deformation from planar Grassmannian integrand

 $\mathcal{F} = \frac{(346)^2(356)(123)(612)}{(136)(236)[(124)(346)(365) - (456)(234)(136)]}$

Removal of an edge does not set any $\Delta_{i,j,k}$ to zero, but gives rise to the relation

$$\Delta_{1,2,4}\Delta_{3,4,6}\Delta_{3,6,5} = \Delta_{4,5,6}\Delta_{2,3,4}\Delta_{1,3,6}$$

Reducibility & Equivalence: Non-planar

[[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014, Galloni, Franco, BP, Wen - 2015]]

A non-planar novelty:

It is possible to remove an edge of a reduced graph without sending any Plücker coord to zero!

Notions of equivalence/reduction can be rephrased in terms of polytopes: [[Postnikov, Speyer, Williams - 2008, Franco, Galloni, Mariotti - 2013]]

Non-vanishing minors and relations can be seen from the polytopes

Characterisation of on-shell diagrams

- Equivalent graphs have the same matroid polytope
- * Reduction of a diagram removes 1 dof while preserving the matroid polytope
- A graph is reduced if it is impossible to remove edges while preserving the matroid polytope.

Constraints and polytopes: example

[[Galloni, Franco, BP, Wen - 2015]]

Before removal: 40 perfect matchings $\Delta_{1,2,4}$ $p_7, p_1 \mid \Delta_{4,5,6}$ p_4

$\Delta_{3,4,6}$	p_2	$\Delta_{2,3,4}$	p_5
$\Delta_{3,5,6}$	p_3	$\Delta_{1,3,6}$	p_6

After removal: 33 perfect matchings

Before and after removal: $p_1p_2p_3=p_4p_5p_6$

After removal p_7 disappears

 $\Delta_{1,2,4}\Delta_{3,4,6}\Delta_{3,6,5} = \Delta_{4,5,6}\Delta_{2,3,4}\Delta_{1,3,6}$

1) Physical interpretation:

Planar: All tree level amplitudes and loop integrandsvia BCFW recursion relation.Britto, Cachazo, Feng.

 n_{0}

dlog form of the loop integrand:

no

Britto, Cachazo, Feng, Witten / Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka

$$\mathcal{A}^{L=1} = \mathcal{A}^{L=0} \times \int_{p_1}^{p_2} \int_{\ell}^{p_3} = \mathcal{A}^{L=0} \times \int_{\ell}^{p_4} d^4 \ell \frac{(p_1 + p_2)^2 (p_1 + p_3)^2}{\ell^2 (\ell + p_1)^2 (\ell + p_1 + p_2)^2 (\ell - p_4)^2} \\ d\log\left(\frac{\ell^2}{(\ell - \ell^*)^2}\right) d\log\left(\frac{(\ell + p_1)^2}{(\ell - \ell^*)^2}\right) d\log\left(\frac{(\ell - p_4)^2}{(\ell - \ell^*)^2}\right) d\log\left(\frac{(\ell - p_4)^2$$

Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka

1) Physical interpretation:

Planar: All tree level amplitudes and loop integrands via BCFW recursion relation. Britto, Cachazo, Feng, Witten / Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka dlog form of the loop integrand: $\mathcal{A}^{L=1} = \mathcal{A}^{L=0} \times \int d^{4}\ell \ \frac{(p_{1}+p_{2})^{2}(p_{1}+p_{3})^{2}}{\ell^{2}(\ell+p_{1})^{2}(\ell+p_{1}+p_{2})^{2}(\ell-p_{4})^{2}}$ $d\log\left(\frac{\ell^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell+p_{1})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell-p_{4})^{2}}{(\ell-\ell^{*})^{2}}\right) d\log\left(\frac{(\ell-p_{4})^{2}}{(\ell-\ell^{*})^{2}}\right)$

Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, Trnka

Non planar: Leading singularities of the loop integrand

? Non-planar loop integrand

? Non-planar Grassmannian formulation

[[Arkani-Hamed, Bourjaily, Cachazo, Trnka - 2014]]

Conjecture: Non-planar amps have only log singularities and no poles at infinity.

2) Non-planar diagrams parametrise regions of $Gr_{k,n}$ with hidden relations between Plücker coordinates.

ightarrow? Method for finding representative graph given a constraint

- 2) Non-planar diagrams parametrise regions of $Gr_{k,n}$ with hidden relations between Plücker coordinates. \longrightarrow ? Method for finding representative graph given a constraint
- 3) MHV non-planar leading singularities are sums of planar ones. [[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014]]

Same not true for Non-MHV, however similar method can be used to find the deformation of the integrand ${\cal F}$.

- 2) Non-planar diagrams parametrise regions of $Gr_{k,n}$ with hidden relations between Plücker coordinates. \longrightarrow ? Method for finding representative graph given a constraint
- 3) MHV non-planar leading singularities are sums of planar ones. [[Arkani-Hamed, Bourjaily, Cachazo, Postnikov, Trnka - 2014]]

Same not true for Non-MHV, however similar method can be used to find the deformation of the integrand ${\cal F}$.

4) Positive Grassmannian $Gr_{k,n}^+ \rightarrow$ Amplituhedron [[Arkani-Hamed, Trnka - 2013]] [[Evidence: Bern, Herrmann, Litsey, Stankowicz, Trnka - 2015]]