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Review: Manifolds, Fibre bundles
Differential forms and integration

The Hodge * and products of p-forms

Complex Geometry
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Manifold

Def: M is an m-dimensional (differentiable) manifold if
@ M is a topological space.
@ M comes with family of charts {(U;, ¢;)} known as atlas.
e {U;} is family of open sets covering M: |J U; = M.

@ ¢; is homeomorphism from U; onto open subset U/ of R™.
e Given U;N U; # 0, then the map

P = ¢io ¢t 1 ¢i(U; N Uj) = ¢i(U; N Uj)

is C°. 1);; are called crossover maps.
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v = ¢io gt ¢i(U; N Uj) — ¢i(U; N Uj)
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Functions between manifolds

o Let M be an m dimensional manifold with charts ¢; : U; — R™ and

N be an n dimensional manifold with charts v; : U; — R".

@ Let f be a map between manifolds:
f:M— N, p— f(p).
@ This has a coordinate presentation
Fii =9j0fo¢ ™" :R™ 5 R x = (F(¢7 " (x))),

where x = ¢;(p) (p € U; and f(p) € U)).

@ Using the coordinate presentation all the calculus rules in R” work
for maps between manifolds. If the presentations Fj; are
differentiable in all charts then f is differentiable.
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Fibre bundle

Def: A fibre bundle (E, 7, M, F, G) consists of

@ A manifold E called total space, a manifold M called base space and
a manifold F called fibre (or typical fibre)

@ A surjection m: E — M called the projection. The inverse image of
a point p € M is called the fibre at p, namely 7=%(p) = F, = F.
@ A Lie group G called structure group which acts on F on the left.

@ A set of open coverings {U;} of M with diffeomorphism
¢i: Uy x F— 77 Y(U;), such that 7o ¢;(p, f) = p. The map is
called the local trivialization, since ¢; ! maps 7*(U;) to U; x F.
@ Transition functions t; : U; N U; — G, such that
¢j(pa f) = ¢i(pa tlj(p)f) Fix p then tij = ¢,_1 © QSJ
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Recall Tangent vectors

@ Tangent vectors act on functions via

f
X[f] = X“a— (sum over repeated indices)

OxH
@ The components of X* and X* are related via

o oy* oo . . .
XM =X"—— (Einstein’s summation convention again)

oxV
o We defined the pairing

0 ox”
dx¥, — ) = X _ o”.
OxH OxH ®
@ This leads us to one-forms w = w,dx*, also independent of choice
of coordinates. Now, we have

b~ v . Ox*
w = wydx! = a&,dy — wV:wua—yy.
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Tangent bundle and Cotangent bundle

A basis of T,M is given by 9/0x*, (1 < u < n), hence
dim M = dim T, M, and similarly for T;M with basis dx*.

@ The union of all tangent spaces forms the tangent bundle
™ =] T,Mm.
peM

@ Similarly, the union of all cotangent spaces forms the cotangent
bundle
T"M= ] T;m.
peM
@ TM and T*M are 2n dimensional manifolds with base space M and
fibre R".
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Pushforward and Pullback

@ Given a smooth map between manifolds
f:M—= N,p—f(p)
we can define a map between the tangent spaces TM and TN via
fo: ToM = Tep)N,V — £,V

which is called pushforward. Let g € C*°(N) then go f € C®(M).
Define the action of the vector .V on g via

f.V(g) = V(gof).

o Similarly, we can define a map between the cotangent spaces T*N
and T*M via

o T*f(p)N — T*p/\/l,w — fw
which is called pullback. The pullback can be defined via the pairing
<f*wa V>M = <wa f*V>N

Steffen Krusch More Applications of Differential Geometry to Mathematical Physics



A metric g is a (0,2) tensor which satisfies at each point p € M :

o gP(Uv V) = gP(V7 U) (symmetric)
Q g»(U,U) > 0, with equality only when U = 0 (non-degenerate)

where U,V € T,M.

The metric g provides an inner product for each tangent space T,M.

Notation:

g = gudx!dx”.

The metric provides an isomorphism between vector fields X € TM
and 1-forms n € T*M via

g(., X) =nx

In physics notation g,,,, and its inverse g#¥ lower and raise indices.
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Symplectic form

@ A symplectic form w is a 2-form which satisfies

@ wisclosed, i.e. dw=0.
@ w is non-degenarate: w(U, V) =0 for all V implies U = 0.
where U,V € T,M.
@ Notation: 1
w = Ewwdx” A dx”.

@ The symplectic form also provides an isomorphism between vector
fields X € TM and 1-forms n € T*M via

w('aX) = 71X
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Differential forms

o A basis for a p-form € QP(M) is
(dx*t A -  AdxPe) where 1< <+ < g < n.

o Wedge product:
A QR x Q- QkH

where
aAB=(-D"BAa.

e Exterior derivative: Given

1
w = ﬁwmmwdx“1 Ao A dxte
then
1 /0 y
dw = P @wmmuk dx” A dxHt A - N dxPE.
@ Recall d> = 0.
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Integration on Manifolds

@ Recall under change of basis one-forms transform as

. OxH
Wy = Wy dy¥

Two chart define the same orientation provided that

OxH
det [ 2 > 0.
oy”
@ A manifold is orientable if for any overlapping charts U; and U; there
exist local coordinates x* € U; and y* € U; such that

IxH
det (%) > 0.
@ The invariant volume element on M is given by

Q=+/|gldx' A...dx™ where g = det(gy.,).
o
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Integration on Manifolds Il

@ Now, we can integrate a function f : M — R over M. First consider
one chart:

/fQ:/ f(67 1))V g (= (x)|dx dx? .. . dx™.
Ui o(Ui)

@ A partition of unity is a family of differentiable functions ¢;(p),
1 <j < k such that

Q 0<¢i(p) <1
Q ci(p)=0ifpg U;
Q ci(p) + -+ e(p) =1 for any point p € M.

@ Integrate over the whole manifold M via
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Stokes Theorem

@ Let w be a p-form and R a p 4+ 1 dimensional region in M with

boundary R, then
/dw:/ w.
R OR

@ Special case: w = p dx + g dy in R?, then
dw = (0,9 — Oy p)dx A dy.

@ Hence,
Foderadn = [ @a-0,0)a.
R

which is Green's theorem in the plane.
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Examples: Stokes and Divergence Theorem

o In R3 we have w = fidx + frdy + f3dz, and
dw = (0y3—0,h)dy Ndz+(0, —Oxf3)dz Ndx+ (0« — 0, fi)dx Ady,

which gives rise to the usual Stokes theorem

%Cﬂdr://S(V/\f)mdS.

o If w= fidy ANdz+ fhdz A dx + fzdx A dy then
dw = (0xh + 0y f, + 0.f3) dx A dy A dz,

which gives rise to the divergence theorem:

///\/V-fdxdydz://sf-nds.
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@ Define the totally anti-symmetric tensor

+1 if (u1p2 ... um) is an even permutation of (12...m)
€prpg.pm = 4 —1 if (pap2 ... pum) is an odd permutation of (12...m)
0 otherwise.

@ The Hodge * is a linear map * : Q"(M) — Q™" (M) which acts on a basis
vector of Q" (M) via

*(dxH AL dxPT) = 7‘|g|e‘””'“'u teewm XA A dXTT
m! ’

@ The invariant volume element is
«1=/|gldx" A...dx".
@ Examples for R® :
*1 = dx Ady A dz,xdx = dy A dz,*dy = dz A dx,*xdz = dx A dy,

xdy A dz = dx,*dz AN dx = dy,*dx A dy = dz,*xdx Ady ANdz = 1.
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Inner product on r-forms

@ Assume (M, g) is Riemannian, dim M = m and w is an r-form, then
wkw = (—1)m Ny,
@ Let
1

1
w= ﬁw,‘lm#,dx"’“1 A= Adx"' and n = ﬁ%l»-»u,dxﬂl Ao A dx

then "
WA*n =" = FWM-»-M”MIW”’ /|g|dx1 Ao A de7

@ We can define an inner product on r-forms via
(w,m) :/ w A *7.
M

@ Note: (w,n) = (n,w) and this inner product is positive definite
((e, &) > 0 with equality only for o = 0).
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Ginzburg-Landau potential

@ Ginzburg-Landau vortices on R? are minimals of the potential energy
1 — A -
V(¢,A)=§ dA/\*dA+dA¢/\*dA¢+Z(1—¢¢) x1),
R2

where ¢ : R? — C is a complex scalar field, A € Q!(R?) is the gauge

potential one-form, da¢ = d¢ — iA®, and * is the Hodge
isomorphism.

@ In usual physics notation

_1 li' " ihD. é T2 2
V_2/(2FJFU+D¢D,¢—|—4(1 oP) )dx,

where D,(Z) = 8,(75 — ia,-gb and f12 = (9132 — 6231.
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Laplacian on p-forms

@ Given the exterior derivative d : Q"7'(M) — Q" (M) we can define the
adjoint exterior derivative d' : Q" (M) — Q"~'(M) via

dT _ (71)mr+m+1 % dx

@ Let (M, g) be compact, orientable and without boundary, and o € Q" (M),
B € QY (M) then
(dB,a) = (8, d").

@ The Laplacian A : Q"(M) — Q" (M) is define by
A=(d+d")?=dd"+dd.
@ Example: Laplacian on functions:

Af=-o=——~_ 9, ( \g|g””6uf) .
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Hodge decomposition theorem

@ An r-form w;, is called harmonic if Aw, = 0.

@ Hodge decomposition theorem:

Q" (M) = dQ " 1(M) @ dTQ"! @ Harm' (M)

that is
Wr = darfl + dTﬂH»l +
with Ay, = 0.
@ Note Harm"(M) is isomorphic to the de Rham cohomology group
H"(M).
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Physics equation in differential geometry notation

@ The four Maxwell equations can be written as

OE
V-E=p, V/\B—E J-
and
V-B=0, V/\E—&-a—B 0.
ot
where
E:—VAO—%—? and B=VAA.

@ In differential geometry notation we have F = dA. The Maxwell

equations are
dF =0 and d'F =j.
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Complex Manifolds

@ A complex manifold is a manifold such that the crossover maps v
are all holomorphic.

@ Recall: Let z=x+ iy and f = u+ iv then f(x, y) is holomorphic in
z provided the Cauchy-Riemann equations are satisfied:

ou Ov ou ov

ox 9y’ dy  ox

@ Examples of complex manifolds are C", S, T2, CP",
S2n+1 % S2m+1-
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Almost complex structure

@ An almost complex structure is a (1,1) tensor which acts on real
coordinates as

PR 0 __ O
Poxn — gyw’ dyr — Oxk’
with J,? = —idr,m.

@ On complex coordinates vector we have

9 _ .0 o _ .0

oz oz oz T iz

(multiplication by /).
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Hermitian metrics

@ A Hermitian metric is a Riemannian metric which satisfies
8o(p X, pY) = gp(X,Y),

i.e. g is compatible with Jp.
@ The vector J,X is orthogonal to X wrt g :

8o(IpX, X) = gp(J2X, JpX) = —gp(JpX, X) = 0.

@ For a Hermitian metric g,,, = 0 and gz =0, e.g.

Y (AR N (R S S S
Buw =8\ oz0 927 ) ~ 8\ oz oz ) T 8\ g o) T "B
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The Kahler form

Define the tensor field Q2 via

Q(X, Y) = g(pX, Y), X,Y € T,M.

Q is antisymmetric and invariant under J, :
QX,Y)=-QY, X), QX hY)=Q(X,Y).
e Q is a real form and can be written as

Q= —ig,pdz" NdZ".

QA AQ (dimg M-times) provides a volume form for M.
If d€2 =0 then g is a Kahler metric.
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@ For Kahler manifold, the metric g is related to the anti-symmetric
Kahler form Q which can be interpreted as a symplectic 2-form

@ Topological solitons of Bogomolny type usually have a “moduli
space” of static solutions which is a smooth manifold with a natural
K&hler metric (given by the kinetic energy)
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