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Manifold

Def: M is an m-dimensional (differentiable) manifold if

M is a topological space.

M comes with family of charts {(Ui , φi )} known as atlas.

{Ui} is family of open sets covering M:
⋃
i

Ui = M.

φi is homeomorphism from Ui onto open subset U ′i of Rm.

Given Ui ∩ Uj 6= ∅, then the map

ψij = φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi (Ui ∩ Uj)

is C∞. ψij are called crossover maps.
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Picture

ψij = φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi (Ui ∩ Uj)
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Functions between manifolds

Let M be an m dimensional manifold with charts φi : Ui → Rm and
N be an n dimensional manifold with charts ψj : Ũj → Rn.

Let f be a map between manifolds:

f : M → N, p 7→ f (p).

This has a coordinate presentation

Fji = ψj ◦ f ◦ φi−1 : Rm → Rn, x 7→ ψj(f (φ−1
i (x))),

where x = φi (p) (p ∈ Ui and f (p) ∈ Ũj).

Using the coordinate presentation all the calculus rules in Rn work
for maps between manifolds. If the presentations Fji are
differentiable in all charts then f is differentiable.
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Fibre bundle

Def: A fibre bundle (E , π,M,F ,G ) consists of

A manifold E called total space, a manifold M called base space and
a manifold F called fibre (or typical fibre)

A surjection π : E → M called the projection. The inverse image of
a point p ∈ M is called the fibre at p, namely π−1(p) = Fp

∼= F .

A Lie group G called structure group which acts on F on the left.

A set of open coverings {Ui} of M with diffeomorphism
φi : Ui × F → π−1(Ui ), such that π ◦ φi (p, f ) = p. The map is
called the local trivialization, since φ−1

i maps π−1(Ui ) to Ui × F .

Transition functions tij : Ui ∩ Uj → G , such that
φj(p, f ) = φi (p, tij(p)f ). Fix p then tij = φ−1

i ◦ φj .
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Recall Tangent vectors

Tangent vectors act on functions via

X [f ] = Xµ ∂f

∂xµ
(sum over repeated indices)

The components of Xµ and X̃µ are related via

X̃µ = X ν ∂yµ

∂xν
(Einstein′s summation convention again)

We defined the pairing〈
dxν ,

∂

∂xµ

〉
=
∂xν

∂xµ
= δνµ.

This leads us to one-forms ω = ωµdxµ, also independent of choice
of coordinates. Now, we have

ω = ωµdxµ = ω̃νdyν =⇒ ω̃ν = ωµ
∂xµ

∂yν
.
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Tangent bundle and Cotangent bundle

A basis of TpM is given by ∂/∂xµ, (1 ≤ µ ≤ n), hence
dim M = dim TpM, and similarly for T ∗p M with basis dxµ.

The union of all tangent spaces forms the tangent bundle

TM =
⋃
p∈M

TpM.

Similarly, the union of all cotangent spaces forms the cotangent
bundle

T ∗M =
⋃
p∈M

T ∗p M.

TM and T ∗M are 2n dimensional manifolds with base space M and
fibre Rn.
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Pushforward and Pullback

Given a smooth map between manifolds

f : M → N, p 7→ f (p)

we can define a map between the tangent spaces TM and TN via

f∗ : TpM → Tf (p)N,V 7→ f∗V

which is called pushforward. Let g ∈ C∞(N) then g ◦ f ∈ C∞(M).
Define the action of the vector f∗V on g via

f∗V (g) = V (g ◦ f ).

Similarly, we can define a map between the cotangent spaces T ∗N
and T ∗M via

f ∗ : T ∗f (p)N → T ∗pM, ω 7→ f ∗ω

which is called pullback. The pullback can be defined via the pairing

〈f ∗ω,V 〉M = 〈ω, f∗V 〉N .
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Metric

A metric g is a (0, 2) tensor which satisfies at each point p ∈ M :
1 gp(U,V ) = gp(V ,U) (symmetric)
2 gp(U,U) ≥ 0, with equality only when U = 0 (non-degenerate)

where U,V ∈ TpM.

The metric g provides an inner product for each tangent space TpM.

Notation:
g = gµνdxµdxν .

The metric provides an isomorphism between vector fields X ∈ TM
and 1-forms η ∈ T ∗M via

g(.,X ) = ηX

In physics notation gµν and its inverse gµν lower and raise indices.
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Symplectic form

A symplectic form ω is a 2-form which satisfies
1 ω is closed, i.e. dω = 0.
2 ω is non-degenarate: ω(U,V ) = 0 for all V implies U = 0.

where U,V ∈ TpM.

Notation:

ω =
1

2
ωµνdxµ ∧ dxν .

The symplectic form also provides an isomorphism between vector
fields X ∈ TM and 1-forms η ∈ T ∗M via

ω(.,X ) = ηX
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Differential forms

A basis for a p-form ∈ Ωp(M) is

〈dxµ1 ∧ · · · ∧ dxµk 〉 where 1 ≤ µ1 < · · · < µk ≤ n.

Wedge product:
∧ : Ωk × Ωl → Ωk+l ,

where
α ∧ β = (−1)klβ ∧ α.

Exterior derivative: Given

ω =
1

k!
ωµ1...µk

dxµ1 ∧ · · · ∧ dxµk

then

dω =
1

k!

(
∂

∂ν
ωµ1...µk

)
dxν ∧ dxµ1 ∧ · · · ∧ dxµk .

Recall d2 = 0.
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Integration on Manifolds

Recall under change of basis one-forms transform as

ω̃ν = ωµ

(
∂xµ

∂yν

)
Two chart define the same orientation provided that

det

(
∂xµ

∂yν

)
> 0.

A manifold is orientable if for any overlapping charts Ui and Uj there
exist local coordinates xµ ∈ Ui and yµ ∈ Uj such that

det
(
∂xµ

∂yν

)
> 0.

The invariant volume element on M is given by

Ω =
√
|g |dx1 ∧ . . . dxm where g = det(gµν).
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Integration on Manifolds II

Now, we can integrate a function f : M → R over M. First consider
one chart:∫

Ui

f Ω =

∫
φ(Ui )

f (φ−1
i (x))

√
|g(φ−1(x)|dx1dx2 . . . dxm.

A partition of unity is a family of differentiable functions εi (p),
1 ≤ i ≤ k such that

1 0 ≤ εi (p) ≤ 1.
2 εi (p) = 0 if p 6∈ Ui

3 ε1(p) + · · ·+ εk(p) = 1 for any point p ∈ M.

Integrate over the whole manifold M via∫
M

f Ω =
k∑

i=1

∫
Ui

f (p)εi (p)Ω.
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Stokes Theorem

Let w be a p-form and R a p + 1 dimensional region in M with
boundary ∂R, then ∫

R

dω =

∫
∂R

ω.

Special case: ω = p dx + q dy in R2, then

dω = (∂yq − ∂yp)dx ∧ dy .

Hence, ∮
C

(p dx + q dy) =

∫∫
R

(∂yq − ∂yp)dxdy ,

which is Green’s theorem in the plane.
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Examples: Stokes and Divergence Theorem

In R3 we have ω = f1dx + f2dy + f3dz , and

dω = (∂y f3−∂z f2)dy∧dz +(∂z f1−∂x f3)dz∧dx +(∂x f2−∂y f1)dx∧dy ,

which gives rise to the usual Stokes theorem∮
C

f · dr =

∫∫
S

(∇∧ f) · n dS .

If ω = f1dy ∧ dz + f2dz ∧ dx + f3dx ∧ dy then

dω = (∂x f1 + ∂y f2 + ∂z f3) dx ∧ dy ∧ dz ,

which gives rise to the divergence theorem:∫∫∫
V

∇ · f dxdydz =

∫∫
S

f · n dS .
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Hodge ∗

Define the totally anti-symmetric tensor

εµ1µ2...µm =


+1 if (µ1µ2 . . . µm) is an even permutation of (12 . . .m)
−1 if (µ1µ2 . . . µm) is an odd permutation of (12 . . .m)
0 otherwise.

The Hodge ∗ is a linear map ∗ : Ωr (M)→ Ωm−r (M) which acts on a basis
vector of Ωr (M) via

∗(dxµ1 ∧ . . . dxµr ) =

√
|g |
m!

εµ1...µr
νr+1...νmdx

νr+1 ∧ · · · ∧ dxνm .

The invariant volume element is

∗1 =
√
|g |dx1 ∧ . . . dxm.

Examples for R3 :

∗1 = dx ∧ dy ∧ dz , ∗dx = dy ∧ dz , ∗dy = dz ∧ dx , ∗dz = dx ∧ dy ,

∗dy ∧ dz = dx , ∗dz ∧ dx = dy , ∗dx ∧ dy = dz , ∗dx ∧ dy ∧ dz = 1.
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Inner product on r -forms

Assume (M, g) is Riemannian, dimM = m and ω is an r -form, then

∗ ∗ ω = (−1)r(m−r)ω.

Let

ω =
1

r !
ωµ1...µr dx

mu1 ∧ · · · ∧ dxµr and η =
1

r !
ηµ1...µr dx

µ1 ∧ · · · ∧ dxµr ,

then

ω ∧ ∗η = · · · =
1

r !
ωµ1...µr η

µ1...µr
√
|g |dx1 ∧ · · · ∧ dxm,

We can define an inner product on r -forms via

(ω, η) =

∫
M

ω ∧ ∗η.

Note: (ω, η) = (η, ω) and this inner product is positive definite
((α, α) ≥ 0 with equality only for α = 0).
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Ginzburg-Landau potential

Ginzburg-Landau vortices on R2 are minimals of the potential energy

V (φ,A) =
1

2

∫
R2

(
dA ∧ ∗dA + dAφ ∧ ∗dAφ+

λ

4
(1− φ̄φ)2 ∗ 1

)
,

where φ : R2 → C is a complex scalar field, A ∈ Ω1(R2) is the gauge
potential one-form, dAφ = dφ− iAφ, and ∗ is the Hodge
isomorphism.

In usual physics notation

V =
1

2

∫ (
1

2
F ijFij + D iφDiφ+

λ

4
(1− φφ)2

)
dx2,

where Diφ = ∂iφ− iaiφ and f12 = ∂1a2 − ∂2a1.
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Laplacian on p-forms

Given the exterior derivative d : Ωr−1(M)→ Ωr (M) we can define the
adjoint exterior derivative d† : Ωr (M)→ Ωr−1(M) via

d† = (−1)mr+m+1 ∗ d∗

Let (M, g) be compact, orientable and without boundary, and α ∈ Ωr (M),
β ∈ Ωr−1(M) then

(dβ, α) = (β, d†α).

The Laplacian 4 : Ωr (M)→ Ωr (M) is define by

4 = (d + d†)2 = dd† + d†d .

Example: Laplacian on functions:

4f = · · · = − 1√
|g |

∂ν
(√
|g |gµν∂µf

)
.
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Hodge decomposition theorem

An r -form ωr is called harmonic if 4wr = 0.

Hodge decomposition theorem:

Ωr (M) = dΩr−1(M)⊕ d†Ωr+1 ⊕Harmr (M)

that is
wr = dαr−1 + d†βr+1 + γr

with 4γr = 0.

Note Harmr (M) is isomorphic to the de Rham cohomology group
H r (M).
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Physics equation in differential geometry notation

The four Maxwell equations can be written as

∇ · E = ρ, ∇∧ B− ∂E

∂t
= j.

and

∇ · B = 0, ∇∧ E +
∂B

∂t
= 0.

where

E = −∇A0 −
∂A

∂t
and B = ∇∧ A.

In differential geometry notation we have F = dA. The Maxwell
equations are

dF = 0 and d†F = j .
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Complex Manifolds

A complex manifold is a manifold such that the crossover maps ψij

are all holomorphic.

Recall: Let z = x + iy and f = u + iv then f (x , y) is holomorphic in
z provided the Cauchy-Riemann equations are satisfied:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Examples of complex manifolds are Cn, S2, T 2, CPn,
S2n+1 × S2m+1.
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Almost complex structure

An almost complex structure is a (1, 1) tensor which acts on real
coordinates as

Jp
∂

∂xµ
=

∂

∂yµ
, Jp

∂

∂yµ
= − ∂

∂xµ
.

with Jp
2 = −idTpM .

On complex coordinates vector we have

Jp
∂

∂zµ
= i

∂

∂zµ
, Jp

∂

∂z̄µ
= −i

∂

∂z̄µ
.

(multiplication by i).
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Hermitian metrics

A Hermitian metric is a Riemannian metric which satisfies

gp(JpX , JpY ) = gp(X ,Y ),

i.e. g is compatible with Jp.

The vector JpX is orthogonal to X wrt g :

gp(JpX ,X ) = gp(J2
pX , JpX ) = −gp(JpX ,X ) = 0.

For a Hermitian metric gµν = 0 and gµ̄ν̄ = 0, e.g.

gµν = g

(
∂

∂zµ
,
∂

∂zν

)
= g

(
Jp

∂

∂zµ
, Jp

∂

∂zν

)
= g(i

∂

∂zµ
, i

∂

∂zν
) = −gµν .
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The Kähler form

Define the tensor field Ω via

Ωp(X ,Y ) = gp(JpX ,Y ), X ,Y ∈ TpM.

Ω is antisymmetric and invariant under Jp :

Ω(X ,Y ) = −Ω(Y ,X ), Ω(JpX , JpY ) = Ω(X ,Y ).

Ω is a real form and can be written as

Ω = −igµν̄dzµ ∧ dz̄ν .

Ω ∧ · · · ∧ Ω (dimC M-times) provides a volume form for M.

If dΩ = 0 then g is a Kähler metric.
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Remarks

For Kähler manifold, the metric g is related to the anti-symmetric
Kähler form Ω which can be interpreted as a symplectic 2-form

Topological solitons of Bogomolny type usually have a “moduli
space” of static solutions which is a smooth manifold with a natural
Kähler metric (given by the kinetic energy)
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