Applications of Differential Geometry to Mathematical Physics

Steffen Krusch SMSAS, University of Kent

30 January, 2013

Outline

- Manifolds
- Fibre bundles
- Vector bundles, principal bundles
- Sections in fibre bundles
- Metric, Connection
- General Relativity, Yang-Mills theory

The 2-sphere S^2

•
$$S^2 = \left\{ (x_1, x_2, x_3) : \sum_{i=1}^3 x_i^2 = 1 \right\}.$$

Polar coordinates:

$$x_1 = \cos \phi \sin \theta,$$

 $x_2 = \sin \phi \sin \theta,$
 $x_3 = \cos \theta.$

- Problem: We can't label S^2 with single coord system such that
 - Nearby points have nearby coords
 - 2 Every point has unique coords.

Stereographic Projection

$$X_1 = \frac{x_1}{1 - x_3},$$

 $X_2 = \frac{x_2}{1 - x_2}.$

Manifold

Def: M is an m-dimensional (differentiable) manifold if

- M is a topological space.
- M comes with family of charts $\{(U_i, \phi_i)\}$ known as *atlas*.
- $\{U_i\}$ is family of open sets covering M: $\bigcup_i U_i = M$.
- ϕ_i is homeomorphism from U_i onto open subset U'_i of \mathbb{R}^m .
- Given $U_i \cap U_j \neq \emptyset$, then the map

$$\psi_{ij} = \phi_i \circ \phi_j^{-1} : \phi_j(U_i \cap U_j) \to \phi_i(U_i \cap U_j)$$

is C^{∞} . ψ_{ij} are called *crossover maps*.

Picture

$$\psi_{ij} = \phi_i \circ \phi_i^{-1} : \phi_j(U_i \cap U_j) \to \phi_i(U_i \cap U_j)$$

Example: S^2

• Projection from North pole:

$$X_1 = \frac{x_1}{1 - x_3},$$

 $X_2 = \frac{x_2}{1 - x_3}.$

•
$$U_1 = S^2 \setminus N$$
, $U_1' = \mathbb{R}^2$:

$$\phi_1: U_1 \rightarrow \mathbb{R}^2:$$

$$(x_1, x_2, x_3) \mapsto (X_1, X_2)$$

Projection from South pole:

$$Y_1 = \frac{x_1}{1+x_3},$$

 $Y_2 = \frac{x_2}{1+x_3}.$

•
$$U_2 = S^2 \setminus S$$
, $U_2' = \mathbb{R}^2$:

$$\phi_2: U_2 \rightarrow \mathbb{R}^2:$$

$$(x_1, x_2, x_3) \mapsto (Y_1, Y_2)$$

Crossover map $\psi_{21} = \phi_2 \circ \phi_1^{-1}$:

$$\psi_{21}: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2: (X_1, X_2) \mapsto (Y_1, Y_2) = \left(\frac{X_1}{X_1^2 + X_2^2}, \frac{-X_2}{X_1^2 + X_2^2}\right).$$

Example: S^{3}

• Stereographic coords for S^3 work the same way as for S^2 , e.g.

$$X_i = \frac{x_i}{1 - x_4},$$

where i = 1, 2, 3 for the projection from the "North pole".

• Note S^3 can be identified with SU(2), i.e. complex 2×2 matrices which satisfy

$$U\ U^{\dagger} = U^{\dagger}U = 1 \quad \text{and} \quad \det U = 1.$$
 (1)

Setting

$$U = \left(\begin{array}{cc} z_1 & z_2 \\ -\overline{z}_2 & \overline{z}_1 \end{array}\right)$$

satisfies all the conditions in (1) provided

$$|z_1|^2 + |z_2|^2 = 1,$$

which is the equation for S^3 .

The trivial bundle

- Often manifolds can be build up from smaller manifolds.
- An important example is the Cartesian product: $E = B \times F$ (known as *trivial bundle*)
- Fibre bundles are manifolds which look like Cartesian products, locally, but not globally.
- This concept is very useful for physics. Non-trivial fibre bundles occur for example in general relativity, but also due to boundary conditions "at infinity".

Fibre bundle

Def: A *fibre bundle* (E, π, M, F, G) consists of

- A manifold E called total space, a manifold M called base space and a manifold F called fibre (or typical fibre)
- A surjection $\pi: E \to M$ called the *projection*. The inverse image of a point $p \in M$ is called the fibre at p, namely $\pi^{-1}(p) = F_p \cong F$.
- A Lie group G called structure group which acts on F on the left.
- A set of open coverings $\{U_i\}$ of M with diffeomorphism $\phi_i: U_i \times F \to \pi^{-1}(U_i)$, such that $\pi \circ \phi_i(p, f) = p$. The map is called the *local trivialization*, since ϕ_i^{-1} maps $\pi^{-1}(U_i)$ to $U_i \times F$.
- Transition functions $t_{ij}: U_i \cap U_j \to G$, such that $\phi_j(p, f) = \phi_i(p, t_{ij}(p)f)$. Fix p then $t_{ij} = \phi_i^{-1} \circ \phi_j$.

The importance of the transition functions

• Consistency conditions (ensure $t_{ij} \in G$)

$$\begin{array}{ll} t_{ii}(p) = e & p \in U_i \\ t_{ij}(p) = t_{ji}^{-1}(p) & p \in U_i \cap U_j \\ t_{ij}(p) \cdot t_{jk}(p) = t_{ik}(p) & p \in U_i \cap U_j \cap U_k \end{array}$$

- If all transition functions are the identity map e, then the fibre bundle is called the trivial bundle, $E = M \times F$.
- The transition functions of two local trivializations $\{\phi_i\}$ and $\{\tilde{\phi}_i\}$ for fixed $\{U_i\}$ are related via

$$\tilde{t}_{ij}(p) = g_i^{-1}(p) \cdot t_{ij}(p) \cdot g_j(p).$$

where for fixed p, we define $g_i : F \to F : g_i = \phi_i^{-1} \circ \tilde{\phi}_i$.

• For the trivial bundle, $t_{ij}(p) = g_i^{-1}(p) \cdot g_i(p)$.

Tangent vectors

• Given a curve $c:(-\epsilon,\epsilon)\to M$ and a function $f:M\to\mathbb{R}$, we define the tangent vector X[f] at c(0) as directional derivative of f(c(t)) along c(t) at t=0, namely

$$X[f] = \left. \frac{df(c(t))}{dt} \right|_{t=0}.$$

• In local coords, this becomes

$$\frac{\partial f}{\partial x^{\mu}} \left. \frac{dx^{\mu}(c(t))}{dt} \right|_{t=0},$$

hence

$$X[f] = X^{\mu} \left(\frac{\partial f}{\partial x^{\mu}} \right).$$

 To be more mathematical, the tangent vectors are defined via equivalence classes of curves.

More about Tangent vectors

Vectors are independent of the choice of coordinates, hence

$$X = X^{\mu} \frac{\partial}{\partial x^{\mu}} = \tilde{X}^{\mu} \frac{\partial}{\partial y^{\mu}}.$$

ullet The components of X^{μ} and $ilde{X}^{\mu}$ are related via

$$\tilde{X}^{\mu} = X^{\nu} \frac{\partial y^{\mu}}{\partial x^{\nu}}.$$

• It is very useful to define the pairing

$$\left\langle d\mathsf{x}^{\nu}, \frac{\partial}{\partial \mathsf{x}^{\mu}} \right\rangle = \frac{\partial \mathsf{x}^{\nu}}{\partial \mathsf{x}^{\mu}} = \delta^{\nu}_{\mu}.$$

• This leads us to one-forms $\omega = \omega_{\mu} dx^{\mu}$, also independent of choice of coordinates. Now, we have

$$\omega = \omega_{\mu} dx^{\mu} = \tilde{\omega}_{\nu} dy^{\nu} \quad \Longrightarrow \quad \tilde{\omega}_{\nu} = \omega_{\mu} \frac{\partial x^{\mu}}{\partial y^{\nu}}.$$

• This can be generalized further to tensors $T^{\mu_1...\mu_q}_{\nu_1...\nu_r}$.

The Tangent bundle

• At each point $p \in M$ all the tangent vectors form an n dimensional vector space T_pM , so tangent vectors can be added and multiplied by real numbers:

$$\alpha X_1 + \beta X_2 \in T_p M$$
 for $\alpha, \beta \in \mathbb{R}$, $X_1, X_2 \in T_p M$.

- A basis of $T_p M$ is given by $\partial/\partial x^{\mu}$, $(1 \le \mu \le n)$, hence dim $M = \dim T_p M$.
- The union of all tangent spaces forms the tangent bundle

$$TM = \bigcup_{p \in M} T_p M.$$

• TM is a 2n dimensional manifold with base space M and fibre \mathbb{R}^n . It is an example of a *vector bundle*.

The Tangent bundle TS^2

- We use the two stereographic projections as our charts.
- The coords $(X_1, X_2) \in U_1'$ and $(Y_1, Y_2) \in U_2'$ are related via

$$Y_1 = \frac{X_1}{X_1^2 + X_2^2}, \quad Y_2 = \frac{-X_2}{X_1^2 + X_2^2}.$$

• Given $u \in TS^2$ with $\pi(u) = p \in U_1 \cap U_2$, then the local trivializations ϕ_1 and ϕ_2 satisfy $\phi_1^{-1}(u) = (p, V_1^{\mu})$ and $\phi_2^{-1}(u) = (p, V_2^{\mu})$. The local trivialization is

$$t_{12} = \frac{\partial (Y_1, Y_2)}{\partial (X_1, X_2)} = \frac{1}{(X_1^2 + X_2^2)^2} \begin{pmatrix} X_2^2 - X_1^2 & -2X_1X_2 \\ -2X_1X_2 & X_1^2 - X_2^2 \end{pmatrix}.$$

• Check: $t_{21}(p) = t_{12}^{-1}(p)$.

Example: U(1) bundle over S^2

- Consider a fibre bundle with fibre U(1) and base space S^2 .
- ullet Let $\{U_N,U_S\}$ be an open covering of S^2 where

$$\begin{array}{lcl} U_{N} & = & \{(\theta, \phi) : 0 \leq \theta < \pi/2 + \epsilon, 0 \leq \phi < 2\pi\} \\ U_{S} & = & \{(\theta, \phi) : \pi/2 - \epsilon < \theta \leq \pi, 0 \leq \phi < 2\pi\} \end{array}$$

• The intersection $U_N \cap U_S$ is a strip which is basically the equator. Local trivializations are

$$\phi_N^{-1}(u) = (p, e^{i\alpha_N}), \quad \phi_S^{-1}(u) = (p, e^{i\alpha_S})$$

where $p = \pi(u)$.

- Possible transition functions are $t_{NS} = e^{in\phi}$, where $n \in \mathbb{Z}$.
- The fibre coords in $U_N \cap U_S$ are related via

$$e^{i\alpha_N}=e^{in\phi}e^{i\alpha_S}.$$

• If n = 0 this is the trivial bundle $P_0 = S^2 \times S^1$. For $n \neq 0$ the U(1) bundle P_n is twisted.

Magnetic monopoles and the Hopf bundle

- P_n is an example of a *principal bundle* because the fibre is the same as the structure group G = U(1).
- In physics, P_n is interpreted as a magnetic monopole of charge n.
- Given $S^3=\left\{x\in\mathbb{R}^4:x_1^2+x_2^2+x_3^2+x_4^2=1\right\}$ we can define the Hopf map: $\pi:S^3\to S^2$ by

$$\xi_1 = 2(x_1x_3 + x_2x_4)$$

$$\xi_2 = 2(x_2x_3 - x_1x_4)$$

$$\xi_3 = x_1^2 + x_2^2 - x_3^2 - x_4^2.$$

which implies $\xi_1^2 + \xi_2^2 + \xi_3^2 = 1$.

• It turns out that with this choice of coords S^3 can be identified with P_1 , a nontrivial U(1) bundle over S^2 , known as the *Hopf bundle*.

Sections

Def: Let (E, M, π) be a fibre bundle. A section $s: M \to E$ is a smooth map which satisfies $\pi \circ s = id_M$. Here, $s|_p$ is an element of the fibre $F_p = \pi^{-1}(p)$. The space of section is denoted by $\Gamma(E)$.

- A local section is defined on $U \subset M$, only.
- Note that not all fibre bundles admit global sections!
- Example: The wave function $\psi(\mathbf{x},t)$ in quantum mechanics can be thought of as a section of a complex line bundle $E = \mathbb{R}^{3,1} \times \mathbb{C}$.
- Vector fields associate a tangent vector to each point in M. They
 can be thought of as sections of TM.

More on sections

ullet Vector bundles always have at least one section, the null section s_0 with

$$\phi_i^{-1}(s_0(p)) = (p,0)$$

in any local trivialization.

- A principal bundle E only admits a global section if it is trivial:
 E = M × F.
- A section in a principal bundle can be used to construct the trivialization of the bundle which uses that we can define a right action which is independent of the local trivialization:

$$ua = \phi(p, g_i a), \quad a \in G$$

Associated Vector bundle

• Given a principal fibre bundle $P(M,G,\pi)$ and a k-dimensional vector space V, and let ρ be a k dimensional representation of G then the associated vector bundle $E = P \times_{\rho} V$ is defined by identifying the points

$$(u, v)$$
 and $(ug, \rho(g)^{-1}v) \in P \times V$

where $u \in P$, $g \in G$, and $v \in V$.

• The projection $\pi_E : E \to M$ is defined by $\pi_E(u, v) = \pi(u)$, which is well defined because

$$\pi_E(ug, \rho(g)^{-1}v) = \pi(ug) = \pi(u) = \pi_E(u, v)$$

- The transition functions of E are given by $\rho(t_{ij}(p))$ where $t_{ij}(p)$ are the transition functions of P.
- Conversely, a vector bundle naturally induces a principal bundle associated with it

Metric

- Manifolds can carry further structure, for example a metric.
- A metric g is a (0,2) tensor which satisfies at each point $p \in M$:

 - $g_p(U,U) \ge 0$, with equality only when U=0.

where $U, V \in T_p M$.

- The metric g provides an inner product for each tangent space T_pM .
- Notation:

$$g = g_{\mu\nu} dx^{\mu} dx^{\nu}$$
.

• If M is a submanifold of N with metric g_N and $f: M \to N$ is the embedding map, then the induced metric g_M is

$$g_{M\mu\nu}(x) = g_{N\alpha\beta}(f(x)) \frac{\partial f^{\alpha}}{\partial x^{\mu}} \frac{\partial f^{\beta}}{\partial x^{\nu}}.$$

Connection for the Tangent bundle

ullet Consider the "derivative" of a vector field $V=V^{\mu} rac{\partial}{\partial x^{\mu}}$ w.r.t. $x^{
u}$:

$$\frac{\partial V^{\mu}}{\partial x^{\nu}} = \lim_{\triangle x \to 0} \frac{V^{\mu}(\dots, x^{\nu} + \triangle x^{\nu}, \dots) - V^{\mu}(\dots, x^{\nu}, \dots)}{\triangle x^{\nu}}$$

- This doesn't work as the first vector is defined at x + △x and the second at x.
- We need to transport the vector V^{μ} from x to $x + \triangle x$ "without change". This is known as *parallel transport*.
- This is achieved by specifying a connection $\Gamma^{\mu}_{\nu\lambda}$, namely the parallel transported vector \tilde{V}^{μ} is given by

$$\tilde{V}^{\mu}(x+\triangle x)=V^{\mu}(x)-V^{\lambda}(x)\Gamma^{\mu}{}_{\nu\lambda}(x)\triangle x^{\nu}.$$

• The covariant derivative of V w.r.t. x^{ν} is

$$\lim_{\triangle x^{\nu} \to 0} \frac{V^{\mu}(x + \triangle x) - \tilde{V}^{\mu}(x + \triangle x)}{\triangle x^{\nu}} = \frac{\partial V^{\mu}}{\partial x^{\nu}} + V^{\lambda} \Gamma^{\mu}_{\nu\lambda}.$$

The Levi-Civita Connection

- We demand that the metric g is covariantly constant.
- This means, if two vectors X and Y are parallel transported along any curve, then the inner product g(X, Y) remains constant.
- The condition

$$\nabla_V(g(X,Y))=0,$$

gives us the Levi-Civita connection.

• The Levi-Civita connection can be written as

$$\Gamma^{\kappa}_{\ \mu\nu} = rac{1}{2} g^{\kappa\lambda} \left(\partial_{\mu} g_{
u\lambda} + \partial_{
u} g_{\mu\lambda} - \partial_{\lambda} g_{\mu
u}
ight).$$

General Relativity

 The Levi-Civita connection doesn't transform like a tensor. However, from it, we can build the curvature tensor:

$$R^{\kappa}{}_{\lambda\mu\nu} = \partial_{\mu}\Gamma^{\kappa}{}_{\nu\lambda} - \partial_{\nu}\Gamma^{\kappa}{}_{\mu\lambda} + \Gamma^{\eta}{}_{\nu\lambda}\Gamma^{\kappa}{}_{\mu\eta} - \Gamma^{\eta}{}_{\mu\lambda}\Gamma^{\kappa}{}_{\nu\eta}.$$

 Important contractions of the curvature tensor are the Ricci tensor Ric:

$$Ric_{\mu\nu} = R^{\lambda}{}_{\mu\lambda\nu}.$$

and the scalar curvature \mathcal{R} :

$$\mathcal{R} = g^{\mu\nu} Ric_{\mu\nu}.$$

 Now, we have the ingredients for Einstein's Equations of General Relativity, namely

$$Ric_{\mu\nu} - \frac{1}{2}g_{\mu\nu}\mathcal{R} = 8\pi GT_{\mu\nu},$$

where G is the gravitational constant and $T_{\mu\nu}$ is the energy momentum tensor which describes the distribution of matter.

Yang-Mills theory

 An example of Yang-Mills theory is given by the following Lagrangian density,

$$\mathcal{L} = \frac{1}{8} \operatorname{Tr} \left(\mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} \right) + \frac{1}{2} \left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi - U(\Phi^{\dagger} \Phi). \tag{2}$$

where

$$D_{\mu}\Phi = \partial_{\mu}\Phi + \mathbf{A}_{\mu}\Phi \quad \mathrm{and} \quad \mathbf{F}_{\mu\nu} = \partial_{\mu}\mathbf{A}_{\nu} - \partial_{\nu}\mathbf{A}_{\mu} + [\mathbf{A}_{\mu}, \mathbf{A}_{\nu}].$$

- Here Φ is a two component complex scalar field.
- ${\bf A}_{\mu}$ is called a gauge field and is su(2)-valued, i.e. ${\bf A}_{\mu}$ are anti-hermitian 2×2 matrices.
- $\mathbf{F}_{\mu\nu}$ is known as the field strength (also su(2)-valued)
- This Lagrangian is Lorentz invariant.

Gauge invariance

Lagrangian (2) is also invariant under local gauge transformations:

• Let $g \in SU(2)$ be a space-time dependent gauge transformation with

$$\Phi \mapsto g\Phi$$
, and $\mathbf{A}_{\mu} \mapsto g\mathbf{A}_{\mu}g^{-1} - \partial_{\mu}gg^{-1}$.

• The covariant derivative $D_{\mu}\Phi$ transforms as

$$\begin{array}{rcl} D_{\mu}\Phi & \mapsto & \partial_{\mu}(g\Phi) + \left(g\mathbf{A}_{\mu}g^{-1} - \partial_{\mu}gg^{-1}\right)g\Phi \\ & = & gD_{\mu}\Phi \end{array}$$

- Hence $\Phi^{\dagger}\Phi \mapsto (g\Phi)^{\dagger}g\Phi = \Phi^{\dagger}g^{\dagger}g\Phi = \Phi^{\dagger}\Phi$, and similarly for $(D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi$.
- ullet Finally, ${f F}_{\mu
 u}\mapsto g{f F}_{\mu
 u}g^{-1}$, so

$$\operatorname{Tr}\left(\mathbf{F}_{\mu\nu}\mathbf{F}^{\mu\nu}\right)$$

is also invariant

Yang-Mills theory and Fibre bundles

In a more mathematical language:

- The gauge field ${\bf A}_{\mu}$ corresponds to the connection of the principal SU(2) bundle.
- The field strength ${\bf F}_{\mu\nu}$ corresponds to the curvature of the principal SU(2) bundle.
- The complex scalar field Φ is a section of the associated \mathbb{C}^2 vector bundle.
- The action of $g \in SU(2)$ on Φ and \mathbf{A}_{μ} is precisely what we expect for an associated fibre bundle.
- Surprisingly, mathematicians and physicist derived the same result very much independently!