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h21Department of Mathemati
s and Statisti
s, University of Surrey, Guildford,Surrey GU2 7XH, UK2Department of Mathemati
s, Imperial College, London SW7 2BZ, UKThe relationship between potential vorti
ity (PV) and the symple
ti
 form for theLagrangian form of the shallow water equations and its impli
ations are 
onsidered.Starting with the symple
ti
 form, the PV is found by the pull-ba
k operation tothe referen
e spa
e. At �rst sight, the en
oding of PV in the symple
ti
 form ap-pears to be independent of the parti
le relabelling symmetry. We 
arry the analysisa step further in two ways. Using the 
onservation of symple
ti
ity as a startingpoint, the 
uxes of symple
ti
ity are di�erential forms, and a 
omplete pull-ba
k ofthe 
ux forms leads to a geometri
 des
ription of PV 
onservation. Se
ondly we usesymmetry methods to give a rigorous 
onne
tion between parti
le relabelling, sym-ple
ti
ity and PV 
onservation. Generalisations of these issues to semi-geostrophi

ow and three-dimensional Lagrangian 
uid 
ows, and the 
onne
tion with Ertel'stheorem are also dis
ussed.Keywords: geophysi
al 
uid dynami
s, potential vorti
ity, multisymple
ti
,parti
le relabelling, symmetry1. Introdu
tionIn Lagrangian 
uid dynami
s, the 1-form � = hu; dxi = u1dx1 + u2dx2 + u3dx3plays the dual role of a 
ir
ulation density and the generator for a 
anoni
al sym-ple
ti
 stru
ture. This elementary observation 
an easily be seen using the equationsgoverning in
ompressible Lagrangian 
uid dynami
s in two spa
e dimensions�x1�t = u1 ; �u1�t = � �x2�m2 �p�m1 + �x2�m1 �p�m2 ;�x2�t = u2 ; �u2�t = �x1�m2 �p�m1 � �x1�m1 �p�m2 :Here x1 = m1 and x2 = m2 at t = 0, where m = (m1;m2) are Lagrangian mass
oordinates, p is the pressure, and the in
ompressibility 
onstraint isdet(xm) = 1; where xm = " �x1�m1 �x1�m2�x2�m1 �x2�m2# :This system is a 
onstrained Hamiltonian system with the Hamiltonian fun
tionH(x;u; p) = Z S dm ; where S = 12 hu;ui+ (1� det(xm)) p ; (1.1)Arti
le submitted to Royal So
iety TEX Paper



2 T.J. Bridges, P.E. Hydon and S. Rei
hand the 
anoni
al representation is24 0 �I 0I 0 00 0 0 350�xup1A;t = 0�ÆH=ÆxÆH=ÆuÆH=Æp1A : (1.2)The symple
ti
 form for this system is the integral of the exterior derivative ofthe 
ir
ulation 1-form! = Z d� dm = Z du ^ dx dm = Z ( du1 ^ dx1 + du2 ^ dx2 ) dm ; (1.3)where the line over ! signi�es that it is integrated over m-spa
e.On the other hand, in the 
lassi
al des
ription, the 
ir
ulation is obtained byintegrating the 1-form � along a loop in the (x;u)�spa
e, and by Stokes Theorem,the 
ir
ulation 
an be related to a surfa
e integral of the vorti
ity (
f. Bat
helor1967, p. 93). Comparing this 
lassi
al observation with (1.3) suggests that it isnatural to expe
t some 
onne
tion between vorti
ity and symple
ti
ity.When stripped of the integral, the density of the symple
ti
 form, ! = d�, hasthe following pre
ise relation with vorti
ity, �! = 
 dm1 ^ dm2 : (1.4)Here 
 is the vorti
ity in Lagrangian 
oordinates,
 = �x1�m2 �u1�m1 � �x1�m1 �u1�m2 + �x2�m2 �u2�m1 � �x2�m1 �u2�m2 ;and  � is the pull-ba
k mapping whi
h is obtained by restri
ting the phase spa
e
oordinates x;u to the label spa
e m, i.e., x = x(m1;m2), u = u(m1;m2). Hen
ethe pull-ba
k is de�ned by �(dx) = �x�m1 dm1 + �x�m2 dm2 ;  �(du) = �u�m1 dm1 + �u�m2 dm2 :The generalization to higher dimensions and to other fun
tions and forms is obvious(
f. Cartan (1983, p. 28)). The proof of (1.4) is therefore � ! =  �(du ^ dx) =  �(du) ^  �(dx)= � �u�m1 dm1 + �u�m2 dm2� ^ � �x�m1 dm1 + �x�m2 dm2�= 2Xi=1 �� �ui�m1 dm1 + �ui�m2 dm2� ^ � �xi�m1 dm1 + �xi�m2 dm2��= 
 dm1 ^ dm2 :A similar argument applied to the shallow water equations in geophysi
al 
uiddynami
s shows that the pull-ba
k of the symple
ti
 form density there results in thepotential vorti
ity. The details of this 
onstru
tion are given in x2. The only pla
ein the literature that we have seen the 
onne
tion between potential vorti
ity andsymple
ti
ity dis
ussed is in the work of Abarbanel & Holm (1987) (see equationArti
le submitted to Royal So
iety



Vorti
ity and symple
ti
ity 3(81) on page 3375). There it is mentioned in passing that the pullba
k of the densityof the symple
ti
 form results in the potential vorti
ity, but the 
onsequen
es of thisobservation are not studied.Arnold & Khesin (1998) emphasize that the vorti
ity
an be 
hara
terized by a two form (see pages 22 and 46), but the 
onne
tionbetween vorti
ity and symple
ti
ity is not explored.While the above examples and the work of Abarbanel & Holm show a 
on-ne
tion between vorti
ity or potential vorti
ity and symple
ti
ity, there are severalunanswered questions. The phase spa
e variables x;u depend on (m1;m2; t). Whypull ba
k to the label spa
em = (m1;m2)? Why not pull ba
k to the full referen
espa
e (m1;m2; t)? Indeed, this more general pull-ba
k leads to both vorti
ity 
onser-vation and energy 
onservation. Generalisations to (m; t) 2 R4 are also 
onsideredand lead to a symple
ti
 derivation of Ertel's Theorem.Further geometry is obtained by stripping away the integral in the 2-form whi
hde�nes the symple
ti
 stru
ture, leading to a 
onservation law whi
h 
an be gener-ated on the referen
e spa
e, a 
onservation law for symple
ti
ity. This 
onservationlaw arises in a natural way when the equations governing Lagrangian 
uid dynam-i
s and geophysi
al 
uid dynami
s are formulated in a multisymple
ti
 setting. Forthe purposes of this paper a multisymple
ti
 PDE is a system of PDEs of the formKz;t + Lz;1 +Mz;2 =rzSM (z) ; z 2 Rn ; (1.5)where K, L and M are skew-symmetri
 matri
es and SM : Rn ! R is a smoothfun
tion. Equivalently, su
h PDEs 
an be 
hara
terized as Lagrangian PDEs withthe Lagrangian fun
tional in the 
anoni
al formL = ZV � 12 hz;Mz;ti+ 12 hz;Kz;1i+ 12 hz;Lz;2i � SM (z)	 dt dx1dx2 ;where h�; �i is a standard inner produ
t on Rn , and RV is a volume integral. SeeBridges (1997a,1997b) for general properties of su
h systems.In the multisymple
ti
 setting, the 
uxes of symple
ti
ity arise as 2-forms. Thesymple
ti
 2-form then satis�es a 
onservation law of the form��t! + ��m1�1 + ��m2�2 = 0 ; (1.6)where �1 and �2 are a pair of 2-forms that represent the 
ux of symple
ti
ity.Pulling ba
k this equation to the label spa
e, m, leads to��t �! + ��m1 ��1 + ��m2 ��2 = 0 ; (1.7)where  ��1 and  ��2 are 2-forms on the label spa
e that represent the 
ux ofpotential vorti
ity.It is in the investigation of the 
uxes in the symple
ti
 
onservation law that theimportan
e of parti
le relabelling and the homentropi
 nature of the 
uid arises. Forexample, this formulation leads to the result that potential vorti
ity (or vorti
ity)is 
onserved on parti
le paths if and only if the divergen
e of the pull-ba
k of the
ux 2-forms to the label spa
e vanish identi
ally, that is ifdiv( ��l;  ��2) =rm �  �� = 0 ; � = (�1;�2)T : (1.8)Arti
le submitted to Royal So
iety
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hWe will show that a suÆ
ient 
ondition for (1.8) to be satis�ed is the the Hamilto-nian fun
tion is invariant under parti
le relabelling (homentropi
). Note that thisderivation of PV 
onservation is fundamentally di�erent from the ones typi
allygiven in 
uid dynami
s (
ompare, for example, Salmon (1998, p. 302)).In x2, the Lagrangian form of the shallow water equations is treated in detail,and the following features are treated in turn: the en
oding of PV in symple
ti
ity,the multisymple
ti
 stru
ture that leads to a geometri
 form of PV 
onservation, thepull-ba
k as a generator of PV and energy 
onservation, and the use of symmetrymethods to establish rigorously the 
onne
tion between parti
le relabelling and PV
onservation.One of the motivations of this paper is understand the geometri
 stru
ture ofLagrangian 
uid dynami
s in order to in
orporate it into numeri
al methods. In x4we show how the ideas in this paper 
an in
uen
e the design of numeri
al methods.The ideas generalize in a straightforward way to other systems in Lagrangian
uid dynami
s, and it x4 we brie
y 
onsider the semi-geostrophi
 equations andthree-dimensional Lagrangian in
ompressible 
uid dynami
s.2. Multisymple
ti
 GFD: shallow water equationsIn this se
tion, the shallow water equations will be 
onsidered in the Lagrangianparti
le-path representation. The 
onne
tion between potential vorti
ity and sym-ple
ti
ity will be established, as will 
onditions for 
onservation of potential vorti
ityalong parti
le paths, by 
onstru
ting the 
ux 2-forms asso
iated with 
onservationof symple
ti
ity.As in the introdu
tion, let x 2 R2 , u 2 R2 represent the position and velo
ityof the 
uid parti
les, parametrized by Lagrangian mass 
oordinatesm = (m1;m2),and let h 2 R represent the 
uid depth. The system is rotating at 
onstant angularvelo
ity f=2.Hen
eforth, we use Latin indi
es to denote 
omponents of x and u, and Greekindi
es to denote 
omponents of m; the usual summation 
onvention is adopted.Total derivatives with respe
t to t or m�, for whi
h all variables are regarded asfun
tions of (m1;m2; t), are denoted by the subs
ript t or � after a 
omma. Forexample, xi;� = �xi(m; t)�m� ; xi;�t = �2xi(m; t)�m��t ; et
:Partial derivatives with respe
t to any other variable are written in full.De�ne the Ja
obian matrixxm = � x11 x12x21 x22 � where xi� � xi;�:Conservation of mass redu
es to h� = 1 where � = det(xm) = x11x22�x12x21. Thegoverning equations for u and x areu1;t = �(x22 � p);1 + (x21 � p);2 + fu2; (2.1)u2;t = (x12 � p);1 � (x11 � p);2 � fu1; (2.2)x1;t = u1; (2.3)x2;t = u2: (2.4)Arti
le submitted to Royal So
iety



Vorti
ity and symple
ti
ity 5The pressure is de�ned by p = �e0(�) where e(�) is the spe
i�
 internal energy, inhomentropi
 form. The 
lassi
al shallow-water equations are re
overed by takinge(�) = g=(2�).In terms of e(�), the equations of motion amount tou1;t � fx2;t = ��e(�)�x11 �;1 +��e(�)�x12 �;2 ; (2.5)u2;t + fx1;t = ��e(�)�x21 �;1 +��e(�)�x22 �;2 ; (2.6)x1;t = u1 ; (2.7)x2;t = u2 : (2.8)This system has a Hamiltonian representation with 
anoni
al 
oordinates (x;u):� �fJ �II 0 ��xu�t = �ÆH=ÆxÆH=Æu� ; J = � 0 �11 0 � ;where H(x;u) = Z S dm ; S = 12 hu;ui+ e(�) : (2.9)The symple
ti
 form for this system is! = Z ! dm ; !du1 ^ dx1 + du2 ^ dx2 + fdx1 ^ dx2 :We will prove that  �! = q dm1^dm2, where q is the potential vorti
ity. However,we �rst re
ast the system into a multisymple
ti
 formulation in order to dedu
efurther information. (a) A multisymple
ti
 formulationIntrodu
e the additional variableswi� � � �S�xi� = ��e(�)�xi� = �e0(�) ���xi� = p(�) ���xi� ;and the extended set of dependent variablesz = (x1; x2; u1; u2; w11; w12; w21; w22; x11; x12; x21; x22)T ; (2.10)so that z 2 R12 . Then (2.5)-(2.8) 
an be written as the following system of �rst-order PDEs:�u1;t + fx2;t � w11;1 � w12;2 = 0;�u2;t � fx1;t � w21;1 � w22;2 = 0;xi;t = ui ; i = 1; 2;xi;� = xi� ; i = 1; 2; � = 1; 2;0 = �e(�)�xi� + wi� ; i = 1; 2; � = 1; 2:Arti
le submitted to Royal So
iety



6 T.J. Bridges, P.E. Hydon and S. Rei
hThis system is of the form (1.5) withSM (z) = S + xi�wi� = 12 hu;ui+ e(�) + xi�wi� : (2.11)Here K;L;M 2 R12�12 are skew-symmetri
 matri
es with nonzero entriesK1;2 = f; K1;3 = �1; K2;1 = �f; K2;4 = �1; K3;1 = 1; K4;2 = 1;L1;5 = �1; L2;7 = �1; L5;1 = 1; L7;2 = 1;M1;6 = �1; M2;8 = �1; M6;1 = 1; M8;2 = 1:Note that SM (z) in (2.11) is de�ned lo
ally (for it involves no integrals), andit di�ers from the 
lassi
al Hamiltonian fun
tion density S by the third term. Thefollowing identities hold:xi� ���xi� = �Æ�� ; xi� ���xj� = �Æij ;where Æ is the Krone
ker delta. Thereforexi�wi� = ��e0(�)Æ�� ; xi�wj� = ��e0(�)Æij ; (2.12)and so the multisymple
ti
 density SM 
an be redu
ed to the formSM (z) = 12 hu;ui+ e(�)� 2�e0(�): (2.13)However, in order for (1.5) to yield the multisymple
ti
 shallow water equations,SM (z) must be expressed in terms of the multisymple
ti
 
oordinates, i.e. in theform (2.11).The abstra
t formulation (1.5) gives rise to a 
onservation law of symple
ti
ity(Bridges, 1997b)(dz ^Kdz);t + (dz ^ Ldz);1 + (dz ^Mdz);2 = 0; (2.14)whi
h, for the present system, amounts to!;t + ��;� = 0 ; (2.15)where ! = dui ^ dxi + f dx1 ^ dx2 and �� = dwi� ^ dxi ; � = 1; 2:(b) Pullba
k and the geometry of 
onservation lawsIn this se
tion, we explore in detail the 
onne
tion between 
onservation ofsymple
ti
ity, the pull-ba
k operation, and 
onservation laws, in the setting of theshallow water equations.The potential vorti
ity for the shallow water system isq = h�1�f + �u2�x1 � �u1�x2� = f� + xi2ui;1 � xi1ui;2 ;Arti
le submitted to Royal So
iety



Vorti
ity and symple
ti
ity 7where the se
ond expression is in Lagrangian mass 
oordinates satisfying �h = 1.Let 	� represent the pull-ba
k operation from the phase spa
e to the full referen
espa
e, (m; t). Appli
ation to the symple
ti
 2-form results in	�! = (ui;t dt+ ui;� dm�) ^ (xi;t dt+ xi
 dm
)+ f (x1;t dt+ x1� dm�) ^ (x2;t dt+ x2
 dm
)= fxi;tui;� � xi�ui;t + f(x1�x2;t � x1;tx2�)g dm� ^ dt+ fxi2ui;1 � xi1ui;2 + f(x11x22 � x12x21)g dm1 ^ dm2= fxi;tui;� � xi�ui;t + f(x1�x2;t � x1;tx2�)g dm� ^ dt+ q dm1 ^ dm2 ;and	��� = (wi�;t dt+ wi�;� dm�) ^ (xi;t dt+ xi
 dm
)= fxi;twi�;� � xi�wi�;tg dm� ^ dt+ fxi2wi�;1 � xi1wi�;2g dm1 ^ dm2 :Evaluating (	�!;	���) on the set of solutions of the shallow water equations, andtaking (2.12) into a

ount, we �nally obtain	�! = fuiui;� + xi�wi
;
g dm� ^ dt+ q dm1 ^ dm2= fuiui;� + (xi�wi
);
 � xi;�
wi
g dm� ^ dt+ q dm1 ^ dm2= � 12 hu;ui � �e0(�) + e(�)	;� dm� ^ dt+ q dm1 ^ dm2 ;and 	��� = f(uiwi�);� � (xi�wi�);tg dm� ^ dt+ f(xi2wi�);1 � (xi1wi�);2g dm1 ^ dm2= n(uiwi�);� + Æ�� (�e0(�));to dm� ^ dt+nÆ�1 (�e0(�));2 � Æ�2 (�e0(�));1o dm1 ^ dm2 :The pull-ba
k operator 	� 
ommutes with total di�erentiation with respe
t to t;m1,or m2. Consequently	���;� = n(uiwi�);�� + (�e0(�));t�o dm� ^ dt ;note that the dm1 ^ dm2 
omponent is zero. Therefore the multisymple
ti
 
onser-vation law (2.15) is pulled ba
k to0 = 	�(!;t + ��;�) = q;t dm1 ^ dm2+ n� 12 hu;ui+ e(�)�;t + (uiwi�);�o;� dm� ^ dt :Separating this 
onservation law into its three 
omponents, we obtainq;t = 0; (2.16)n� 12 hu;ui+ e(�)�;t + (uiwi�);�o;� = 0; � = 1; 2: (2.17)Arti
le submitted to Royal So
iety



8 T.J. Bridges, P.E. Hydon and S. Rei
hThe dm1^dm2 
omponent (2.16) en
apsulates the 
onservation of potential vorti
-ity on parti
le paths. Note that the label-spa
e divergen
e of the 
ux of potentialvorti
ity is zero. In the next subse
tion, the geometry of this material 
onservationof PV will be examined in more detail.The other 
onservation laws generated automati
ally by the pull-ba
k in (2.17)are label-spa
e derivatives of the lo
al energy 
onservation law:� 12 hu;ui+ e(�)�;t + (uiwi�);� = 0 : (2.18)This 
onservation law implies that the total energy E is 
onserved, i.e.,�tE = �t Z 12 hu;ui+ e(�) dm = 0;provided that appropriate boundary 
onditions are given.(
) The origin of 
onservation laws obtained by pull-ba
kThe idea of pulling ba
k 
onservation laws to the referen
e spa
e 
an be puton a more general footing. Hydon (2002) shows that for any multisymple
ti
 sys-tem of PDEs (1.5), the 2-form 
onservation laws are obtained by di�erentiating
onservation laws that 
orrespond to translational symmetry in ea
h independentvariable.For the multisymple
ti
 shallow-water equations, translations in t produ
e en-ergy 
onservation (2.18). Translations in label-spa
e produ
e the following interest-ing 
onservation laws:(uixi1 + fx1x21);t + �e(�)� 12uiui � fx1u2 + xi1wi1�;1 + (xi1wi2);2 = 0; (2.19)(uixi2 + fx1x22);t + (xi2wi1);1 + �e(�)� 12uiui � fx1u2 + xi2wi2�;2 = 0: (2.20)These 
an be regarded as expressing 
onservation of Lagrangian momentum. Theyare not 
onne
ted with the ordinary (Eulerian) momentum 
onservation law, whi
h
orresponds to translations in x. We have already seen that (2.17) are obtained aslabel-spa
e derivatives of (2.18). It is easy to verify that the potential vorti
ity 
on-servation law (2.16) is a di�erential 
onsequen
e of (2.19) and (2.20). Spe
i�
ally,(2.16) is the m1-derivative of (2.20) minus the m2-derivative of (2.19). Hen
e fromthe Lagrangian viewpoint, (2.19) and (2.20) are more fundamental than (2.16); un-like potential vorti
ity, however, they are stri
tly Lagrangian and 
annot be writtensolely in Eulerian variables.(d) Symmetries and multisymple
ti
 
onservation lawsIf a system of equations stems from a variational prin
iple, Noether's theo-rem links 
onservation laws with symmetries of the Lagrangian form (whi
h are
alled variational symmetries). Noether's theorem has been extended to Hamilto-nian systems (see Olver 1993), and is applied to parti
le relabelling symmetriesin Egger (1994), Padhye & Morrison (1996), Padhye (1998) and Albert(1997a,1997b). Indeed, Padhye & Morrison (1996) write down the generalizedArti
le submitted to Royal So
iety



Vorti
ity and symple
ti
ity 9form of the relabelling symmetry, and identify all known symmetries of the La-grangian and Euler-Lagrange map. The 
orresponding 
onserved quantities of theideal 
uid were summarized in both Lagrangian and Hamiltonian frameworks byPadyhe (1998).The shallow water equations (2.5)-(2.8) possess various point symmetries, whi
h
an be found systemati
ally using the approa
h pioneered by Lie (see Hydon,2000, for a simple introdu
tion). Bila (2002) gives the most 
omplete study ofthe symmetries and 
onservation laws of the shallow water equations. However,the approa
h here, based on the multisymple
ti
 formulation leads to a 
onne
tionbetween the 
uxes of the 
onservation law and symmetry. A restri
ted form ofNoether's theorem for multisymple
ti
 systems was �rst derived in (
f. Bridges,1997a, App. C). A general form of Noether's Theorem for multisymple
ti
 systems
an be found in Hydon (2002).The simplest symmetries of the shallow water equations are the invarian
e undertranslations x 7! x+ " for any " 2 R2 . These symmetries lead to the unremarkable
onservation laws (2.5) and (2.6).The symmetries that lead to 
onservation of potential vorti
ity and total energyare parti
le relabelling and time-translation respe
tively. It 
an be shown that theseare the only symmetries that have no e�e
t upon (and are independent of) thevariables x and u.The impli
ation of relabelling symmetry seems to have been �rst pointed outby New
omb (1967), who dis
overed a relabelling symmetry for in
ompressibleideal 
uid without internal energy. The 
onne
tion between the 
onservation ofpotential vorti
ity and a Lagrangian (variational) symmetry was �rst pointed outby Ripa (1981) in the 
ontext of in
ompressible strati�ed 
ows, and Salmon (1982)notes the 
onne
tion as well. New
omb (1967) and Bretherton (1970) have alsorelated relabeling symmetry to Kelvin's 
ir
ulation theorem.In this se
tion, we demonstrate that the relabelling and time-translation sym-metries are en
oded in the multisymple
ti
 
onservation law, explaining why thepull-ba
k of this law produ
es 
onservation of total energy and potential vorti
ity.A parti
le relabelling transformation is a di�eomorphism of the label spa
e:� : (m1;m2) 7! (m̂1(m1;m2); m̂2(m1;m2)) :Neither x nor u are a�e
ted by any su
h transformation. However, the Hamiltoniandensity S depends on an arbitrary fun
tion e(�), so the transformation is a sym-metry for every e(�) only if � is invariant. (It is easy to verify that this ne
essary
ondition is also suÆ
ient.) By de�nition,� = det(xm) = det(xm̂) det(m̂m) where det(m̂m) = m̂1;1m̂2;2 � m̂1;2m̂2;1 :Therefore � is invariant if and only ifdet(m̂m) = 1; (2.21)so that � is an area-preserving transformation. The set of all parti
le relabellingsymmetries is an in�nite-dimensional Lie (pseudo-) group. Every one-parameter Liesubgroup of this group has a generator of the formX = �;2 ��m1 � �;1 ��m2 ;Arti
le submitted to Royal So
iety



10 T.J. Bridges, P.E. Hydon and S. Rei
hfor some smooth fun
tion �(m). A fun
tion F (m; t;x;u) is invariant under thesubgroup generated by X if and only if XF = 0. If F also depends upon derivativesof x and u, the same 
ondition for invarian
e applies on
e X has been prolongedto take a

ount of the group a
tion on derivatives. For example, � is a fun
tion ofthe �rst derivatives xi�. The prolongation of the generator to these derivatives isX(1) = �;2 ��m1 � �;1 ��m2 + fxi2�;1� � xi1�;2�g ��xi� ; (2.22)and thereforeX(1)� = x22(x12�;11 � x11�;21)� x21(x12�;12 � x11�;22)�x12(x22�;11 � x21�;21) + x11(x22�;12 � x21�;22) = 0 ;whi
h is to be expe
ted, be
ause we obtained the relabelling symmetries by requir-ing that � is invariant.Before we examine the link between the parti
le relabelling symmetries and 
on-servation of potential vorti
ity within the multisymple
ti
 framework, it is instru
-tive to seek generalizations of the Hamiltonian density S that retain the parti
lerelabelling symmetries. We restri
t attention to densities of the form~S = ~S(t;x;u;xm);so that the resulting Hamiltonian system 
an be re
ast as a multisymple
ti
 system,using the matri
es K;L;M that were de�ned in x2(a). Consequently, the 
onserva-tion law (2.15) holds for the same 2-forms ! and �� that were used earlier, bearingin mind that the auxiliary variables wi� are now de�ned as follows:wi� = � � ~S�xi� :If ~S has no expli
it dependen
e on t, it is invariant under translations in time. Thedensity ~S is invariant under the parti
le relabelling symmetries generated by X ifand only ifX(1) ~S � �X(1)t� � ~S�t + �X(1)xi� � ~S�xi + �X(1)ui� � ~S�ui + �X(1)xi�� � ~S�xi� = 0:But X(1)t = X(1)xi = X(1)ui = 0;so ~S 
an depend arbitrarily on t, x, and u. Given any smooth fun
tion F (xm),X(1)F (xm) = fxi2�;1� � xi1�;2�g �F (xm)�xi�= �;11xi2 �F (xm)�xi1 + �;12�xi2 �F (xm)�xi2 � xi1 �F (xm)�xi1 ���;22xi1 �F (xm)�xi2 ;Arti
le submitted to Royal So
iety



Vorti
ity and symple
ti
ity 11so for F (xm) to be invariant under arbitrary parti
le relabelling transformations,the following 
onditions must hold:xi2 �F (xm)�xi1 = 0; xi2 �F (xm)�xi2 � xi1 �F (xm)�xi1 = 0; xi1 �F (xm)�xi2 = 0:By using the method of 
hara
teristi
s, it is easy to show that F is invariant ifand only if it is a fun
tion of � alone. Therefore ~S admits the group of parti
lerelabelling symmetries provided that it is a fun
tion of t, x;u; and � only. Notethat this result is based solely on mathemati
al 
onsiderations. There may be goodphysi
al reasons for restri
ting the 
lass of allowable fun
tions still further. Forexample, the governing equations in
ludexi;t = � ~S�ui ;so if u is to represent the parti
le velo
ity, the most general form that ~S 
an takeis ~S = 12 hu;ui+ �(t;x; �) ;for some fun
tion �.Our main observation is that whatever fun
tional form ~S(t;x;u; �) takes, po-tential vorti
ity is 
onserved on the solutions of the system (1.5), where nowSM = ~S + xi�wi� :This PV 
onservation 
an be seen by substituting (1.5) into	�! = fxi;tui;� � xi�ui;t + f(x1�x2;t � x1;tx2�)g dm� ^ dt+ q dm1 ^ dm2 ;	��� = fxi;twi�;� � xi�wi�;tg dm� ^ dt+ fxi2wi�;1 � xi1wi�;2g dm1 ^ dm2 ;and rearranging terms in the same way as in the previous se
tion. After a slightlymessy 
al
ulation, we obtain	�! = ( ~S � � � ~S�� );� dm� ^ dt+ q dm1 ^ dm2 ;	��� = 8<:(uiwi�);� + Æ��  � � ~S�� !;t9=; dm� ^ dt+8<:Æ�1 � � ~S�� !;2 � Æ�2 � � ~S�� !;19=; dm1 ^ dm2 :Therefore the pull-ba
k of the multisymple
ti
 
onservation law is	�(!;t + ��;�) = n ~S;t + (uiwi�);�o;� dm� ^ dt+ q;t dm1 ^ dm2 = 0:Arti
le submitted to Royal So
iety
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hHen
e if the Hamiltonian density is invariant under arbitrary area-preserving par-ti
le relabelling transformations, potential vorti
ity is 
onserved. Furthermore, theremaining 
omponents of the 
onservation law lead to the result	� � ~S;t + (uiwi�);�� = f(t);for some fun
tion f . From the equations of motion, we obtainf(t) = 	� � ~S�t ! ;so f(t) = 0 if ~S is invariant under translations in time. For the shallow waterequations, this leads to the lo
al energy 
onservation law (2.18).How is the 
onservation of potential vorti
ity en
oded in the multisymple
ti
 2-forms? To answer this question, it is suÆ
ient to restri
t attention to the dm1^dm2
omponent. First note that! = dui ^ dxi + f dx1 ^ dx2 (2.23)is invariant under parti
le relabelling symmetries, be
ause xi and ui are invariantand the exterior derivative d is essentially 
oordinate-invariant. Neither of the 
ux2-forms �� is invariant; however, we have shown that if the Hamiltonian densityis invariant under parti
le relabelling then the dm1 ^ dm2 
omponent of 	���;�vanishes. Finally, the pull-ba
k of ! to label spa
e is the produ
t of the potentialvorti
ity and the 2-form dm1 ^ dm2 (whi
h is itself invariant under the relabellingsymmetries). Consequently q;t = 0.3. Parti
le methods and 
onservation of potential vorti
ityIn this se
tion, we dis
uss symple
ti
ity and 
onservation of PV for a Lagrangianparti
le dis
retization of the shallow-water equations. Parti
le methods, su
h assmoothed parti
le hydrodynami
s (SPH) (
f. Monaghan (1992), are based on anapproximation of the layer-depth of typeh(x; t) = NXk=1mk (kx�Xk(t)k); (3.1)where  (r) � 0 is an appropriate shape fun
tion andXk(t) are Lagrangian parti
leswith mass mk following the 
uid 
ow. Let us assume for a moment that h(x; t) isgiven (or has been 
omputed). Then ea
h parti
le position x(m; t) satis�es thefollowing time-dependent Hamiltonian ODE:xt = u; ut = �fJu� grxh(x; t): (3.2)It is obvious that the symple
ti
 2-form !, de�ned by (2.23), is 
onserved alongsolutions and, as pointed out before, this gives rise to 
onservation of PV. In fa
t,this observation gives a new interpretation of the statement made by Abarbanel& Holm (1987) (see equation (81) on page 3375) in the 
ontext of the primitiveunapproximated 
uid equations.Arti
le submitted to Royal So
iety



Vorti
ity and symple
ti
ity 13It is worth 
arrying this thought experiment a step further. Following this pointof view { taking h as given { 
onservation of PV 
an be shown for the indu
edtwo degrees-of-freedom Hamiltonian system of the above form (3.2) with h anyarbitrary (possibly time-dependent) potential energy fun
tion. The restri
tion ofthe asso
iated symple
ti
 2-form ! is to be taken in the following sense. Consider afamily of solutions (x(m; t);u(m; t)) 2 R4 parameterized by their initial positionsm = x(0), then the pull-ba
k des
ribed in x1 leads to 
onservation of PV.Of 
ourse, the above point of view is not equivalent to the multi-symple
ti
approa
h where the layer-depth h is also treated as a dynami
al variable and where! is no longer 
onstant along solutions of the full 
uid equations of motion. Wewill 
ome ba
k to this point below.Another standard result (e.g., Frank & Rei
h (2003)) states that the layer-depth approximation (3.1) satis�es a 
ontinuity equationht = �rx(h�u)with the velo
ity �eld �u(x; t) appropriately de�ned. Hen
e the energy of ea
h par-ti
le in the 
ow 
hanges a

ording toddt �12ku(t)k2 + gh(x(t); t)� = �grx(h�u):So far we have assumed the dis
rete parti
le paths Xk(t), k = 1; : : : ; N , in(3.1) as given. Hen
e the next step is to set up a 
losed system of equations forfXkgk=1;::: ;N . In smoothed parti
le hydrodynami
s these equations are given byd2dt2Xk = �fJ ddtXk � grXkh(Xk; fXlg)with h(Xk; fXlg) = NXl=1 ml (kXk �Xlk):Again, we 
an asso
iate a symple
ti
 form with ea
h parti
le Xk. Let us denotethis form by !k. While we had ddt!k = 0 along solutions x(mk; t) = Xk(t) of (3.2),we now treat h as a dynami
 variable and obtainddt!k = �g NXl=1 dXk ^mlDXkXl (kXk �Xlk) dXl;whi
h 
an be viewed as a dis
retization of the multi-symple
ti
 
onservation law(2.15). Sin
e the label spa
e has been repla
ed by N point labelsmk, a pull-ba
k ofthe symple
ti
 
onservation law to label spa
e is no longer possible. Hen
e 
onser-vation of PV holds for parti
le methods only in the sense of a single two degrees-of-freedom Hamiltonian ODE (3.2) with a 
ontinuous set of initial data. This \
ontin-uum" interpretation of parti
le methods is the ba
kbone of the argument suggestedby Frank & Rei
h (2003) to prove 
onservation of 
ir
ulation for the dis
retizedsystem.Arti
le submitted to Royal So
iety



14 T.J. Bridges, P.E. Hydon and S. Rei
h4. Symple
ti
ity and vorti
ity for other ideal-
uid modelsIn this se
tion, we brie
y des
ribe the impli
ations of the 
onstru
tions in x2 basedon 
onservation of symple
ti
ity for other models in Lagrangian 
uid dynami
s. Forthree-dimensional Lagrangian 
uid dynami
s the main result is that the pull-ba
kto the referen
e spa
e of the symple
ti
 form leads to Ertel's Theorem.(a) Semi-geostrophi
 shallow water equationsIn the semi-geostrophi
 approximation (
f. Salmon (1988), Roulstone &Norbury (1994), Roulstone & Sewell (1997)), the shallow water equations(2.5)-(2.8) are repla
ed byu1;t � fx2;t = ��e(�)�x11 �;1 +��e(�)�x12 �;2 ; (4.1)u2;t + fx1;t = ��e(�)�x21 �;1 +��e(�)�x22 �;2 ; (4.2)0 = fu1 ���e(�)�x21 �;1 ���e(�)�x22 �;2 ; (4.3)0 = fu2 +��e(�)�x11 �;1 +��e(�)�x12 �;2 ; (4.4)where e(�) = g2� : (4.5)Here u is the geostrophi
 velo
ity, not the parti
le velo
ity (whi
h is x;t). Thissystem of equations is equivalent to the following Hamiltonian system:� �fJ �II �f�1J ��xu�t = �ÆH=ÆxÆH=Æu� ; J = � 0 �11 0 � ; (4.6)where H(x;u) = Z S dm ; S = 12 hu;ui+ e(�) : (4.7)The skew-symmetri
 operator on the left-hand side of (4.6) is not invertible. Thisdegenera
y re
e
ts the 
onstraints in the semi-geostrophi
 formulation. In otherwords, the gradient of H is required to be in the range of the skew-symmetri
operator; this solvability 
ondition imposes the 
onstraints. A 
losed but degeneratetwo-form is 
alled a pre-symple
ti
 form, and for this system the pre-symple
ti
 formis ! = Z ! dm ; ! = du1 ^ dx1 + du2 ^ dx2 + fdx1 ^ dx2 + f�1du1 ^ du2 :This two-form di�ers from the symple
ti
 form for the standard shallow-water equa-tions by the last term only. In the multisymple
ti
 formulation, the analysis of x2goes through with the following minor 
hanges.Arti
le submitted to Royal So
iety



Vorti
ity and symple
ti
ity 151. The skew-symmetri
 matrix K has two extra nonzero 
omponents:K3;4 = f�1; K4;3 = �f�1:2. The potential vorti
ity isq = f�1 f (u1 � fx2);1 (u2 + fx1);2 � (u1 � fx2);2 (u2 + fx1);1 g :(As before, the potential vorti
ity is the dm1 ^ dm2 
omponent of 	�!; the
orresponding 
omponent of 	���;� is zero on solutions, so q is 
onserved onparti
le paths.)3. The energy 
onservation law, whi
h 
an be dedu
ed from the dm� ^ dt 
om-ponents of the pull-ba
k of the symple
ti
 
onservation law, isS;t + (xi;twi�);� = 0:(b) Three-dimensional ideal 
uid dynami
sThe Euler equations for in
ompressible 
uid dynami
s in three dimensions, writ-ten in terms of the Lagrangian mass 
oordinates m = (m1;m2;m3), arexi;t = ui ; xi;�ui;t = �p;� ; det(xm) = 1:Here xm is the Ja
obian matrix, so the in
ompressibility 
ondition amounts to� � "��
 x1� x2� x3
 = 1;where "��
 is the alternating tensor and xi� = xi;�.The Euler equations have the same Hamiltonian formulation (1.2) in two andthree dimensions. From (1.1), the Hamiltonian density isS = 12 hu;ui+ (1� det(xm)) p :As usual, we 
onstru
t the multisymple
ti
 formulation by de�ning the auxiliaryvariables wi� = � �S�xi� :Then the Euler equations 
an be rewritten as�ui;t � wi�;� = 0;xi;t = ui ;xi;� = xi� ;0 = �S�xi� + wi� ;0 = 1� �:Let z = (xi; ui; wi�; xi�; p)T, where the variables are ordered by the value of i(and, where there are two subs
ripts, by the value of � for ea
h i). Then the Eulerequations amount to Kz;t + L�z;� =rzSM (z);Arti
le submitted to Royal So
iety
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hwhere K;L1;L2;L3 are skew-symmetri
 matri
es whose only nonzero 
omponentsare K1;4 = K2;5 = K3;6 = �1; K4;1 = K5;2 = K6;3 = 1;L11;7 = L12;10 = L13;13 = �1; L17;1 = L110;2 = L113;3 = 1;L21;8 = L22;11 = L23;14 = �1; L28;1 = L211;2 = L214;3 = 1;L31;9 = L32;12 = L33;15 = �1; L39;1 = L312;2 = L315;3 = 1;and where SM = S + xi�wi�. The 
onservation law of symple
ti
ity is!;t + ��;� = 0;where ! = dz ^Kdz = dui ^ dxi and �� = dz ^ L�dz = dwi� ^ dxi :The pull-ba
k of the multisymple
ti
 
onservation law to (m; t) spa
e is0 = 	� (!;t + ��;�) = "��
 

;t dm� ^ dm�+ n� 12 hu;ui�;t + (uiwi�);�o;� dm� ^ dt ;where 

 = "��
 xi�ui;� = "��
 (xi�ui);� : (4.8)(This result derived in essentially the same way as the 
onservation laws in x2;details are omitted for the sake of brevity.) Thus the pull-ba
k leads to 
onservationof total energy, � 12 hu;ui�;t + (uiwi�);� = 0;and 
onservation of 
 = (
1;
2;
3)T:
;t = 0 :Now, from (4.8), 

 = "��
 xi�xj� �ui�xj ;whi
h 
an be written in the form
 = �x�1m (rx � u): (4.9)In 
ontrast to 
orresponding result for the two-dimensional Euler equations (
f.x1), 
 is not the vorti
ity. Ertel's theorem (
f. M�uller 1995, Salmon 1982) isan immediate 
onsequen
e of (4.9). Let � be any materially 
onserved quantity, sothat �;t = 0. Then the ve
tor produ
tQ = 

�;
Arti
le submitted to Royal So
iety
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ity and symple
ti
ity 17is also materially 
onserved: Q;t = 0. Unlike 
, the quantity Q has a representationin terms of the Eulerian variables x and u only:Q = �hrx�;rx � ui:For 
ompressible homentropi
 
uids, the only signi�
ant modi�
ation is to re-pla
e (4.9) by 
 = ��x�1m (rx � u); thenQ = �hrx�; (rx � u)i� ;where � = 1=� the density of the 
uid.This proje
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