
Vortiity and sympletiity in Lagrangianuid dynamisBy Thomas J. Bridges1, Peter E. Hydon1 & Sebastian Reih21Department of Mathematis and Statistis, University of Surrey, Guildford,Surrey GU2 7XH, UK2Department of Mathematis, Imperial College, London SW7 2BZ, UKThe relationship between potential vortiity (PV) and the sympleti form for theLagrangian form of the shallow water equations and its impliations are onsidered.Starting with the sympleti form, the PV is found by the pull-bak operation tothe referene spae. At �rst sight, the enoding of PV in the sympleti form ap-pears to be independent of the partile relabelling symmetry. We arry the analysisa step further in two ways. Using the onservation of sympletiity as a startingpoint, the uxes of sympletiity are di�erential forms, and a omplete pull-bak ofthe ux forms leads to a geometri desription of PV onservation. Seondly we usesymmetry methods to give a rigorous onnetion between partile relabelling, sym-pletiity and PV onservation. Generalisations of these issues to semi-geostrophiow and three-dimensional Lagrangian uid ows, and the onnetion with Ertel'stheorem are also disussed.Keywords: geophysial uid dynamis, potential vortiity, multisympleti,partile relabelling, symmetry1. IntrodutionIn Lagrangian uid dynamis, the 1-form � = hu; dxi = u1dx1 + u2dx2 + u3dx3plays the dual role of a irulation density and the generator for a anonial sym-pleti struture. This elementary observation an easily be seen using the equationsgoverning inompressible Lagrangian uid dynamis in two spae dimensions�x1�t = u1 ; �u1�t = � �x2�m2 �p�m1 + �x2�m1 �p�m2 ;�x2�t = u2 ; �u2�t = �x1�m2 �p�m1 � �x1�m1 �p�m2 :Here x1 = m1 and x2 = m2 at t = 0, where m = (m1;m2) are Lagrangian massoordinates, p is the pressure, and the inompressibility onstraint isdet(xm) = 1; where xm = " �x1�m1 �x1�m2�x2�m1 �x2�m2# :This system is a onstrained Hamiltonian system with the Hamiltonian funtionH(x;u; p) = Z S dm ; where S = 12 hu;ui+ (1� det(xm)) p ; (1.1)Artile submitted to Royal Soiety TEX Paper



2 T.J. Bridges, P.E. Hydon and S. Reihand the anonial representation is24 0 �I 0I 0 00 0 0 350�xup1A;t = 0�ÆH=ÆxÆH=ÆuÆH=Æp1A : (1.2)The sympleti form for this system is the integral of the exterior derivative ofthe irulation 1-form! = Z d� dm = Z du ^ dx dm = Z ( du1 ^ dx1 + du2 ^ dx2 ) dm ; (1.3)where the line over ! signi�es that it is integrated over m-spae.On the other hand, in the lassial desription, the irulation is obtained byintegrating the 1-form � along a loop in the (x;u)�spae, and by Stokes Theorem,the irulation an be related to a surfae integral of the vortiity (f. Bathelor1967, p. 93). Comparing this lassial observation with (1.3) suggests that it isnatural to expet some onnetion between vortiity and sympletiity.When stripped of the integral, the density of the sympleti form, ! = d�, hasthe following preise relation with vortiity, �! = 
 dm1 ^ dm2 : (1.4)Here 
 is the vortiity in Lagrangian oordinates,
 = �x1�m2 �u1�m1 � �x1�m1 �u1�m2 + �x2�m2 �u2�m1 � �x2�m1 �u2�m2 ;and  � is the pull-bak mapping whih is obtained by restriting the phase spaeoordinates x;u to the label spae m, i.e., x = x(m1;m2), u = u(m1;m2). Henethe pull-bak is de�ned by �(dx) = �x�m1 dm1 + �x�m2 dm2 ;  �(du) = �u�m1 dm1 + �u�m2 dm2 :The generalization to higher dimensions and to other funtions and forms is obvious(f. Cartan (1983, p. 28)). The proof of (1.4) is therefore � ! =  �(du ^ dx) =  �(du) ^  �(dx)= � �u�m1 dm1 + �u�m2 dm2� ^ � �x�m1 dm1 + �x�m2 dm2�= 2Xi=1 �� �ui�m1 dm1 + �ui�m2 dm2� ^ � �xi�m1 dm1 + �xi�m2 dm2��= 
 dm1 ^ dm2 :A similar argument applied to the shallow water equations in geophysial uiddynamis shows that the pull-bak of the sympleti form density there results in thepotential vortiity. The details of this onstrution are given in x2. The only plaein the literature that we have seen the onnetion between potential vortiity andsympletiity disussed is in the work of Abarbanel & Holm (1987) (see equationArtile submitted to Royal Soiety



Vortiity and sympletiity 3(81) on page 3375). There it is mentioned in passing that the pullbak of the densityof the sympleti form results in the potential vortiity, but the onsequenes of thisobservation are not studied.Arnold & Khesin (1998) emphasize that the vortiityan be haraterized by a two form (see pages 22 and 46), but the onnetionbetween vortiity and sympletiity is not explored.While the above examples and the work of Abarbanel & Holm show a on-netion between vortiity or potential vortiity and sympletiity, there are severalunanswered questions. The phase spae variables x;u depend on (m1;m2; t). Whypull bak to the label spaem = (m1;m2)? Why not pull bak to the full referenespae (m1;m2; t)? Indeed, this more general pull-bak leads to both vortiity onser-vation and energy onservation. Generalisations to (m; t) 2 R4 are also onsideredand lead to a sympleti derivation of Ertel's Theorem.Further geometry is obtained by stripping away the integral in the 2-form whihde�nes the sympleti struture, leading to a onservation law whih an be gener-ated on the referene spae, a onservation law for sympletiity. This onservationlaw arises in a natural way when the equations governing Lagrangian uid dynam-is and geophysial uid dynamis are formulated in a multisympleti setting. Forthe purposes of this paper a multisympleti PDE is a system of PDEs of the formKz;t + Lz;1 +Mz;2 =rzSM (z) ; z 2 Rn ; (1.5)where K, L and M are skew-symmetri matries and SM : Rn ! R is a smoothfuntion. Equivalently, suh PDEs an be haraterized as Lagrangian PDEs withthe Lagrangian funtional in the anonial formL = ZV � 12 hz;Mz;ti+ 12 hz;Kz;1i+ 12 hz;Lz;2i � SM (z)	 dt dx1dx2 ;where h�; �i is a standard inner produt on Rn , and RV is a volume integral. SeeBridges (1997a,1997b) for general properties of suh systems.In the multisympleti setting, the uxes of sympletiity arise as 2-forms. Thesympleti 2-form then satis�es a onservation law of the form��t! + ��m1�1 + ��m2�2 = 0 ; (1.6)where �1 and �2 are a pair of 2-forms that represent the ux of sympletiity.Pulling bak this equation to the label spae, m, leads to��t �! + ��m1 ��1 + ��m2 ��2 = 0 ; (1.7)where  ��1 and  ��2 are 2-forms on the label spae that represent the ux ofpotential vortiity.It is in the investigation of the uxes in the sympleti onservation law that theimportane of partile relabelling and the homentropi nature of the uid arises. Forexample, this formulation leads to the result that potential vortiity (or vortiity)is onserved on partile paths if and only if the divergene of the pull-bak of theux 2-forms to the label spae vanish identially, that is ifdiv( ��l;  ��2) =rm �  �� = 0 ; � = (�1;�2)T : (1.8)Artile submitted to Royal Soiety



4 T.J. Bridges, P.E. Hydon and S. ReihWe will show that a suÆient ondition for (1.8) to be satis�ed is the the Hamilto-nian funtion is invariant under partile relabelling (homentropi). Note that thisderivation of PV onservation is fundamentally di�erent from the ones typiallygiven in uid dynamis (ompare, for example, Salmon (1998, p. 302)).In x2, the Lagrangian form of the shallow water equations is treated in detail,and the following features are treated in turn: the enoding of PV in sympletiity,the multisympleti struture that leads to a geometri form of PV onservation, thepull-bak as a generator of PV and energy onservation, and the use of symmetrymethods to establish rigorously the onnetion between partile relabelling and PVonservation.One of the motivations of this paper is understand the geometri struture ofLagrangian uid dynamis in order to inorporate it into numerial methods. In x4we show how the ideas in this paper an inuene the design of numerial methods.The ideas generalize in a straightforward way to other systems in Lagrangianuid dynamis, and it x4 we briey onsider the semi-geostrophi equations andthree-dimensional Lagrangian inompressible uid dynamis.2. Multisympleti GFD: shallow water equationsIn this setion, the shallow water equations will be onsidered in the Lagrangianpartile-path representation. The onnetion between potential vortiity and sym-pletiity will be established, as will onditions for onservation of potential vortiityalong partile paths, by onstruting the ux 2-forms assoiated with onservationof sympletiity.As in the introdution, let x 2 R2 , u 2 R2 represent the position and veloityof the uid partiles, parametrized by Lagrangian mass oordinatesm = (m1;m2),and let h 2 R represent the uid depth. The system is rotating at onstant angularveloity f=2.Heneforth, we use Latin indies to denote omponents of x and u, and Greekindies to denote omponents of m; the usual summation onvention is adopted.Total derivatives with respet to t or m�, for whih all variables are regarded asfuntions of (m1;m2; t), are denoted by the subsript t or � after a omma. Forexample, xi;� = �xi(m; t)�m� ; xi;�t = �2xi(m; t)�m��t ; et:Partial derivatives with respet to any other variable are written in full.De�ne the Jaobian matrixxm = � x11 x12x21 x22 � where xi� � xi;�:Conservation of mass redues to h� = 1 where � = det(xm) = x11x22�x12x21. Thegoverning equations for u and x areu1;t = �(x22 � p);1 + (x21 � p);2 + fu2; (2.1)u2;t = (x12 � p);1 � (x11 � p);2 � fu1; (2.2)x1;t = u1; (2.3)x2;t = u2: (2.4)Artile submitted to Royal Soiety



Vortiity and sympletiity 5The pressure is de�ned by p = �e0(�) where e(�) is the spei� internal energy, inhomentropi form. The lassial shallow-water equations are reovered by takinge(�) = g=(2�).In terms of e(�), the equations of motion amount tou1;t � fx2;t = ��e(�)�x11 �;1 +��e(�)�x12 �;2 ; (2.5)u2;t + fx1;t = ��e(�)�x21 �;1 +��e(�)�x22 �;2 ; (2.6)x1;t = u1 ; (2.7)x2;t = u2 : (2.8)This system has a Hamiltonian representation with anonial oordinates (x;u):� �fJ �II 0 ��xu�t = �ÆH=ÆxÆH=Æu� ; J = � 0 �11 0 � ;where H(x;u) = Z S dm ; S = 12 hu;ui+ e(�) : (2.9)The sympleti form for this system is! = Z ! dm ; !du1 ^ dx1 + du2 ^ dx2 + fdx1 ^ dx2 :We will prove that  �! = q dm1^dm2, where q is the potential vortiity. However,we �rst reast the system into a multisympleti formulation in order to deduefurther information. (a) A multisympleti formulationIntrodue the additional variableswi� � � �S�xi� = ��e(�)�xi� = �e0(�) ���xi� = p(�) ���xi� ;and the extended set of dependent variablesz = (x1; x2; u1; u2; w11; w12; w21; w22; x11; x12; x21; x22)T ; (2.10)so that z 2 R12 . Then (2.5)-(2.8) an be written as the following system of �rst-order PDEs:�u1;t + fx2;t � w11;1 � w12;2 = 0;�u2;t � fx1;t � w21;1 � w22;2 = 0;xi;t = ui ; i = 1; 2;xi;� = xi� ; i = 1; 2; � = 1; 2;0 = �e(�)�xi� + wi� ; i = 1; 2; � = 1; 2:Artile submitted to Royal Soiety



6 T.J. Bridges, P.E. Hydon and S. ReihThis system is of the form (1.5) withSM (z) = S + xi�wi� = 12 hu;ui+ e(�) + xi�wi� : (2.11)Here K;L;M 2 R12�12 are skew-symmetri matries with nonzero entriesK1;2 = f; K1;3 = �1; K2;1 = �f; K2;4 = �1; K3;1 = 1; K4;2 = 1;L1;5 = �1; L2;7 = �1; L5;1 = 1; L7;2 = 1;M1;6 = �1; M2;8 = �1; M6;1 = 1; M8;2 = 1:Note that SM (z) in (2.11) is de�ned loally (for it involves no integrals), andit di�ers from the lassial Hamiltonian funtion density S by the third term. Thefollowing identities hold:xi� ���xi� = �Æ�� ; xi� ���xj� = �Æij ;where Æ is the Kroneker delta. Thereforexi�wi� = ��e0(�)Æ�� ; xi�wj� = ��e0(�)Æij ; (2.12)and so the multisympleti density SM an be redued to the formSM (z) = 12 hu;ui+ e(�)� 2�e0(�): (2.13)However, in order for (1.5) to yield the multisympleti shallow water equations,SM (z) must be expressed in terms of the multisympleti oordinates, i.e. in theform (2.11).The abstrat formulation (1.5) gives rise to a onservation law of sympletiity(Bridges, 1997b)(dz ^Kdz);t + (dz ^ Ldz);1 + (dz ^Mdz);2 = 0; (2.14)whih, for the present system, amounts to!;t + ��;� = 0 ; (2.15)where ! = dui ^ dxi + f dx1 ^ dx2 and �� = dwi� ^ dxi ; � = 1; 2:(b) Pullbak and the geometry of onservation lawsIn this setion, we explore in detail the onnetion between onservation ofsympletiity, the pull-bak operation, and onservation laws, in the setting of theshallow water equations.The potential vortiity for the shallow water system isq = h�1�f + �u2�x1 � �u1�x2� = f� + xi2ui;1 � xi1ui;2 ;Artile submitted to Royal Soiety



Vortiity and sympletiity 7where the seond expression is in Lagrangian mass oordinates satisfying �h = 1.Let 	� represent the pull-bak operation from the phase spae to the full referenespae, (m; t). Appliation to the sympleti 2-form results in	�! = (ui;t dt+ ui;� dm�) ^ (xi;t dt+ xi dm)+ f (x1;t dt+ x1� dm�) ^ (x2;t dt+ x2 dm)= fxi;tui;� � xi�ui;t + f(x1�x2;t � x1;tx2�)g dm� ^ dt+ fxi2ui;1 � xi1ui;2 + f(x11x22 � x12x21)g dm1 ^ dm2= fxi;tui;� � xi�ui;t + f(x1�x2;t � x1;tx2�)g dm� ^ dt+ q dm1 ^ dm2 ;and	��� = (wi�;t dt+ wi�;� dm�) ^ (xi;t dt+ xi dm)= fxi;twi�;� � xi�wi�;tg dm� ^ dt+ fxi2wi�;1 � xi1wi�;2g dm1 ^ dm2 :Evaluating (	�!;	���) on the set of solutions of the shallow water equations, andtaking (2.12) into aount, we �nally obtain	�! = fuiui;� + xi�wi;g dm� ^ dt+ q dm1 ^ dm2= fuiui;� + (xi�wi); � xi;�wig dm� ^ dt+ q dm1 ^ dm2= � 12 hu;ui � �e0(�) + e(�)	;� dm� ^ dt+ q dm1 ^ dm2 ;and 	��� = f(uiwi�);� � (xi�wi�);tg dm� ^ dt+ f(xi2wi�);1 � (xi1wi�);2g dm1 ^ dm2= n(uiwi�);� + Æ�� (�e0(�));to dm� ^ dt+nÆ�1 (�e0(�));2 � Æ�2 (�e0(�));1o dm1 ^ dm2 :The pull-bak operator 	� ommutes with total di�erentiation with respet to t;m1,or m2. Consequently	���;� = n(uiwi�);�� + (�e0(�));t�o dm� ^ dt ;note that the dm1 ^ dm2 omponent is zero. Therefore the multisympleti onser-vation law (2.15) is pulled bak to0 = 	�(!;t + ��;�) = q;t dm1 ^ dm2+ n� 12 hu;ui+ e(�)�;t + (uiwi�);�o;� dm� ^ dt :Separating this onservation law into its three omponents, we obtainq;t = 0; (2.16)n� 12 hu;ui+ e(�)�;t + (uiwi�);�o;� = 0; � = 1; 2: (2.17)Artile submitted to Royal Soiety



8 T.J. Bridges, P.E. Hydon and S. ReihThe dm1^dm2 omponent (2.16) enapsulates the onservation of potential vorti-ity on partile paths. Note that the label-spae divergene of the ux of potentialvortiity is zero. In the next subsetion, the geometry of this material onservationof PV will be examined in more detail.The other onservation laws generated automatially by the pull-bak in (2.17)are label-spae derivatives of the loal energy onservation law:� 12 hu;ui+ e(�)�;t + (uiwi�);� = 0 : (2.18)This onservation law implies that the total energy E is onserved, i.e.,�tE = �t Z 12 hu;ui+ e(�) dm = 0;provided that appropriate boundary onditions are given.() The origin of onservation laws obtained by pull-bakThe idea of pulling bak onservation laws to the referene spae an be puton a more general footing. Hydon (2002) shows that for any multisympleti sys-tem of PDEs (1.5), the 2-form onservation laws are obtained by di�erentiatingonservation laws that orrespond to translational symmetry in eah independentvariable.For the multisympleti shallow-water equations, translations in t produe en-ergy onservation (2.18). Translations in label-spae produe the following interest-ing onservation laws:(uixi1 + fx1x21);t + �e(�)� 12uiui � fx1u2 + xi1wi1�;1 + (xi1wi2);2 = 0; (2.19)(uixi2 + fx1x22);t + (xi2wi1);1 + �e(�)� 12uiui � fx1u2 + xi2wi2�;2 = 0: (2.20)These an be regarded as expressing onservation of Lagrangian momentum. Theyare not onneted with the ordinary (Eulerian) momentum onservation law, whihorresponds to translations in x. We have already seen that (2.17) are obtained aslabel-spae derivatives of (2.18). It is easy to verify that the potential vortiity on-servation law (2.16) is a di�erential onsequene of (2.19) and (2.20). Spei�ally,(2.16) is the m1-derivative of (2.20) minus the m2-derivative of (2.19). Hene fromthe Lagrangian viewpoint, (2.19) and (2.20) are more fundamental than (2.16); un-like potential vortiity, however, they are stritly Lagrangian and annot be writtensolely in Eulerian variables.(d) Symmetries and multisympleti onservation lawsIf a system of equations stems from a variational priniple, Noether's theo-rem links onservation laws with symmetries of the Lagrangian form (whih arealled variational symmetries). Noether's theorem has been extended to Hamilto-nian systems (see Olver 1993), and is applied to partile relabelling symmetriesin Egger (1994), Padhye & Morrison (1996), Padhye (1998) and Albert(1997a,1997b). Indeed, Padhye & Morrison (1996) write down the generalizedArtile submitted to Royal Soiety



Vortiity and sympletiity 9form of the relabelling symmetry, and identify all known symmetries of the La-grangian and Euler-Lagrange map. The orresponding onserved quantities of theideal uid were summarized in both Lagrangian and Hamiltonian frameworks byPadyhe (1998).The shallow water equations (2.5)-(2.8) possess various point symmetries, whihan be found systematially using the approah pioneered by Lie (see Hydon,2000, for a simple introdution). Bila (2002) gives the most omplete study ofthe symmetries and onservation laws of the shallow water equations. However,the approah here, based on the multisympleti formulation leads to a onnetionbetween the uxes of the onservation law and symmetry. A restrited form ofNoether's theorem for multisympleti systems was �rst derived in (f. Bridges,1997a, App. C). A general form of Noether's Theorem for multisympleti systemsan be found in Hydon (2002).The simplest symmetries of the shallow water equations are the invariane undertranslations x 7! x+ " for any " 2 R2 . These symmetries lead to the unremarkableonservation laws (2.5) and (2.6).The symmetries that lead to onservation of potential vortiity and total energyare partile relabelling and time-translation respetively. It an be shown that theseare the only symmetries that have no e�et upon (and are independent of) thevariables x and u.The impliation of relabelling symmetry seems to have been �rst pointed outby Newomb (1967), who disovered a relabelling symmetry for inompressibleideal uid without internal energy. The onnetion between the onservation ofpotential vortiity and a Lagrangian (variational) symmetry was �rst pointed outby Ripa (1981) in the ontext of inompressible strati�ed ows, and Salmon (1982)notes the onnetion as well. Newomb (1967) and Bretherton (1970) have alsorelated relabeling symmetry to Kelvin's irulation theorem.In this setion, we demonstrate that the relabelling and time-translation sym-metries are enoded in the multisympleti onservation law, explaining why thepull-bak of this law produes onservation of total energy and potential vortiity.A partile relabelling transformation is a di�eomorphism of the label spae:� : (m1;m2) 7! (m̂1(m1;m2); m̂2(m1;m2)) :Neither x nor u are a�eted by any suh transformation. However, the Hamiltoniandensity S depends on an arbitrary funtion e(�), so the transformation is a sym-metry for every e(�) only if � is invariant. (It is easy to verify that this neessaryondition is also suÆient.) By de�nition,� = det(xm) = det(xm̂) det(m̂m) where det(m̂m) = m̂1;1m̂2;2 � m̂1;2m̂2;1 :Therefore � is invariant if and only ifdet(m̂m) = 1; (2.21)so that � is an area-preserving transformation. The set of all partile relabellingsymmetries is an in�nite-dimensional Lie (pseudo-) group. Every one-parameter Liesubgroup of this group has a generator of the formX = �;2 ��m1 � �;1 ��m2 ;Artile submitted to Royal Soiety



10 T.J. Bridges, P.E. Hydon and S. Reihfor some smooth funtion �(m). A funtion F (m; t;x;u) is invariant under thesubgroup generated by X if and only if XF = 0. If F also depends upon derivativesof x and u, the same ondition for invariane applies one X has been prolongedto take aount of the group ation on derivatives. For example, � is a funtion ofthe �rst derivatives xi�. The prolongation of the generator to these derivatives isX(1) = �;2 ��m1 � �;1 ��m2 + fxi2�;1� � xi1�;2�g ��xi� ; (2.22)and thereforeX(1)� = x22(x12�;11 � x11�;21)� x21(x12�;12 � x11�;22)�x12(x22�;11 � x21�;21) + x11(x22�;12 � x21�;22) = 0 ;whih is to be expeted, beause we obtained the relabelling symmetries by requir-ing that � is invariant.Before we examine the link between the partile relabelling symmetries and on-servation of potential vortiity within the multisympleti framework, it is instru-tive to seek generalizations of the Hamiltonian density S that retain the partilerelabelling symmetries. We restrit attention to densities of the form~S = ~S(t;x;u;xm);so that the resulting Hamiltonian system an be reast as a multisympleti system,using the matries K;L;M that were de�ned in x2(a). Consequently, the onserva-tion law (2.15) holds for the same 2-forms ! and �� that were used earlier, bearingin mind that the auxiliary variables wi� are now de�ned as follows:wi� = � � ~S�xi� :If ~S has no expliit dependene on t, it is invariant under translations in time. Thedensity ~S is invariant under the partile relabelling symmetries generated by X ifand only ifX(1) ~S � �X(1)t� � ~S�t + �X(1)xi� � ~S�xi + �X(1)ui� � ~S�ui + �X(1)xi�� � ~S�xi� = 0:But X(1)t = X(1)xi = X(1)ui = 0;so ~S an depend arbitrarily on t, x, and u. Given any smooth funtion F (xm),X(1)F (xm) = fxi2�;1� � xi1�;2�g �F (xm)�xi�= �;11xi2 �F (xm)�xi1 + �;12�xi2 �F (xm)�xi2 � xi1 �F (xm)�xi1 ���;22xi1 �F (xm)�xi2 ;Artile submitted to Royal Soiety



Vortiity and sympletiity 11so for F (xm) to be invariant under arbitrary partile relabelling transformations,the following onditions must hold:xi2 �F (xm)�xi1 = 0; xi2 �F (xm)�xi2 � xi1 �F (xm)�xi1 = 0; xi1 �F (xm)�xi2 = 0:By using the method of harateristis, it is easy to show that F is invariant ifand only if it is a funtion of � alone. Therefore ~S admits the group of partilerelabelling symmetries provided that it is a funtion of t, x;u; and � only. Notethat this result is based solely on mathematial onsiderations. There may be goodphysial reasons for restriting the lass of allowable funtions still further. Forexample, the governing equations inludexi;t = � ~S�ui ;so if u is to represent the partile veloity, the most general form that ~S an takeis ~S = 12 hu;ui+ �(t;x; �) ;for some funtion �.Our main observation is that whatever funtional form ~S(t;x;u; �) takes, po-tential vortiity is onserved on the solutions of the system (1.5), where nowSM = ~S + xi�wi� :This PV onservation an be seen by substituting (1.5) into	�! = fxi;tui;� � xi�ui;t + f(x1�x2;t � x1;tx2�)g dm� ^ dt+ q dm1 ^ dm2 ;	��� = fxi;twi�;� � xi�wi�;tg dm� ^ dt+ fxi2wi�;1 � xi1wi�;2g dm1 ^ dm2 ;and rearranging terms in the same way as in the previous setion. After a slightlymessy alulation, we obtain	�! = ( ~S � � � ~S�� );� dm� ^ dt+ q dm1 ^ dm2 ;	��� = 8<:(uiwi�);� + Æ��  � � ~S�� !;t9=; dm� ^ dt+8<:Æ�1 � � ~S�� !;2 � Æ�2 � � ~S�� !;19=; dm1 ^ dm2 :Therefore the pull-bak of the multisympleti onservation law is	�(!;t + ��;�) = n ~S;t + (uiwi�);�o;� dm� ^ dt+ q;t dm1 ^ dm2 = 0:Artile submitted to Royal Soiety



12 T.J. Bridges, P.E. Hydon and S. ReihHene if the Hamiltonian density is invariant under arbitrary area-preserving par-tile relabelling transformations, potential vortiity is onserved. Furthermore, theremaining omponents of the onservation law lead to the result	� � ~S;t + (uiwi�);�� = f(t);for some funtion f . From the equations of motion, we obtainf(t) = 	� � ~S�t ! ;so f(t) = 0 if ~S is invariant under translations in time. For the shallow waterequations, this leads to the loal energy onservation law (2.18).How is the onservation of potential vortiity enoded in the multisympleti 2-forms? To answer this question, it is suÆient to restrit attention to the dm1^dm2omponent. First note that! = dui ^ dxi + f dx1 ^ dx2 (2.23)is invariant under partile relabelling symmetries, beause xi and ui are invariantand the exterior derivative d is essentially oordinate-invariant. Neither of the ux2-forms �� is invariant; however, we have shown that if the Hamiltonian densityis invariant under partile relabelling then the dm1 ^ dm2 omponent of 	���;�vanishes. Finally, the pull-bak of ! to label spae is the produt of the potentialvortiity and the 2-form dm1 ^ dm2 (whih is itself invariant under the relabellingsymmetries). Consequently q;t = 0.3. Partile methods and onservation of potential vortiityIn this setion, we disuss sympletiity and onservation of PV for a Lagrangianpartile disretization of the shallow-water equations. Partile methods, suh assmoothed partile hydrodynamis (SPH) (f. Monaghan (1992), are based on anapproximation of the layer-depth of typeh(x; t) = NXk=1mk (kx�Xk(t)k); (3.1)where  (r) � 0 is an appropriate shape funtion andXk(t) are Lagrangian partileswith mass mk following the uid ow. Let us assume for a moment that h(x; t) isgiven (or has been omputed). Then eah partile position x(m; t) satis�es thefollowing time-dependent Hamiltonian ODE:xt = u; ut = �fJu� grxh(x; t): (3.2)It is obvious that the sympleti 2-form !, de�ned by (2.23), is onserved alongsolutions and, as pointed out before, this gives rise to onservation of PV. In fat,this observation gives a new interpretation of the statement made by Abarbanel& Holm (1987) (see equation (81) on page 3375) in the ontext of the primitiveunapproximated uid equations.Artile submitted to Royal Soiety



Vortiity and sympletiity 13It is worth arrying this thought experiment a step further. Following this pointof view { taking h as given { onservation of PV an be shown for the induedtwo degrees-of-freedom Hamiltonian system of the above form (3.2) with h anyarbitrary (possibly time-dependent) potential energy funtion. The restrition ofthe assoiated sympleti 2-form ! is to be taken in the following sense. Consider afamily of solutions (x(m; t);u(m; t)) 2 R4 parameterized by their initial positionsm = x(0), then the pull-bak desribed in x1 leads to onservation of PV.Of ourse, the above point of view is not equivalent to the multi-sympletiapproah where the layer-depth h is also treated as a dynamial variable and where! is no longer onstant along solutions of the full uid equations of motion. Wewill ome bak to this point below.Another standard result (e.g., Frank & Reih (2003)) states that the layer-depth approximation (3.1) satis�es a ontinuity equationht = �rx(h�u)with the veloity �eld �u(x; t) appropriately de�ned. Hene the energy of eah par-tile in the ow hanges aording toddt �12ku(t)k2 + gh(x(t); t)� = �grx(h�u):So far we have assumed the disrete partile paths Xk(t), k = 1; : : : ; N , in(3.1) as given. Hene the next step is to set up a losed system of equations forfXkgk=1;::: ;N . In smoothed partile hydrodynamis these equations are given byd2dt2Xk = �fJ ddtXk � grXkh(Xk; fXlg)with h(Xk; fXlg) = NXl=1 ml (kXk �Xlk):Again, we an assoiate a sympleti form with eah partile Xk. Let us denotethis form by !k. While we had ddt!k = 0 along solutions x(mk; t) = Xk(t) of (3.2),we now treat h as a dynami variable and obtainddt!k = �g NXl=1 dXk ^mlDXkXl (kXk �Xlk) dXl;whih an be viewed as a disretization of the multi-sympleti onservation law(2.15). Sine the label spae has been replaed by N point labelsmk, a pull-bak ofthe sympleti onservation law to label spae is no longer possible. Hene onser-vation of PV holds for partile methods only in the sense of a single two degrees-of-freedom Hamiltonian ODE (3.2) with a ontinuous set of initial data. This \ontin-uum" interpretation of partile methods is the bakbone of the argument suggestedby Frank & Reih (2003) to prove onservation of irulation for the disretizedsystem.Artile submitted to Royal Soiety



14 T.J. Bridges, P.E. Hydon and S. Reih4. Sympletiity and vortiity for other ideal-uid modelsIn this setion, we briey desribe the impliations of the onstrutions in x2 basedon onservation of sympletiity for other models in Lagrangian uid dynamis. Forthree-dimensional Lagrangian uid dynamis the main result is that the pull-bakto the referene spae of the sympleti form leads to Ertel's Theorem.(a) Semi-geostrophi shallow water equationsIn the semi-geostrophi approximation (f. Salmon (1988), Roulstone &Norbury (1994), Roulstone & Sewell (1997)), the shallow water equations(2.5)-(2.8) are replaed byu1;t � fx2;t = ��e(�)�x11 �;1 +��e(�)�x12 �;2 ; (4.1)u2;t + fx1;t = ��e(�)�x21 �;1 +��e(�)�x22 �;2 ; (4.2)0 = fu1 ���e(�)�x21 �;1 ���e(�)�x22 �;2 ; (4.3)0 = fu2 +��e(�)�x11 �;1 +��e(�)�x12 �;2 ; (4.4)where e(�) = g2� : (4.5)Here u is the geostrophi veloity, not the partile veloity (whih is x;t). Thissystem of equations is equivalent to the following Hamiltonian system:� �fJ �II �f�1J ��xu�t = �ÆH=ÆxÆH=Æu� ; J = � 0 �11 0 � ; (4.6)where H(x;u) = Z S dm ; S = 12 hu;ui+ e(�) : (4.7)The skew-symmetri operator on the left-hand side of (4.6) is not invertible. Thisdegeneray reets the onstraints in the semi-geostrophi formulation. In otherwords, the gradient of H is required to be in the range of the skew-symmetrioperator; this solvability ondition imposes the onstraints. A losed but degeneratetwo-form is alled a pre-sympleti form, and for this system the pre-sympleti formis ! = Z ! dm ; ! = du1 ^ dx1 + du2 ^ dx2 + fdx1 ^ dx2 + f�1du1 ^ du2 :This two-form di�ers from the sympleti form for the standard shallow-water equa-tions by the last term only. In the multisympleti formulation, the analysis of x2goes through with the following minor hanges.Artile submitted to Royal Soiety



Vortiity and sympletiity 151. The skew-symmetri matrix K has two extra nonzero omponents:K3;4 = f�1; K4;3 = �f�1:2. The potential vortiity isq = f�1 f (u1 � fx2);1 (u2 + fx1);2 � (u1 � fx2);2 (u2 + fx1);1 g :(As before, the potential vortiity is the dm1 ^ dm2 omponent of 	�!; theorresponding omponent of 	���;� is zero on solutions, so q is onserved onpartile paths.)3. The energy onservation law, whih an be dedued from the dm� ^ dt om-ponents of the pull-bak of the sympleti onservation law, isS;t + (xi;twi�);� = 0:(b) Three-dimensional ideal uid dynamisThe Euler equations for inompressible uid dynamis in three dimensions, writ-ten in terms of the Lagrangian mass oordinates m = (m1;m2;m3), arexi;t = ui ; xi;�ui;t = �p;� ; det(xm) = 1:Here xm is the Jaobian matrix, so the inompressibility ondition amounts to� � "�� x1� x2� x3 = 1;where "�� is the alternating tensor and xi� = xi;�.The Euler equations have the same Hamiltonian formulation (1.2) in two andthree dimensions. From (1.1), the Hamiltonian density isS = 12 hu;ui+ (1� det(xm)) p :As usual, we onstrut the multisympleti formulation by de�ning the auxiliaryvariables wi� = � �S�xi� :Then the Euler equations an be rewritten as�ui;t � wi�;� = 0;xi;t = ui ;xi;� = xi� ;0 = �S�xi� + wi� ;0 = 1� �:Let z = (xi; ui; wi�; xi�; p)T, where the variables are ordered by the value of i(and, where there are two subsripts, by the value of � for eah i). Then the Eulerequations amount to Kz;t + L�z;� =rzSM (z);Artile submitted to Royal Soiety



16 T.J. Bridges, P.E. Hydon and S. Reihwhere K;L1;L2;L3 are skew-symmetri matries whose only nonzero omponentsare K1;4 = K2;5 = K3;6 = �1; K4;1 = K5;2 = K6;3 = 1;L11;7 = L12;10 = L13;13 = �1; L17;1 = L110;2 = L113;3 = 1;L21;8 = L22;11 = L23;14 = �1; L28;1 = L211;2 = L214;3 = 1;L31;9 = L32;12 = L33;15 = �1; L39;1 = L312;2 = L315;3 = 1;and where SM = S + xi�wi�. The onservation law of sympletiity is!;t + ��;� = 0;where ! = dz ^Kdz = dui ^ dxi and �� = dz ^ L�dz = dwi� ^ dxi :The pull-bak of the multisympleti onservation law to (m; t) spae is0 = 	� (!;t + ��;�) = "�� 
;t dm� ^ dm�+ n� 12 hu;ui�;t + (uiwi�);�o;� dm� ^ dt ;where 
 = "�� xi�ui;� = "�� (xi�ui);� : (4.8)(This result derived in essentially the same way as the onservation laws in x2;details are omitted for the sake of brevity.) Thus the pull-bak leads to onservationof total energy, � 12 hu;ui�;t + (uiwi�);� = 0;and onservation of 
 = (
1;
2;
3)T:
;t = 0 :Now, from (4.8), 
 = "�� xi�xj� �ui�xj ;whih an be written in the form
 = �x�1m (rx � u): (4.9)In ontrast to orresponding result for the two-dimensional Euler equations (f.x1), 
 is not the vortiity. Ertel's theorem (f. M�uller 1995, Salmon 1982) isan immediate onsequene of (4.9). Let � be any materially onserved quantity, sothat �;t = 0. Then the vetor produtQ = 
�;Artile submitted to Royal Soiety



Vortiity and sympletiity 17is also materially onserved: Q;t = 0. Unlike 
, the quantity Q has a representationin terms of the Eulerian variables x and u only:Q = �hrx�;rx � ui:For ompressible homentropi uids, the only signi�ant modi�ation is to re-plae (4.9) by 
 = ��x�1m (rx � u); thenQ = �hrx�; (rx � u)i� ;where � = 1=� the density of the uid.This projet was partially supported by the EPSRC-funded network on Geometri methodsin Geophysial Fluid Dynamis: http://www.ma.i.a.uk/�sreih/Network.htmlReferenesAbarbanel, H.D.I. & Holm, D.D. 1987 Nonlinear stability analysis of invisid ows in threedimensions: inompressible uids and barotropi uids, Phys. Fluids 30 3369{3382.Albert, H.-F. 1997a On new hydrodynami onservation laws related to the partile rela-beling symmetry, Z. angew. Math. Meh. 77 945{954.Albert, H.-F. 1997b Point symmetries for Lagrangian uid dynamis, Z. angew. Math.Meh. 77 955{958.Arnold, V.I. & Khesin, B.A. 1998 Topologial Methods in Hydrodynamis, Springer-Verlag:New York.Bathelor, G.K. 1967 An Introdution to Fluid Dynamis, Cambridge University Press.Bila, N. 2002 Symmetry redutions, variational symmetry and onservation laws for theshallow water and semi-geostrophi PDE systems, Cambridge Numerial Analysis Re-port Series NA2002/03, http://www.damtp.am.a.uk/user/na/reports.htmlBretherton, F.P. 1970 A note on Hamilton's priniple for perfet uids, J. Fluid Meh. 4419{31.Bridges, T.J. 1997a Multi-sympleti strutures and wave propagation, Math. Pro. Camb.Phil. So. 121 147{190.Bridges, T.J. 1997b A geometri formulation of the onservation of wave ation and itsimpliations for signature and the lassi�ation of instabilities, Pro. Roy. So. Lond. A453 1365{1395.Cartan, H. 1983 Di�erential Forms, Hermann Publishers, Paris.Egger, J. 1994 A new onservation law of the shallow-water equations, Q. J. R. Meteorol.So. 120, 1689{1695.Frank, J.E. & Reih, S. 2003 Conservation properties of smoothed partile hydrodynamisapplied to the shallow water equations, to appear in BIT.Hydon, P.E. 2000 Symmetry Methods for Di�erential Equations, Cambridge UniversityPress, Cambridge.Hydon, P.E. 2002 Multisympleti di�erential-di�erene equations and onservation laws,in preparation.Monaghan, J.J. 1992 Smoothed partile hydrodynamis, Ann. Rev. Astron. Astrophys. 30543{574.M�uller, P. 1995 Ertel's potential vortiity theorem in physial oeanography, Rev. Geo-physis 33 67{97.Artile submitted to Royal Soiety
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