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The relationship between potential vorticity (PV) and the symplectic form for the
Lagrangian form of the shallow water equations and its implications are considered.
Starting with the symplectic form, the PV is found by the pull-back operation to
the reference space. At first sight, the encoding of PV in the symplectic form ap-
pears to be independent of the particle relabelling symmetry. We carry the analysis
a step further in two ways. Using the conservation of symplecticity as a starting
point, the fluxes of symplecticity are differential forms, and a complete pull-back of
the flux forms leads to a geometric description of PV conservation. Secondly we use
symmetry methods to give a rigorous connection between particle relabelling, sym-
plecticity and PV conservation. Generalisations of these issues to semi-geostrophic
flow and three-dimensional Lagrangian fluid flows, and the connection with Ertel’s
theorem are also discussed.

Keywords: geophysical fluid dynamics, potential vorticity, multisymplectic,
particle relabelling, symmetry

1. Introduction

In Lagrangian fluid dynamics, the 1-form o = (u,dx) = uidzy + uadzs + uzdrs
plays the dual role of a circulation density and the generator for a canonical sym-
plectic structure. This elementary observation can easily be seen using the equations
governing incompressible Lagrangian fluid dynamics in two space dimensions

ox1 ouq Oxs Op Ors Op
W B W - _8m2 8m1 + 8m1 8m2 ’
Ory Ouy  Oxry Op Or, Op
W = Y2, W o 8m2 8m1 B 8m1 8m2 )

Here 1 = my and z2 = mso at t = 0, where m = (m;, ms) are Lagrangian mass
coordinates, p is the pressure, and the incompressibility constraint is

(9I1 811
det(xm) = 1, where Xm = [J g2 |
8m1 Bmz

This system is a constrained Hamiltonian system with the Hamiltonian function

H(x,u,p) = /Sdm, where S = 1(u,u) + (1 — det(xm)) p, (1.1)

Article submitted to Royal Society TEX Paper



2 T.J. Bridges, P.E. Hydon and S. Reich

and the canonical representation is

0 -I 0 x d0H [éx
I 00 u| =|dH/éu] . (1.2)
0 00 D dH/dp

,t

The symplectic form for this system is the integral of the exterior derivative of
the circulation 1-form

U:/dadm:/du/\dxdm:/(dul Adzy + dus Ades ) dm, (1.3)

where the line over w signifies that it is integrated over m-space.

On the other hand, in the classical description, the circulation is obtained by
integrating the 1-form « along a loop in the (x,u)—space, and by Stokes Theorem,
the circulation can be related to a surface integral of the vorticity (cf. BATCHELOR
1967, p. 93). Comparing this classical observation with (1.3) suggests that it is
natural to expect some connection between vorticity and symplecticity.

When stripped of the integral, the density of the symplectic form, w = da, has
the following precise relation with vorticity,

Y w = Qdmy Adms . (1.4)

Here Q is the vorticity in Lagrangian coordinates,

8.271 8u1 81171 8u1 8.272 8U2 81:2 Bug

€ = 8m2 8m1 B 8m1 8m2 8m2 8m1 B 8m1 8m2 ’

and 9* is the pull-back mapping which is obtained by restricting the phase space
coordinates x,u to the label space m, i.e., x = x(mj,m2), u = u(m;,ms). Hence
the pull-back is defined by

ox ox . _ Ou 0
Fr- dm; + —8m2 dms , Y*(du) = B dm; + s

dmg .

P (dx) =

The generalization to higher dimensions and to other functions and forms is obvious
(cf. CARTAN (1983, p. 28)). The proof of (1.4) is therefore

P'w = ¢Y*(duAdx) =¢*(du) AY*(dx)
<a—udm1 + ﬂde> A <ﬁdm1 + 0% dm2>
6m2

aml aml am2
2
= zzzl { <6m1 dmq + Oy dm2> A <6—m1dm1 + a—m2dm2> }

= Qdm1 /\dmg.

A similar argument applied to the shallow water equations in geophysical fluid
dynamics shows that the pull-back of the symplectic form density there results in the
potential vorticity. The details of this construction are given in §2. The only place
in the literature that we have seen the connection between potential vorticity and
symplecticity discussed is in the work of ABARBANEL & HoLM (1987) (see equation
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(81) on page 3375). There it is mentioned in passing that the pullback of the density
of the symplectic form results in the potential vorticity, but the consequences of this
observation are not studied. ARNOLD & KHESIN (1998) emphasize that the vorticity
can be characterized by a two form (see pages 22 and 46), but the connection
between vorticity and symplecticity is not explored.

While the above examples and the work of ABARBANEL & HOLM show a con-
nection between vorticity or potential vorticity and symplecticity, there are several
unanswered questions. The phase space variables x,u depend on (my,m2,t). Why
pull back to the label space m = (m1,ms)? Why not pull back to the full reference
space (m1,ma,t)? Indeed, this more general pull-back leads to both vorticity conser-
vation and energy conservation. Generalisations to (m,t) € R are also considered
and lead to a symplectic derivation of Ertel’s Theorem.

Further geometry is obtained by stripping away the integral in the 2-form which
defines the symplectic structure, leading to a conservation law which can be gener-
ated on the reference space, a conservation law for symplecticity. This conservation
law arises in a natural way when the equations governing Lagrangian fluid dynam-
ics and geophysical fluid dynamics are formulated in a multisymplectic setting. For
the purposes of this paper a multisymplectic PDE is a system of PDEs of the form

Kz;+Lz1+Mz,=V,Su(z), zeR", (1.5)

where K, L and M are skew-symmetric matrices and Sy; : R* — R is a smooth
function. Equivalently, such PDEs can be characterized as Lagrangian PDEs with
the Lagrangian functional in the canonical form

¥ = / {3(z,Mz2;) + +(2,Kz1) + 1(2,Lz5) — Su(z)} dtdzidas,
¥

where (-,-) is a standard inner product on R”, and [, is a volume integral. See
BRIDGES (1997a,1997b) for general properties of such systems.
In the multisymplectic setting, the fluxes of symplecticity arise as 2-forms. The
symplectic 2-form then satisfies a conservation law of the form
0 0 0
~WwW+ —K +7—kKa=0 1.6
at - omi T dme o (1.6)
where k1 and Ko are a pair of 2-forms that represent the flux of symplecticity.
Pulling back this equation to the label space, m, leads to

9 . o . o . _
a¢w+aml¢nl+am2¢n2_oa (17)

where ¥*k, and 1*ky are 2-forms on the label space that represent the flux of
potential vorticity.

It is in the investigation of the fluxes in the symplectic conservation law that the
importance of particle relabelling and the homentropic nature of the fluid arises. For
example, this formulation leads to the result that potential vorticity (or vorticity)
is conserved on particle paths if and only if the divergence of the pull-back of the
flux 2-forms to the label space vanish identically, that is if

div(y* ki, Y Ke) = Vm "k =0, k= (ki k)T . (1.8)
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We will show that a sufficient condition for (1.8) to be satisfied is the the Hamilto-
nian function is invariant under particle relabelling (homentropic). Note that this
derivation of PV conservation is fundamentally different from the ones typically
given in fluid dynamics (compare, for example, SALMON (1998, p. 302)).

In §2, the Lagrangian form of the shallow water equations is treated in detail,
and the following features are treated in turn: the encoding of PV in symplecticity,
the multisymplectic structure that leads to a geometric form of PV conservation, the
pull-back as a generator of PV and energy conservation, and the use of symmetry
methods to establish rigorously the connection between particle relabelling and PV
conservation.

One of the motivations of this paper is understand the geometric structure of
Lagrangian fluid dynamics in order to incorporate it into numerical methods. In §4
we show how the ideas in this paper can influence the design of numerical methods.

The ideas generalize in a straightforward way to other systems in Lagrangian
fluid dynamics, and it §4 we briefly consider the semi-geostrophic equations and
three-dimensional Lagrangian incompressible fluid dynamics.

2. Multisymplectic GFD: shallow water equations

In this section, the shallow water equations will be considered in the Lagrangian
particle-path representation. The connection between potential vorticity and sym-
plecticity will be established, as will conditions for conservation of potential vorticity
along particle paths, by constructing the flux 2-forms associated with conservation
of symplecticity.

As in the introduction, let x € R?, u € R? represent the position and velocity
of the fluid particles, parametrized by Lagrangian mass coordinates m = (m1,mz),
and let h € R represent the fluid depth. The system is rotating at constant angular
velocity f/2.

Henceforth, we use Latin indices to denote components of x and u, and Greek
indices to denote components of m; the usual summation convention is adopted.
Total derivatives with respect to t or mg, for which all variables are regarded as
functions of (mq,mas,t), are denoted by the subscript ¢ or « after a comma. For
example,

axz(mat) Tiot = 82$i(ma t)
’ 1,at T 6ma6t ’

Partial derivatives with respect to any other variable are written in full.
Define the Jacobian matrix

11 T12 _
Xm = < where Tia = Tio-

Tia = etc.

Omey,

21 T22

Conservation of mass reduces to h7 = 1 where 7 = det(Xm) = Z11%22 — T12%21. The
governing equations for u and x are

ury = —(r22-p)a+ (T21 D)2+ fus, (2.1)
U2t = (712 'p),l — (211 'p),2 — fu, (2.2)
Tie = Ui, (2.3)
T2t = U2 (2.4)
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Vorticity and symplecticity 5

The pressure is defined by p = —e/(7) where e(7) is the specific internal energy, in
homentropic form. The classical shallow-water equations are recovered by taking

e(r) = g/(27).

In terms of e(7), the equations of motion amount to

wio— frae = <86(7‘)>71 N <86(7‘)>72, (2.5)

61711 63712
0 0
upt + friy = <%;)> 1+ < ;;;2) 2 (2.6)
Tit = Ui, (2-7)
L2t = U2. (2.8)

This system has a Hamiltonian representation with canonical coordinates (x,u):
—-f¥ 1] (x\ _ (dH/éx J— 0 -1
I 0\u/, \0H/éu)’ ~\1 0)”

H(x,u) = / Sdm, S = (u,u)+e(r). (2.9)

where

The symplectic form for this system is
G:/wdm, wduy Adzy + dus Adxy + fdzy Ades .

We will prove that ¥*w = ¢dm; Adms,, where ¢ is the potential vorticity. However,
we first recast the system into a multisymplectic formulation in order to deduce
further information.

(a) A multisymplectic formulation

Introduce the additional variables

oS _ Oe(r) _ () or — p(r) or

8zm

Wiq = —

Ba:m h 8zm 8zm ’

and the extended set of dependent variables
— T
z = (a;l,a:2,ul,uQ,w11,w12,w21,w22,2711,a:12,1721,2722) ) (2-10)

so that z € R'2. Then (2.5)-(2.8) can be written as the following system of first-
order PDEs:

—uit + frop —wir1 —wizpy = 0,
—Ust — fT1s —wo1 —wap = 0,
Tit = U, 1= 17 27
Tija = Tia, 1= 1727 a = 1727
de(T) .
0 = + Wiq 1=1,2, a=1,2.
Bxia
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6 T.J. Bridges, P.E. Hydon and S. Reich

This system is of the form (1.5) with
Su(z) =8+ ziqwin = %(u, u) + e(7) + TinWin - (2.11)
Here K,L,M € R'2*12 are skew-symmetric matrices with nonzero entries

Kip=f, Kizg=-1, Kop=—f, Kou=-1, Kzg1=1, Kyp=1,
Lis=-1, Loy =—-1, Ls1 =1, Lyy =1,
Myg=-1, Mag=-1, Mg1 =1, Mg =1.

Note that Sps(z) in (2.11) is defined locally (for it involves no integrals), and
it differs from the classical Hamiltonian function density S by the third term. The
following identities hold:

or or
= =T0a3, Tia 5— = T0;j ,

8Z‘ja
where § is the Kronecker delta. Therefore
Tiqwig = —7€' (T)das , TiqWja = —T€'(T)dij , (2.12)
and so the multisymplectic density Sas can be reduced to the form
Su(z) = L{u,u) + e(r) — 27€/ (7). (2.13)
However, in order for (1.5) to yield the multisymplectic shallow water equations,
Sy (z) must be expressed in terms of the multisymplectic coordinates, i.e. in the
form (2.11).
The abstract formulation (1.5) gives rise to a conservation law of symplecticity
(Bridges, 1997b)
(dz AKdz); + (dz ALdz),1 + (dz AMdz)» =0, (2.14)
which, for the present system, amounts to
Wi+ Kaa=0, (2.15)
where
w=du; Adz; + fdxy Adxs and Ko = dwis Adx;, a=1,2.
(b) Pullback and the geometry of conservation laws

In this section, we explore in detail the connection between conservation of
symplecticity, the pull-back operation, and conservation laws, in the setting of the
shallow water equations.

The potential vorticity for the shallow water system is

_ ou ou
qg=nh ! <f+—2 ——1> = fr+ Tpuiy — Tauiz,
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Vorticity and symplecticity 7

where the second expression is in Lagrangian mass coordinates satisfying 7h = 1.
Let ¥* represent the pull-back operation from the phase space to the full reference
space, (m,t). Application to the symplectic 2-form results in

V'w = (ujedt +uigdmg) A (i dt + iy dmsy)
+  f(z1edt +215dmg) A (22,0 dt + 22, dmy)
= {zisu;g — TigUis + f(X18%24 — T14228)} dmg A dt

+{zipui1 — Tiauie + f(11222 — T12221)} dma A dmes

{Tiuip — Tiguir + f(x18T2,1 — T1,228)} dmg Adt + gdmy A dma,
and

Uy = (Wia, dt + win,gdmg) A (2, dt + x4y dmy)

= {xi7twm73 — ﬂ?ig’wia,t} dmg Adt + {wime71 - xilwmg} dm1 A dmg -

Evaluating (0*w, U*k,) on the set of solutions of the shallow water equations, and
taking (2.12) into account, we finally obtain

U'w = {uu;g + TigWiy,} dmg A dt + gdmq A dms
= {uiuig + (Tipwiy) 5 — Tigywiy } dmg A dt + gdmy A dmo
= {%(u,u)—T@I(T)—l-e(T)}ﬁ dmg Adt + gdmy Adms,

and

U'ke = {(uwia)s— (TipWia),t} dmg A dt

+ {(Zi2win),1 — (Ti1Wia) 2} dmy A dma
= {(inm),ﬂ + dap (TEI(T))7t} dmgs A dt
+ {5a1 (7€'(1)) 5 — Oaz (re'(ﬂ),l} dmy A dms .

The pull-back operator ¥* commutes with total differentiation with respect to ¢, m1,
or mo. Consequently

‘I’*K/ma = {(uiwia),aﬁ + (TeI(T)),tB} dmﬁ Adt;

note that the dmy A dms component is zero. Therefore the multisymplectic conser-
vation law (2.15) is pulled back to

0= \I’*(w,t + K’a,a) = gt dm1 A de
+ {(%(U, u) + 6(7'))’,& + (inm)@} dmg Adt.

)

Separating this conservation law into its three components, we obtain

q,t = 07 (216)
{(%(u,u) +e(r)) , + (inia),a} =0, pB=12 (2.17)
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8 T.J. Bridges, P.E. Hydon and S. Reich

The dmj Adms component (2.16) encapsulates the conservation of potential vortic-
ity on particle paths. Note that the label-space divergence of the flux of potential
vorticity is zero. In the next subsection, the geometry of this material conservation
of PV will be examined in more detail.
The other conservation laws generated automatically by the pull-back in (2.17)
are label-space derivatives of the local energy conservation law:
(%(u, u) + e(T)) .t (u;win),a =0. (2.18)

)

This conservation law implies that the total energy £ is conserved, i.e.,
& = 0 / +(u,u) +e(r)dm =0,
provided that appropriate boundary conditions are given.

(¢) The origin of conservation laws obtained by pull-back

The idea of pulling back conservation laws to the reference space can be put
on a more general footing. HYDON (2002) shows that for any multisymplectic sys-
tem of PDEs (1.5), the 2-form conservation laws are obtained by differentiating
conservation laws that correspond to translational symmetry in each independent
variable.

For the multisymplectic shallow-water equations, translations in ¢ produce en-
ergy conservation (2.18). Translations in label-space produce the following interest-
ing conservation laws:

(wizi + frrz1) , + (e(7) = guini — frius + zawa) | + (Tawiz) 2 = 0; (2.19)

(uiil',‘iz + fx1x22)7t + (a:igwil),l + (6(7‘) — %uiui — fa:lu2 + xi2wi2)72 =0. (220)

These can be regarded as expressing conservation of Lagrangian momentum. They
are not connected with the ordinary (Eulerian) momentum conservation law, which
corresponds to translations in x. We have already seen that (2.17) are obtained as
label-space derivatives of (2.18). It is easy to verify that the potential vorticity con-
servation law (2.16) is a differential consequence of (2.19) and (2.20). Specifically,
(2.16) is the mj-derivative of (2.20) minus the my-derivative of (2.19). Hence from
the Lagrangian viewpoint, (2.19) and (2.20) are more fundamental than (2.16); un-
like potential vorticity, however, they are strictly Lagrangian and cannot be written
solely in Eulerian variables.

(d) Symmetries and multisymplectic conservation laws

If a system of equations stems from a variational principle, Noether’s theo-
rem links conservation laws with symmetries of the Lagrangian form (which are
called variational symmetries). Noether’s theorem has been extended to Hamilto-
nian systems (see OLVER 1993), and is applied to particle relabelling symmetries
in EGGER (1994), PADHYE & MORRISON (1996), PADHYE (1998) and ALBERT
(1997a,1997b). Indeed, PADHYE & MORRISON (1996) write down the generalized
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Vorticity and symplecticity 9

form of the relabelling symmetry, and identify all known symmetries of the La-
grangian and Euler-Lagrange map. The corresponding conserved quantities of the
ideal fluid were summarized in both Lagrangian and Hamiltonian frameworks by
Padyhe (1998).

The shallow water equations (2.5)-(2.8) possess various point symmetries, which
can be found systematically using the approach pioneered by Lie (see HYDON,
2000, for a simple introduction). BiLA (2002) gives the most complete study of
the symmetries and conservation laws of the shallow water equations. However,
the approach here, based on the multisymplectic formulation leads to a connection
between the fluzes of the conservation law and symmetry. A restricted form of
Noether’s theorem for multisymplectic systems was first derived in (cf. BRIDGES,
1997a, App. C). A general form of Noether’s Theorem for multisymplectic systems
can be found in HypON (2002).

The simplest symmetries of the shallow water equations are the invariance under
translations x ++ x + ¢ for any £ € R%. These symmetries lead to the unremarkable
conservation laws (2.5) and (2.6).

The symmetries that lead to conservation of potential vorticity and total energy
are particle relabelling and time-translation respectively. It can be shown that these
are the only symmetries that have no effect upon (and are independent of) the
variables x and u.

The implication of relabelling symmetry seems to have been first pointed out
by NEwcOMB (1967), who discovered a relabelling symmetry for incompressible
ideal fluid without internal energy. The connection between the conservation of
potential vorticity and a Lagrangian (variational) symmetry was first pointed out
by R1PA (1981) in the context of incompressible stratified flows, and SALMON (1982)
notes the connection as well. NEwcomB (1967) and BRETHERTON (1970) have also
related relabeling symmetry to Kelvin’s circulation theorem.

In this section, we demonstrate that the relabelling and time-translation sym-
metries are encoded in the multisymplectic conservation law, explaining why the
pull-back of this law produces conservation of total energy and potential vorticity.

A particle relabelling transformation is a diffeomorphism of the label space:

[:(my,mg) = (mi(my,me), ma(mi,ms)).

Neither x nor u are affected by any such transformation. However, the Hamiltonian
density S depends on an arbitrary function e(7), so the transformation is a sym-
metry for every e(7) only if 7 is invariant. (It is easy to verify that this necessary
condition is also sufficient.) By definition,

T = det(xm) = det(Xm) det(ﬁlm) where det(ﬁlm) = m1717ﬁ272 — m172m271 .
Therefore 7 is invariant if and only if

det (i) = 1, (2.21)

so that T' is an area-preserving transformation. The set of all particle relabelling
symmetries is an infinite-dimensional Lie (pseudo-) group. Every one-parameter Lie
subgroup of this group has a generator of the form

0 0
X = - _
9.2 omy & Omsy’
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10 T.J. Bridges, P.E. Hydon and S. Reich

for some smooth function ¢(m). A function F(m,¢,x,u) is invariant under the
subgroup generated by X if and only if X F' = 0. If F also depends upon derivatives
of x and u, the same condition for invariance applies once X has been prolonged
to take account of the group action on derivatives. For example, 7 is a function of
the first derivatives x;o. The prolongation of the generator to these derivatives is

0 0 0
X(l) = _— — — i a— T; af —— 2.22
b2 - b1 o {zi20,10 — Ti1d 20 } T (2.22)
and therefore
X(l)T = 3722(9!712(1’,11 - 3311¢,21) - 3721(9!712(1’,12 - 3311¢,22)

—3512(1722?5711 - $21¢,21) + 1711(1722?5712 - $21¢,22) =0,

which is to be expected, because we obtained the relabelling symmetries by requir-
ing that 7 is invariant.

Before we examine the link between the particle relabelling symmetries and con-
servation of potential vorticity within the multisymplectic framework, it is instruc-
tive to seek generalizations of the Hamiltonian density S that retain the particle
relabelling symmetries. We restrict attention to densities of the form

S’zg(t,x,u,xm),

so that the resulting Hamiltonian system can be recast as a multisymplectic system,
using the matrices K, L, M that were defined in §2(a). Consequently, the conserva-
tion law (2.15) holds for the same 2-forms w and K, that were used earlier, bearing
in mind that the auxiliary variables w;, are now defined as follows:

aS

Ba:m '

Wi =

If S has no explicit dependence on ¢, it is invariant under translations in time. The
density S is invariant under the particle relabelling symmetries generated by X if
and only if

(x ) 24 (x00) 24 (x00) 95 (x00,) 25—,

xMg
s ot ox; Tia

(2

But

so S can depend arbitrarily on ¢, x, and u. Given any smooth function F(xm),

OF (Xm
XWF(xm) = {Zidi0—Tindaa} %
. OF (xm) OF (Xm) OF (xm)
= ¢711$l287i1 + ¢.12 <$z2 D21 Ti1 i
OF (Xm
_¢,22$i1% )
Ti2
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Vorticity and symplecticity 11

so for F'(Xy,) to be invariant under arbitrary particle relabelling transformations,
the following conditions must hold:

iy OF (Xm) —o, iy OF (Xm)
Oz

OF (Xm)

— T

F(Xm
=0, a:ﬂia (x ):0.
02

0o Ozt

By using the method of characteristics, it is easy to show that F' is invariant if
and only if it is a function of 7 alone. Therefore S admits the group of particle
relabelling symmetries provided that it is a function of ¢, x,u, and 7 only. Note
that this result is based solely on mathematical considerations. There may be good
physical reasons for restricting the class of allowable functions still further. For
example, the governing equations include

oS
Tiy = ,
2,t aul
so if u is to represent the particle velocity, the most general form that S can take
is

S=3(uu)+o(t,x,7),

for some function o. .
Our main observation is that whatever functional form S(t,x,u,T) takes, po-
tential vorticity is conserved on the solutions of the system (1.5), where now

Sy = S-l-xiawia .
This PV conservation can be seen by substituting (1.5) into

U'w = {x;uip — iguis + f(x18T21 — T14T28)} dmg Adt + gdmy Adms,

UV'ke = {ZitWia,g — TipWia,} dmg A dt + {Ti2Win,1 — Ti1Wia,2} dmy A dms,

and rearranging terms in the same way as in the previous section. After a slightly
messy calculation, we obtain

U*w = {S—T?—S} dmg A dt + gdm; Adma,
T
B

)

Uk, = (uwia) g + dap (T—) dmg A dt
or
t

)

+ 6a1 T@ - 6042 Tﬁ dm1 A dmg .
or , or )

) )

Therefore the pull-back of the multisymplectic conservation law is

U (Wi + Kaa) = {S't + (uiwm),a} 5 dmg Adt + g+ dmy Admse =0.

)
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12 T.J. Bridges, P.E. Hydon and S. Reich

Hence if the Hamiltonian density is invariant under arbitrary area-preserving par-
ticle relabelling transformations, potential vorticity is conserved. Furthermore, the
remaining components of the conservation law lead to the result

0 (S04 (wiwia) o) = (1),

for some function f. From the equations of motion, we obtain

. [0S

so f(t) = 0 if S is invariant under translations in time. For the shallow water
equations, this leads to the local energy conservation law (2.18).

How is the conservation of potential vorticity encoded in the multisymplectic 2-
forms? To answer this question, it is sufficient to restrict attention to the dmy Adms
component. First note that

w =du; Adz; + fdx; Adas (223)

is invariant under particle relabelling symmetries, because z; and u; are invariant
and the exterior derivative d is essentially coordinate-invariant. Neither of the flux
2-forms k. is invariant; however, we have shown that if the Hamiltonian density
is invariant under particle relabelling then the dm; A dms component of ¥*k, o
vanishes. Finally, the pull-back of w to label space is the product of the potential
vorticity and the 2-form dmy A dms (which is itself invariant under the relabelling
symmetries). Consequently ¢; = 0.

3. Particle methods and conservation of potential vorticity

In this section, we discuss symplecticity and conservation of PV for a Lagrangian
particle discretization of the shallow-water equations. Particle methods, such as
smoothed particle hydrodynamics (SPH) (cf. MONAGHAN (1992), are based on an
approximation of the layer-depth of type

N
h(x, 1) = > mids(||x = Xi (2], (3.1)

k=1

where ¢ (r) > 0 is an appropriate shape function and X (t) are Lagrangian particles
with mass my, following the fluid flow. Let us assume for a moment that h(x,t) is
given (or has been computed). Then each particle position x(m,t) satisfies the
following time-dependent Hamiltonian ODE:

X; = u, w = —fJu — gVxh(x,t). (3.2)

It is obvious that the symplectic 2-form w, defined by (2.23), is conserved along
solutions and, as pointed out before, this gives rise to conservation of PV. In fact,
this observation gives a new interpretation of the statement made by ABARBANEL
& HorM (1987) (see equation (81) on page 3375) in the context of the primitive
unapproximated fluid equations.
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It is worth carrying this thought experiment a step further. Following this point
of view — taking h as given — conservation of PV can be shown for the induced
two degrees-of-freedom Hamiltonian system of the above form (3.2) with h any
arbitrary (possibly time-dependent) potential energy function. The restriction of
the associated symplectic 2-form w is to be taken in the following sense. Consider a
family of solutions (x(m,#),u(m,t)) € R* parameterized by their initial positions
m = x(0), then the pull-back described in §1 leads to conservation of PV.

Of course, the above point of view is not equivalent to the multi-symplectic
approach where the layer-depth A is also treated as a dynamical variable and where
w is no longer constant along solutions of the full fluid equations of motion. We
will come back to this point below.

Another standard result (e.g., FRANK & REICH (2003)) states that the layer-
depth approximation (3.1) satisfies a continuity equation

hy = —V(hil)

with the velocity field u(x,t) appropriately defined. Hence the energy of each par-
ticle in the flow changes according to

% <%||u(t)||2 + gh(x(t),t)> = —gVx(ht).

So far we have assumed the discrete particle paths Xy(¢), ¥ = 1,...,N, in
(3.1) as given. Hence the next step is to set up a closed system of equations for
{Xk}k=1,...,n- In smoothed particle hydrodynamics these equations are given by

d2

d
ﬁxk = —fJan —9Vx, h(Xg, {X1})

with

N
h(Xe, {Xi}) = Y mup(||Xg = X))

=1

Again, we can associate a symplectic form with each particle Xj. Let us denote
this form by wy,. While we had 4 w), = 0 along solutions x(my, t) = Xj(t) of (3.2),
we now treat h as a dynamic variable and obtain

N
d
il —g;dxk Ay Dx,x, (1K — Xq]) dXy,

which can be viewed as a discretization of the multi-symplectic conservation law
(2.15). Since the label space has been replaced by N point labels my, a pull-back of
the symplectic conservation law to label space is no longer possible. Hence conser-
vation of PV holds for particle methods only in the sense of a single two degrees-of-
freedom Hamiltonian ODE (3.2) with a continuous set of initial data. This “contin-
uum” interpretation of particle methods is the backbone of the argument suggested
by FRANK & REICH (2003) to prove conservation of circulation for the discretized
system.
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4. Symplecticity and vorticity for other ideal-fluid models

In this section, we briefly describe the implications of the constructions in §2 based
on conservation of symplecticity for other models in Lagrangian fluid dynamics. For
three-dimensional Lagrangian fluid dynamics the main result is that the pull-back
to the reference space of the symplectic form leads to Ertel’s Theorem.

(a) Semi-geostrophic shallow water equations

In the semi-geostrophic approximation (cf. SALMON (1988), ROULSTONE &
NORBURY (1994), ROULSTONE & SEWELL (1997)), the shallow water equations
(2.5)-(2.8) are replaced by

ot - (BB
us g+ frry = <8;T(;)>71 + (a;f;))% (4.2)
o = pu-(G)o-(Fm)e @
0 = fup+ @j;)),l + @6;;)),2, (4.4)
where
e(r) = %. (4.5)

Here u is the geostrophic velocity, not the particle velocity (which is x ;). This
system of equations is equivalent to the following Hamiltonian system:

A6 (),

H(x,u) = / Sdm, S =1(u,u) +e(r). (4.7

—~~
!J;
(=2}

~

where

The skew-symmetric operator on the left-hand side of (4.6) is not invertible. This
degeneracy reflects the constraints in the semi-geostrophic formulation. In other
words, the gradient of H is required to be in the range of the skew-symmetric
operator; this solvability condition imposes the constraints. A closed but degenerate
two-form is called a pre-symplectic form, and for this system the pre-symplectic form
is

w:/wdm, w = du; Adxy + dus A dze + fdzy Adzy + F7 dug Adus .

This two-form differs from the symplectic form for the standard shallow-water equa-
tions by the last term only. In the multisymplectic formulation, the analysis of §2
goes through with the following minor changes.
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1. The skew-symmetric matrix K has two extra nonzero components:
Kyg=f1, Kyz=—f"
2. The potential vorticity is

g=f""{(u - Jfr2) 1 (ua + fo1) 2 — (w1 — fo2) o (ug + fo1)1 }.

(As before, the potential vorticity is the dm A dms component of ¥*w; the
corresponding component of ¥*k, , is zero on solutions, so ¢ is conserved on
particle paths.)

3. The energy conservation law, which can be deduced from the dm, A dt com-
ponents of the pull-back of the symplectic conservation law, is

Sﬂg + (a:i,twia),a =0.

(b) Three-dimensional ideal fluid dynamics

The Euler equations for incompressible fluid dynamics in three dimensions, writ-
ten in terms of the Lagrangian mass coordinates m = (my,ma, ms), are

Tig = Ui, Tialit = —P,a, det(xm) = 1.
Here x,, is the Jacobian matrix, so the incompressibility condition amounts to
T = €aBy Tia T28 T3y = 1,

where €, is the alternating tensor and z;, = Z;,q.
The Euler equations have the same Hamiltonian formulation (1.2) in two and
three dimensions. From (1.1), the Hamiltonian density is

S = 1(u,u)+ (1 — det(xm))p.

As usual, we construct the multisymplectic formulation by defining the auxiliary
variables

oS
axicx -

Wiq = —

Then the Euler equations can be rewritten as

Uit — Wia,aa = 07
Tit = Ui,
Tia = Tia,
oS
0 = + Wiq ,
Ba:m
0 = 1-71
Let z = (2;, Ui, Wia, Tia,p) ', where the variables are ordered by the value of i

(and, where there are two subscripts, by the value of « for each i). Then the Euler
equations amount to

Kz;+ L% 4 = V.Su(z2),
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16 T.J. Bridges, P.E. Hydon and S. Reich

where K, L', L?, L3 are skew-symmetric matrices whose only nonzero components
are

Ky = Ky = K36 = —1, Ki1 = Ksp = Kg3=1,
L%J = L%JO = L§713 = -1, L%,1 = L%0,2 = L%3,3 =1,
L%,s = Lg,n = L§,14 = -1, Lg,l = L%1,2 = L%4,3 =1,
L?,g = Lg 12 — L§715 = —1, Lg,1 = L§2,2 = L§5,3 =1,

and where Syr = S + z;,w;q- The conservation law of symplecticity is
Wi+ Kaa =0,
where
w=dzAKdz =du; Adz; and &k, =dzAL%z = dw;, Adx;.
The pull-back of the multisymplectic conservation law to (m,t) space is

0=U" Wi+ Kaa) = EapyQyidmgAdmg

+ {(%(u,u»,t + (uiwiﬂ),ﬁ} . dmgy A dt,

)

where
Oy = Exuy Tiptix = Expy (Tipthi) - (4.8)

(This result derived in essentially the same way as the conservation laws in §2;
details are omitted for the sake of brevity.) Thus the pull-back leads to conservation
of total energy,

and conservation of Q = (1, Qs, Q3

Now, from (4.8),
Bui
Q =€ TinTix 7w »
gl wy TinLir g,

which can be written in the form
Q= —x(Vx xu). (4.9)

In contrast to corresponding result for the two-dimensional Euler equations (cf.
§1), Q is not the vorticity. Ertel’s theorem (cf. MULLER 1995, SALMON 1982) is
an immediate consequence of (4.9). Let 6 be any materially conserved quantity, so
that 8 ; = 0. Then the vector product

Q =100,
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is also materially conserved: @) ; = 0. Unlike €2, the quantity () has a representation
in terms of the Eulerian variables x and u only:

Q = —(V«0,Vx x u).

For compressible homentropic fluids, the only significant modification is to re-
place (4.9) by 2 = —7x,.}(Vx X u); then

Q — _<Vx07 (Vx X ll)>,
p

where p = 1/7 the density of the fluid.

This project was partially supported by the EPSRC-funded network on Geometric methods
in Geophysical Fluid Dynamics: http://wuw.ma.ic.ac.uk/~sreich/Network.html
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