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Abstract

Recirculation occurs in many cavity flows. In particular, alveolar flow
models have been shown to exhibit recirculation patterns. However,
many particles that are inhaled by the lungs do not follow this flow.
Instead, they may diffuse into the surrounding flow or possess enough
inertia to propel them from fluid particle paths. In this study, we
construct a minimal model to observe the behaviour of inertial par-
ticles caught within a recirculating Stokes flow. We find that, given
favourable conditions, inertial particles can be cleared from the cavity
or deposited on walls. This depends on the strength of inertia in ze-
ro gravity, but can be enhanced when gravity and the orientation of
the cavity are taken into account. It is also possible for these effects
to balance one another, producing a skewed limit cycle. These com-
bined effects may play a significant part in the retention, deposition
and clearance of aerosols and particulates from alveolar cavities.

1 Introduction

The presence of recirculation in alveolar flow models has been observed in a
number of physiological, mechanical and computational studies performed
by Tsuda et al. (see, in particular, [4, 21, 22, 23]). For instance, a rat lung
was ventilated with an incompressible polymerizable Newtonian fluid. After
only half a breath, recirculation was observed in many of the alveoli.

A wide range of cavity flow models exhibit recirculation if the cavity has
sufficient depth; see, for instance, [6, 18, 24, 25]. The simplest example is
Stokes flow in a two-dimensional corner — see the seminal article by Moffatt
[16] and Taneda’s experiments [20].

Although particles that move with the flow (fluid particles) recirculate,
particles of foreign substances that are inhaled into the lungs need not follow
the flow, because they may diffuse or have significant inertia. Inappropriate
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neglect of these effects may have serious consequences. For instance, the
use of fluid particle paths to model the movement of inhaled medications or
damaging aerosols could lead to incorrect dosages of therapeutic drugs or
to a misrepresentation of the potential damage to lungs by environmental
allergens.

The aim of this study is to investigate the transport of inertial particles
while under the influence of a recirculating flow. To construct the simplest
model, we use the corner eddy flow first analyzed by Moffatt [16]. Previously,
we have shown that many qualitative features that occur in real alveoli
can also be seen in corners [10, 11, 12]. We focus on a particular eddy
and release particles with inertia, including buoyancy (gravity) effects, from
various recirculation paths. In §2 we derive a minimal model for inertial
particle transport. The equations of motion for particles in Moffatt’s corner
flow are summarized in §3 and are solved numerically in §4. In particular,
we show that it is possible to clear a very small and dense particle out of
a cavity given favourable conditions. This is discussed in §5 where we also
examine the formation of a skewed limit cycle. Our main conclusions are
given in §6.

2 The minimal model

This section introduces the equation of motion for a small, rigid sphere in
an incompressible fluid and the physiologically relevant assumptions that
lead to our minimal model. As noted by Maxey & Riley [14], an important
aspect of this equation is that it is derived under the assumption of very low
Reynolds number. This is fine for our needs as the Reynolds number deep
in the acinus of the lung (where gas exchange occurs) is much smaller than
unity.

Throughout the paper, carets are used to denote dimensional variables;
these are removed when variables are nondimensionalized.

The equation of motion for a small rigid spherical particle in an incom-
pressible fluid is

ρp
dv̂

dt̂
= ρf

Dû

Dt̂
+ (ρp − ρf )ĝ −

9νρf

2a2
Q̂ −

ρf

2

(

dv̂
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−

D

Dt̂

[

û +
a2

10
∇2û

])

−
9ρf
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√

ν

π

∫ t̂

0

1
√

t̂ − ξ

dQ̂

dξ
dξ. (2.1)

Here v̂, ρp and a are the velocity, density and radius of the particle, respec-
tively, û, ρf and ν are the velocity, density and kinematic viscosity of the
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fluid, and the gravitational acceleration is ĝ. Let x̂(t̂) be the position of the
particle’s centre; then

Q̂(t̂) = v̂(t̂) − û(x̂(t̂), t̂) −
1

6
a2∇2û.

For a detailed discussion of (2.1) see Maxey [13]. On the right-hand side of
(2.1), the terms represent (respectively) the pressure gradient of the undis-
turbed flow, buoyancy, viscous Stokes drag, added mass, and the augmented
viscous drag from the Basset-Boussinesq history term. Maxey & Riley [14]
derived (2.1) and also adjusted the ‘added mass’ term to model spherical
bubbles. Maxey & Riley’s main assumptions are as follows.

(1) The particle is much smaller than the length scale L of the flow, so
β = a/L ≪ 1.

(2) Let U be a velocity scale for the flow and let W be a velocity scale for
the motion of the particle relative to the surrounding fluid; then

aW

ν
≪ 1,

(

a2

ν

) (

U

L

)

≪ 1. (2.2)

(3) In the low Reynolds number limit there is no force due to shear or
particle spin.

(4) There are no particle-particle interactions.

(5) Nonzero Reynolds number contributions are negligible; for steady mo-
tion these are the Oseen correction to Stokes drag, the modified drag
due to particle rotation, and the Saffman effect or side force due to
shear of the undisturbed flow. This assumption is largely a consequence
of (2.2).

We now further assume that the particle is sufficiently small so that
Faxén corrections (which are the terms proportional to a2∇2û) are negligi-
ble. We also restrict attention to particles that are much denser than air,
so that there is a natural small parameter δ = ρf/ρp ≪ 1. According to
Michaelides [15], for δ < 0.004, the history term may be justifiably neglect-
ed. Heyder et al. [5] documented that spheres of diameter 0.01 to 10 µm
and density 1g/cm3 can reach the acinus. Thus δ < 0.004 is typical in the
lung. Consequently, for alveolar flows, (2.1) reduces to

dv̂

dt̂
= δ

Dû

Dt̂
+ (1 − δ)ĝ −

9ν

2a2
δ(v̂ − û) −

δ

2

(

dv̂

dt̂
−

Dû

Dt̂

)

. (2.3)
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We nondimensionalize (2.3) in the usual way by writing

x = x̂/L, t = Ut̂/L, u = û/U, v = v̂/U.

This yields

dv

dt
= δ

Du

Dt
+ (1 − δ)g −

δ

Sk
(v − u) −

δ

2

(

dv

dt
−

Du

Dt

)

. (2.4)

Apart from δ, the important parameters are

|g| = Ri ≡
|ĝ|L

U2
,

and

Sk =

(

2a2

9ν

) (

U

L

)

=
2

9
β2Re, Re =

UL

ν
;

these are the Richardson number Ri (which expresses the ratio of potential
to kinetic energy), the particle Stokes number (the dimensionless decay time
due to the Stokes drag) and the Reynolds number of the fluid, respectively.
(We use ‘Sk’ for Stokes number here as ‘St’ is commonly used for the Strouhal
number.) Condition (2.2) implies that Sk ≪ 1.

In newborn babies, the typical alveolar cavity radius L is around 25µm
[7]. Weibel’s model of the adult lung estimates L at 200µm [26], whereas
several recent experiments give lower figures in the range 90–140 µm [7, 17,
27]. Data from some other species are available [9, 23].

Haber et al. [4] observed that, in humans, typical alveolar velocities are
a few cm/s. Taking U = 3cm/s this gives Ri = 0.2725 when L = 25µm and
Ri = 1.635 when L = 150µm.

As we are primarily concerned with inertial transport, we restrict at-
tention to particles that are very small but are large enough to not diffuse
significantly. This means that particle radii must be at least 0.5µm (to avoid
the transitional region where diffusion and inertia compete); see Schulz et

al. [19].
It is convenient to introduce the quantities

Rf =
2ρf

ρf + 2ρp

=
2δ

δ + 2
and Rp =

2ρp

ρf + 2ρp

=
2

δ + 2
,

which enable (2.4) to be rewritten in the form

dv

dt
=

3

2
Rf

Du

Dt
+ (Rp − Rf )g −

Rf

Sk
(v − u). (2.5)
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Babiano et al. [1] have studied (2.4) subject to δ = 1 (neutrally buoyant
particles) whereas we are interested in inertial effects. Benczik et al. [2, 3]
removed the gravitational term from (2.5); as we shall see, this term has a
marked effect on the deposition and clearance of particles in cavities.

As δ is very small, we have Rf = δ + O(δ2) and Rp = 1 + O(δ). Addi-
tionally, the flow deep in the lung is such that Re ≪ 1. Given that particles
that reach the acinus are less than 10µm in diameter [5], this results in very
small Sk. We shall assume that δ is at least O(Sk). Therefore Sk is suffi-
ciently small to make the size/inertia parameter A = Rf/Sk at least O(1).
This means that the dominant effects in equation (2.5) will be buoyancy
and Stokes drag. Therefore, the dominant behaviour is determined by the
simplified equation

dv

dt
= g − A(v − u). (2.6)

As Sk → 0, for fixed δ, A → ∞, corresponding to the fluid particle limit.
The smaller A is, the more prominent is the effect of inertia.

3 The flow field

3.1 Stokes flow in a corner

Over forty years ago, Moffatt formulated a model of Stokes flow of a fluid
bounded by a corner. The walls were fixed and a unidirectional flow was
assumed to be generated far from the corner. It was discovered that for
angles of less than 2φcritical = 146.3◦, an infinite stream of eddies is produced
in the corner [16]. Here we shall briefly review Moffatt’s model using the
notation and formulation used in an earlier paper [10].

Let û = ûrer + ûθeθ be the velocity field with respect to plane polar
coordinates (r̂, θ). The incompressibility condition is

1

r̂
(r̂ûr),r̂ +

1

r̂
(ûθ),θ = 0.

The corner region is simply-connected; in other words, there are no holes
in it. Thus there exists a streamfunction ψ̂(r̂, θ) such that ûr = ψ̂,θ/r̂ and

ûθ = −ψ̂,r̂. Therefore particle motion is described by the equations

dr̂

dt̂
=

1

r̂
ψ̂,θ, r̂

dθ

dt̂
= −ψ̂,r̂.

The walls are placed at θ = ±φ0, so the corner angle is 2φ0. To guarantee
recirculation occurs, let φ0 < φcritical. The boundary conditions are

ψ̂,θ = 0, ψ̂,r̂ = 0 on θ = ±φ0.

5



Let L be the lengthscale for a particular eddy and let ψ0 be the maximum
value of |ψ̂| on that eddy. Then we nondimensionalize as follows:

ψ̂ = ψ0ψ, r̂ = Lr, t̂ = Tt, where T = L/U = L2/ψ0.

The streamfunction is ψ(r, θ), which is explicitly written as

ψ = ℜ
{

eiωrλf(θ, t)
}

, (3.1)

with
f = cos((λ − 2)φ0) cos(λθ) − cos(λφ0) cos((λ − 2)θ),

where λ is an eigenvalue. Throughout this paper we shall choose ω = 0 and
2φ0 = 20◦. The boundary conditions yield the eigenvalue equation

sin(2φ0µ) = −µ sin(2φ0), where µ = λ − 1.

Moffatt considered only the flow corresponding to the dominant eigenvalues
λ and λ̄ and showed that

λ =

(

1 +
ξ

2φ0

)

+ i

(

η

2φ0

)

,

where ξ ≈ 4 and η is O(1). Some particle paths are shown in Figure 1.
In dimensionless variables, trajectories for particles that follow the flow

(fluid particles) are obtained from the Lagrangian equations of motion

dr

dt
=

1

r

∂ψ

∂θ
,

dθ

dt
= −

1

r

∂ψ

∂r
. (3.2)

In cartesian coordinates x = r cos θ, y = r sin θ, equations (3.2) can be
rewritten as

dx

dt
= ux(x, y, t),

dy

dt
= uy(x, y, t), (3.3a)

where

ux =
∂ψ

∂y
, uy = −

∂ψ

∂x
, (3.3b)

and ψ is now written in terms of x and y. Equations (3.3) form a Hamiltonian
system for the motion of fluid particles.
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Figure 1: Moffatt’s corner eddies with corner angle of 20◦. Left: Two
eddies are shown; the upper eddy and the lower eddy are illustrated by five
and three representative curves, respectively. Right: An eddy with upper
and lower separatrices shown.

3.2 Inertial particle motion

For inertial particles, the velocity field used in (3.3) is adapted as follows:

dx

dt
= vx, (3.4a)

dy

dt
= vy, (3.4b)

dvx

dt
=

3

2
Rf

Dux

Dt
− A(vx − ux), (3.4c)

dvy

dt
=

3

2
Rf

Duy

Dt
+ (Rp − Rf )gy − A(vy − uy), (3.4d)

where ux and uy are given in equations (3.3b) and g = (0, gy). For alveolar
flows with δ < 0.004, we use the approximation (2.6) to obtain

dx

dt
= vx, (3.5a)

dy

dt
= vy, (3.5b)

dvx

dt
= −A(vx − ux), (3.5c)
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dvy

dt
= gy − A(vy − uy). (3.5d)

We have tracked particle paths by numerically integrating (3.3) for fluid
particles and either (3.4) or (3.5) for inertial particles. We used a fourth-
order explicit Runge-Kutta method with a step size dependent on the order
of the inertial parameter A; the output was verified by repeatedly halving
the step size until numerical drift was no longer observable in the computed
trajectories.

The fluid particles are confined to move within the corner; see Figure 1
(Right). Furthermore, each of these particles is also confined to a particular
recirculation path. However, in contrast, the inertial particles may travel
to a side of the corner or pass through the upper/lower separatrix. We
assume that once an inertial particle has encountered a wall or separatrix, it
is absorbed onto the wall and tracking is stopped with the crossing location
recorded.

4 Results

In the results that follow, an ensemble of 14 particles is released from a
single recirculation path. The starting points are marked by circles. The
particle paths are superimposed onto the same image to give a feel for the
type of behaviour that can be seen.

4.1 Zero gravity

We first consider an upright corner (Figure 1) with recirculation moving
clockwise. Inertia is included, though effects from gravity are not. In zero
gravity, reorienting the cavity would not change the pattern of particle paths.
See Figure 2 for sample paths; the particles are released from the initial
recirculation path and can impact walls and the lower separatrix as well as
travelling out of the upper separatrix on the left-hand side. The figures have
been created using equations (3.4). Unsurprisingly, the approximation (3.5)
gives trajectories that are indistinguishable from those given by (3.4), so we
use (3.5) from henceforth.

At the larger value, δ = 0.004, particles recirculate until they get suffi-
ciently close to the top of the eddy, where their speed is greatest and they
are flung against the downstream wall. Consequently, particle deposition is
highly localized. For δ = 0.001, the particles have sufficient inertia (relative
to the fluid) to fall into regions where the circulation is fairly weak, and the
deposition is much more uniform over the whole wall.
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Figure 2: Effect of Rf (determined by δ) and A = Rf/Sk with Sk = 0.002
on recirculating particles in a corner of angle 20◦. Each starting point lies at
the centre of the circles shown. Left: δ = 0.004, which is the upper bound
given by Michaelides [15]. Right: δ = 0.001.

4.2 Gravity effects

Next, consider what happens to particle paths in Figure 2 (Left) when
gravity is included. Figure 3 shows sample particle trajectories for various
Richardson numbers. Stronger gravity pulls particles down, acting against
the inertia and recirculation. Increasing the Richardson number causes more
particles to be deposited on the lower separatrix, making it very hard for
particles to escape out of the upper separatrix. Furthermore, particles may
speed up before impact depending on their location in the cavity and the
strength of recirculation; for Figure 3 (Right), all particles eventually speed
up before impact.

4.3 Orientation of the cavity

Finally, consider the effect of the orientation of the cavity relative to the di-
rection −ey in which gravity acts. Figure 4 shows some examples for strong
inertia and small Richardson number. By physically reorienting Figure 2
(Left) accordingly it becomes clear that gravity coupled to orientation can
dramatically change the behaviour of particles. Moreover, reorientation can
enhance the effects of even weak gravity. This is most noticeable for areas
of weak recirculation. In particular, Figure 4 shows that reorientation can
cause more particles to fall out of the cavity, compared to its upright coun-
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Figure 3: Effect of adding gravity to the particles released in Figure 2 (Left);
here gy = −Ri. Left: Ri = 0.1. Right: Ri = 1.

terpart. Therefore, orientation is a strong determinant of particle removal
when gravity is present.

5 Discussion

The output (Figures 2–4), shows that, with a clockwise recirculation, some
particles leave through the left-hand side of the eddy [with respect to the
upright corner — see Figure 2 (Right) for instance]. When a particle crosses
the top separatrix it is then in the region of another eddy. According to
Moffatt’s analysis [16], this larger eddy is approximately 380 times stronger
than the eddy that we considered and is rotating in the opposite direction.
This indicates that the particles that escape our eddy from the left-hand side
will later be dragged to the right due to the stronger eddy above it. Similarly,
flow in alveolar ducts will drag inertial particles from the upstream side of
the alveolar opening into the ductal flow.

From our results, we know that introducing inertia will allow particles
to diverge from a recirculation path that fluid particles would follow. Iner-
tia encourages particles to impact walls and escape from the eddy region.
The addition of gravity and reorientation can enhance the numbers of par-
ticles to escape out of the cavity [compare Figure 4 (Bottom) with Figure 3
(Left)]. However, reorienting the cavity could also reduce the effectiveness
of this mechanism [compare Figure 4 (Bottom) with Figure 4 (Left, Right)].
Therefore orientation is an influencing factor for whether or not a particle
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Figure 4: Effect of orientation on Figure 3 (Left). Here Sk = 0.002,
δ = 0.004, Ri = 0.1, and the recirculation is clockwise.
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Figure 5: A particle is released with δ = 0.004 and Sk = 0.0004, with
Ri = 0.02. This shows the trajectory after 200 time units; we have tested to
1000 time units with similar results. Left: this suggests that the particle
is approaching a limit cycle. Right: shows the limit cycle — there is no
observable deviation in 1000 time units.

is retained in a cavity.
Surprizingly, under some circumstances, heavy particles can be trapped

indefinitely in the cavity. Figure 5 gives an example; after a short time the
particle settles on a skewed closed path. (We have also experimented with
releasing particles inside the region bounded by this path; all such particles
converged onto the path, suggesting that it is a limit cycle.) Thus a balance
between recirculation, inertia and gravity is achievable and stable from the
inside under the right conditions. In fact, the limit cycle is only one-sided;
particles that start outside it are deposited onto the walls or separatrices.
This is an example of saddle-node stability.

The implications of our computations for real alveoli are as follows. First-
ly, inertial particles can be quickly dispersed around the cavity walls in ze-
ro gravity as long as recirculation is present and inertia is strong enough.
Secondly, gravity further allows particles to deviate from recirculating and
pulls the particles downwards, as expected. Thirdly, orienting the cavity
can change the rate at which particles are cleared from the cavity.

There are additional implications for developing alveoli. For recircula-
tion to occur, these approximately spherical cavities must be sufficiently
deep. Therefore, those alveoli that are immature would not be expected to
have particles undergoing the exact mechanism seen here. We suspect that
fully-developed alveoli potentially possess an enhanced ability for particle
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clearance, which less developed alveoli do not have. In particular, the re-
moval of detrimental particles can be greater for developed alveoli than for
immature ones. Moreover, models of the deposition of aerosolized medica-
tion will need to take into account the effect of recirculation on deposition
and clearance. In particular, it should not be assumed that immature lungs
are scaled-down versions of adult lungs.

6 Conclusions

Recirculation occurs for alveolar cavities of sufficient depth. Particles with
inertia may be cleared from the cavity or deposited onto walls. In excep-
tional circumstances, they may become trapped on a limit cycle. In zero
gravity, particles with substantial inertia are fairly evenly distributed around
the cavity whereas particles whose inertia is close to that of the fluid are
deposited near the mouth of the cavity. Inertial particle paths are very d-
ifferent to fluid particle paths, which have been previously used to model
particle transport in alveoli. It is evident that gross inaccuracy can oc-
cur by modelling aerosols as fluid particles. Moreover, our minimal model
has shown that inclusion of buoyancy, viscous Stokes drag and added mass
encapsulates all that is required to observe the deposition, retention and
clearance of sufficiently small particles in cavities.
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