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ABSTRACT

The complex-step method is a clever way of obtaining a numerical approx-

imation to the first derivative of a function, avoiding the round-off error

that plagues standard finite difference approximations. An extension of the

method allows second derivatives to be calculated with reduced round-off er-

ror. This article provides an overview of the method, discusses its practical

implementation, with particular reference to R, and studies its effectiveness

in several statistical examples.

KEY WORDS: Automatic differentiation; finite difference; gradient;

Hessian; Richardson extrapolation
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1. INTRODUCTION

In recent years there has been growing interest, particularly in the engi-

neering literature, in a method of numerical differentiation known as the

complex-step approximation, which provides an alternative to finite differ-

ence approximation. The purpose of this note is to outline the complex-step

method and investigate its performance for several statistical examples. Sec-

tion 2 describes the basic method and Section 3 discusses implementation

issues. Section 4 presents a variety of statistical examples. Other approaches

to differentiation are considered briefly in the Discussion.

2. THE COMPLEX-STEP METHOD

Suppose that we are interested in the first and second derivatives of the

function f(θ), where θ is a p-dimensional vector of real values. In statisti-

cal applications, f(θ) will often be a log-likelihood function. Although our

interest is in real values of θ, we sometimes treat θ as a vector of complex

values in the sequel and assume that f is analytic at θ.

2.1 First derivatives

Suppose initially that θ is a scalar parameter. Two commonly used finite

difference approximations to f ′(θ) are

g1(θ) =
f(θ + δ)− f(θ)

δ
(1)

and

g2(θ) =
f(θ + δ)− f(θ − δ)

2δ
. (2)

There are two sources of error in using finite difference approximations. The

truncation error is the amount by which the approximation, when calculated
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exactly, differs from the true value. Simple manipulation of Taylor series

shows that this error is O(δ) for g1(θ) and O(δ2) for g2(θ).

Truncation error is minimised by choosing δ as small as possible. However,

numerical calculation of the approximations is also subject to round-off error

which is potentially severe for small δ, since the calculation then involves

the subtraction of two near-equal quantities. The round-off error is O(δ−1)

for both of the approximations above. Thus, some compromise value of δ is

needed to balance the truncation and round-off errors. A common suggestion

is to take δ = ε
1/2
f min(θ, θc) for g1 and δ = ε

1/3
f min(θ, θc) for g2, where εf

is the fractional accuracy to which the function f can be computed and θc

is a cut-off value introduced to avoid very small values of δ when θ is small

(Dennis and Schnabel 1983, sec. 5.4). More generally, if round-off error is

O(δ−m) and truncation error is O(δn), with m,n > 0, then one should choose

the step size to be δ = ε
1/(m+n)
f θ. In the examples in this paper we choose

θc < θ, so that δ is always proportional to θ, and set εf to be the machine

accuracy, ε, defined as the smallest positive number for which 1 + ε > 1

within the computer.

The complex-step approximation (Squire and Trapp 1998) results from

the Taylor series expansion

f(θ + iδ) = f(θ) + iδf ′(θ)− δ2f ′′(θ)

2!
− iδ3f ′′′(θ)

3!
+ . . . , (3)

where i =
√
−1. Hence

Im[f(θ + iδ)]

δ
= f ′(θ)− δ2f ′′′(θ)

3!
+ . . . , (4)

where Im(z) denotes the imaginary part of the complex number z. So

g4(θ) =
Im[f(θ + iδ)]

δ
(5)
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is another approximation to f ′(θ) with O(δ2) truncation error. In fact, the

leading error terms of g2(θ) and g4(θ) are of equal magnitude, but oppo-

site sign. However, the key point about g4(θ) is that in most circumstances

the truncation error can be eliminated almost completely by choosing a very

small value of h, without fear of round-off error due to subtractive cancella-

tion; exceptions to this are discussed in Section 3.

To illustrate the complex-step approach, consider the log-likelihood func-

tion for a single observation y from a Poisson distribution with mean θ,

f(θ) = y log(θ)− θ. (6)

Here and elsewhere in the paper we exclude constant terms from the log-

likelihood function. For illustration, let y = 4 and θ = 5, so that f ′(θ) = 1/5.

Figure 1 shows the absolute error of the approximations g1, g2 and g4. The

calculations were done in R with a machine accuracy, given by the system

variable .Machine$double.eps, of 2.22× 10−16. Initially, as δ decreases, the

absolute errors decrease as truncation error declines. The rates of decline

are essentially equal for g2 and g4, but g1 declines more slowly, reflecting its

inferior O(h) truncation error. As δ decreases further, however, round-off

error becomes important and causes the absolute errors of g1 and g2 to start

increasing again, at essentially the same rate. Eventually, as δ approaches

machine accuracy, these approximations return a value of zero. However,

the absolute error of g4 continues to decrease until it is around the machine

accuracy and this accuracy is maintained for values of δ well below machine

accuracy.

Note that the use of complex values of θ in this example is purely an

artifice to get good numerical results; it makes no statistical sense to consider
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a Poisson distribution whose mean is a complex number.

If θ is a vector of dimension p, the gradient vector may be approximated

by applying any of the approximations above to each element of θ in turn.

For example, the complex-step approximation to ∂f/∂θj is

g4,j(θ) =
Im[f(θ + δjej)]

δj
,

where ej is the vector with jth element equal to one and other elements equal

to zero, and where the step size δj may vary with j. For the approximations

g1, g2 and g4, calculation of the complete gradient vector requires respectively

p + 1, 2p and p function evaluations. However, the evaluations for g4 will

generally be slower, because they involve complex values of the argument.

2.2 Second derivatives

Three commonly used finite difference approximations to the partial deriv-

ative ∂2f/∂θjθk are

h1,j,k(θ) =
1

δjδk

{
[f(θ + δjej + δkek)− f(θ + δjej)]−

[f(θ + δkek)− f(θ)]
}
,

(7)

h2,j,k(θ) =
1

2δjδk

{
[f(θ + δjej + δkek)− f(θ + δjej)]−

[f(θ + δkek)− f(θ)] +

[f(θ − hjej − δkek)− f(θ − δjej)]−

[f(θ − δkek)− f(θ)]
}

(8)

and

h3,j,k(θ) =
1

4δjδk

{
[f(θ + δjej + δkek)− f(θ + δjej − δkek)]−

[f(θ − δjej + δkek)− f(θ − δjej − δkek)]
}
,

(9)
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The first two formulae are given, for example, by Monahan (2001, sec. 8.6),

who discusses the bracketing of terms to reduce round-off error. The third

formula is used, for example, by the optim function in R, with δj = δk = 0.001

by default.

There appears to be no way of avoiding subtraction for approximating

second derivatives, even if complex steps are allowed. However, one sim-

ple possibility is to apply the finite difference approximation f2 to the first

derivative approximation based on f4. This leads to the formula

h4,j,k(θ) =
1

2δjδk
Im[f(θ + iδjej + δkek)− f(θ + iδjej − δkek)]. (10)

This approximation has been suggested independently by several authors.

Abokhodair (2007), provides MATLAB code and recommends choosing δj � δk,

on the grounds that f2 is susceptible to round-off error but f4 is not. Cai

(2008) gives similar Matlab code, but with δj = δk =
√
ε, where ε is the ma-

chine accuracy. Lai and Crassidis (2007) obtain an equivalent approximation

by a somewhat different route, implicitly taking δj = δk.

Table 1 gives the leading term of the truncation error for pure and mixed

second derivatives for each approximation. Inevitably, comparisons between

approximations depend on the magnitude of the various derivatives involved.

However, for pure second derivatives, the truncation error will typically be

smallest for h4, unless the magnitude of the 6th derivative is much greater

than that of the 4th derivative. As well as having a better truncation error,

h4 also has an improved round-off error which is O(h−1) compared to the

O(h−2) of other methods. Thus the ‘optimal’ step size is ε1/3θ for h1, ε
1/4θ

for h2 and h3, and ε1/5θ for h4.

As an example, consider again the Poisson log-likelihood function given
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by equation (6), for which

f (k)(θ) = (−1)k−1(k − 1)!y/θk k ≥ 1.

For y = 4 and µ = 5, the magnitudes of the leading truncation error terms are

0.0213δ for h1, 0.0224δ2 for h2, 0.0128δ2 for h3 and 0.00034δ4 for h4. Thus the

truncation error of h4 is many orders of magnitude smaller than that of the

other approximations. Figure 2 shows the absolute errors in approximating

the f ′′(θ). For optimally chosen step sizes, h4 performs much better than h2

and h3, which in turn perform much better than h1. Even if the step size

for h4 is not chosen optimally, this approximation performs better than the

other methods over quite a wide range of values of δ.

For pure second derivatives, a generalization of h4 that might be consid-

ered is

h∗4,j,j(θ) =
1

2δj1δj2
Im[f(θ + iδj1ej + δj2ej)− f(θ + iδj1ej − δj2ej)],

with δj1 very small, since it contributes only to truncation error, and δj2 not

too small, as the round-off error is O(δ−1
j2

) (Abokhodair, 2007). However,

if δj1 6= δj2 , the truncation error is increased by the presence of a term

proportional to (δ2
j1
− δ2

j2
); only when δj1 = δj2 = δj is the truncation error

O(δ4
j ).

For mixed derivatives, the situation is more complicated. However, with

the simplifying assumption that δj = δk = δjk, the error terms remain un-

changed except that the truncation error for h4 is now O(δ2
jk). With a com-

mon value of δjk, a reasonable choice for this step size is

δjk = ε1/s
√
θjθk

with s = 3 for h1 and h4 and s = 4 for h2 and h3.
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To illustrate a mixed derivative calculation we consider the log-likelihood

for observations y1, y2 from Poisson distributions with mean µ1, µ2, where

µj = θ1 + θ2xj,

f(θ1, θ2) = y1 log(θ1 + θ2x1) + y2 log(θ1 + θ2x2)− θ2(x1 + x2). (11)

Figure 3 compares the absolute errors of the different approximations when

y1 = 4, y2 = 5, x1 = 2,x2 = 4, θ1 = 3 and θ2 = 1. For these parameter

values, the true value of the derivative is −892/1225. Despite its increased

truncation error, h4 still outperforms the other estimators as a result of its

better round-off error.

Table 1 also shows the number of function evaluations needed to calculate

the full Hessian matrix of second derivatives. We have assumed here that

only the upper (or lower) triangular half of the matrix is calculated, with the

remainder determined by symmetry. The approximations h1, h2 and h3 are

symmetrical in θj and θk, though it is still possible that the approximations to

∂ 2f/∂θjθk and ∂ 2f/∂θkθj will differ slightly due to round-off error. However,

in general, h4,j,k(θ) 6= h4,k,j(θ) and an alternative is to calculate all elements

of the Hessian matrix H and then convert this to the symmetric matrix (H+

H t)/2, where H t denotes the transpose matrix. However, this increases the

number of function evaluations to 2p2 and often provides little improvement.

In some instances, approximations to both the first and second deriva-

tives of the function are required. If equation (10) is used to approximate

the second derivatives, then the first derivative with respect to θj may be

approximated without any additional function evaluations as

1

2δj
Im [f(θ + δj(1 + i)ej) + f(θ + δj(−1 + i)ej)] .
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Like equation (5), this approximation has O(δ2
j ) truncation error and does

not suffer from round-off error, though as already noted, because the second

derivative approximation is also needed, the value of δj cannot be taken to

be too small.

3. IMPLEMENTATION ISSUES

The formulae of the previous section can be used directly in any program-

ming environment that supports complex numbers, for example MATLAB, R

or S-PLUS. This will suffice for many statistical applications, but sometimes

there are additional implementation issues that must be addressed to ensure

good results. Martins, Sturdza and Alonso (2003) discuss these issues, fo-

cusing particularly on implementation in Fortran or C and Shampine (2007)

describes in detail a MATLAB package, PMAD, for complex-step first deriva-

tives. This is implemented at two levels. The first introduces special versions

of certain operators and functions so that the complex-step method works

correctly. This is termed the informal approach because it relies on these

modified functions and operators being used in the coding of the function

f(θ). The second approach is a slower, but more reliable, object-oriented

implementation.

Our aim here is to raise awareness of the issues that any potential user of

the complex-step method should be aware of. Techniques for resolving these

difficulties depend on the specific programming environment and for illus-

tration we indicate how some of the issues may be resolved in R. What we

propose constitutes an informal approach that will extend the range of sta-

tistical problems to which the complex-step method may be applied. Whilst
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a more formal approach might be conceivable in R, it seems unlikely that

this would be worth the considerable programming effort required.

The first point is that the complex-step approximation may fail for some

functions, if the step size is too small, because of the way that the software

evaluates the function for complex arguments (Martins et al. 2003). In

R, this applies to the inverse trigonometric functions, for example. The

method also fails for the abs function, since this always returns a real value.

Other functions, such as lgamma, which returns the logarithm of the gamma

function, only accept real arguments.

Often, these problems can be resolved by defining or redefining the way in

which these functions behave for complex arguments (Martins et al. 2003).

A trick that works for first derivatives is to define

f(θ + δi) = f(θ) + iδf ′(θ), (12)

where θ and δ are real. Then it is easy to see that the complex-step method

will return the exact derivative f ′(θ), to within the accuracy with which this

can be evaluated, irrespective of the value of δ. It requires us to know the

derivative of the function, which might at first sight seem to defeat the object

of using numerical differentiation. But the point is that once the function is

coded, it can be used as a component of more complicated functions.

Unfortunately, this is just a computational trick. It does not properly

define the function for complex arguments in the mathematical sense, but

simply uses the real and imaginary parts of complex numbers to store both

the function and its derivative. As a result, it cannot be used when we re-

quire second derivatives, as will usually be the case in statistical applications.

Instead, the function definition must be extended to complex arguments in
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the proper mathematical sense.

To illustrate how a function may be extended to accept complex argu-

ments in R, consider the function lgamma. Fortunately, there is a function

cgamma in the package fOptions, which returns the gamma function for com-

plex arguments. We may then extend the lgamma function to accept complex

arguments using the following commands:

lgamma.complex <- function(z) log(cgamma(z))

lgamma <- function(z) UseMethod("lgamma")

lgamma.default <- base::lgamma

With this redefinition, the complex-step method can be applied without

modification to functions that use lgamma; Section 4 provides an example.

The Poisson log-likelihood function of equation (6) can be evaluated in R

as dpois(y, theta, log=TRUE), though this does include the constant term

that was omitted from equation (6). A slightly more complicated approach

is needed here, because it is the second argument of this function that we

wish to allow to be complex. Figure 4 shows one possible approach. A

disadvantage of redefining functions in this way is that inevitably it adds

overhead. However, Table 2 indicates that in this instance the overhead is

modest in comparison with the overhead of using the built-in function dpois

instead of programming the function directly.

The usage of operators should also be considered. The standard arith-

metic operators work for complex numbers. However, integer powers should

be evaluated by direct multiplication to avoid problems with the complex-

step approximations. For example, if δ is too small, the approximation

g4(θ) gives poor results for the function f(θ) = (y − θ)2 when this is eval-
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uated as (y-theta)^2 but accurate results when it is evaluated instead as

(y-theta)*(y-theta).

Relational operators such as< and> are not defined for complex numbers

and will generate an error. The appropriate corrective action is to modify

the code defining f(θ) so that it is the real parts that are compared, for

example, modifying an expression such as

theta[1] < theta[2]

to

Re(theta[1]) < Re(theta[2])

Particular care should be taken with the operators == and !=, representing

logical equality and non-equality, since these are defined for complex numbers

and so will not generate an error message. Nonetheless, comparisons should

be modified to apply to the real parts of the arguments, as above, and failure

to do this will lead to incorrect results in most instances.

4. EXAMPLES

To investigate the performance of the complex-step method in practice, we

consider a particularly common application of numerical differentation in

statistics, namely numerical calculation of the observed information matrix

after fitting a model by maximum likelihood, followed by inversion of the

matrix to give the standard errors of the estimated parameters and their

correlations. Thus the function f will be a negative log-likelihood function.

We note two features of this problem at the outset. Firstly, we are un-

likely to require very high accuracy in this context, because the methodology

is based on asymptotic theory that will apply only approximately to the fi-
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nite data available. Thus from a purely practical viewpoint, even relatively

poor methods may be adequate. Secondly, the asymptotic theory indicates

that in regular problems the log-likelihood function should be approximately

quadratic in the neighbourhood of its maximum. This means that the nu-

merical differentiation problem is relatively benign, since if the function were

exactly quadratic the truncation error would be zero for all of the second

derivative approximations that we have described. This may limit the po-

tential for improvement by the complex-step method.

We consider several examples from the book by Brazzale, Davison and

Reid (2007), who give references to the original data sources. The focus of

this book is on improving inference by using higher-order asymptotic theory,

but here we are simply looking at the numerical aspects of standard first-

order theory. We use the notation BDR 4.3, for example, to refer to Section

4.3 of Brazzale et al. (2007). Brief details of the examples are as follows.

Gamma data (BRD 2.3)

This artificial example involves five observations, 0.2, 0.45, 0.78, 1.28, 2.28,

assumed to be from the gamma density

f(y;λ, ψ) =
λψyψ−1

Γ(ψ)
exp(−λy), y > 0, λ, ψ > 0.

We include this example to illustrate the use of the redefined log-gamma

function.

Smoking data (BDR 4.6)

The data are the number of British male doctors dying of lung cancer (Y )

and the man-years at risk (T ) cross-classified by number of cigarettes smoked

per day (c, 7 levels) and years of smoking (d, 9 levels). Y is modelled as a
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Poisson variable with mean

µ(θ) = 10−5T × eθ1d θ2
(
1 + eθ3c θ4

)
.

Radioimmunoassay data (BDR 5.4)

This is a nonlinear regression problem. There are two replicates of each of

eight levels of drug concentration (x). The response variable is the percentage

of radioactive gamma counts, assumed to be normally distributed with mean

µ(x; β) = β1 +
β2 − β1

1 + (x/β4)
β3
, x ≥ 0, β1, . . . , β4 ≥ 0

and variance

σ2(x; β,γ) = eγ1µ(x,β)γ2 .

We take θ to be the full vector of parameters (β1, β2, β3, β4, γ1, γ2).

Nuclear power station data (BDR 5.2)

This is a multiple linear regression problem, with 32 observations. The re-

sponse variable is the logarithm of the construction cost of a nuclear reactor

and there are ten potential explanatory variables. We consider the particu-

lar model in Table 5.2 of Brazzale et al. (2007), which includes a constant

term and six covariates and was selected using AIC. The model is fitted by

ordinary least squares and also by maximum likelihood assuming that the

errors follows a scaled t4 distribution.

Cell phone data (BDR 4.3)

The data are from a study of the association between cellular telephone

use and vehicle collisions. The single parameter of interest, exp(ψ), is an

approximate odds-ratio. The (conditional) likelihood for this parameter is

that of a binomial random variable with index 181, observed value 157 and

probability γ, where γ = eψ/(1 + eψ).
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We use this example to illustrate numerical implementation of the delta

method. That is, we write the log-likelihood in terms of γ and hence obtain a

numerical estimate of var(γ̂). Then we obtain the variance of the maximum

likelihood estimator of the transformed parameter f(γ) = γ/(1 − γ) using

the delta method. This requires calculation of the first derivative f ′(γ) for

which we use the approximation g4 when the Hessian matrix is approximated

by h4 and the approximation g2 for all other Hessian approximations.

Therapy cost data (BDR 3.5)

The data comprise costs (pounds sterling) of therapy for patients with a

history of deliberate self harm. Patients received either a standard therapy or

cognitive behaviour therapy. The parameter of interest is either the difference

or the ratio of the group means and the costs are assumed to follow either

exponential or log-normal distributions.

We use this as a further illustration of the use of the delta method. The

log-likelihood for the exponential distribution is written in terms of the group

mean parameters µ1 and µ2. In the log-normal case, the log-likelihood is writ-

ten in terms of parameters λi and σ2
i (i = 1, 2), with the group means given

by exp(λi + σ2
i /2). In both cases, the covariance matrix of the maximum

likelihood estimators of the defining parameters is obtained by inverting a

numerical approximation to the Hessian matrix. Then the delta method

is used to find the 2 × 2 covariance matrix of the transformed parameters

(µ1/µ2, µ1 − µ2), approximating the required first derivatives as in the pre-

vious example.

4.1 Accuracy of approximations

To investigate the accuracy of the approximations, MAPLE was used to
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obtain the exact derivatives symbolically and evaluate them to high preci-

sion for a particular set of parameter values. The results were then compared

with the various approximations evaluated at the same parameter values. In

addition to the approximations to the Hessian matrix defined in Section 2,

we also approximated the observed information matrix using the function

hessian in the numDeriv package. This starts with a finite difference ap-

proximation and improves it, at the expense of further function evaluations,

by the technique of Richardson extrapolation Press, Teukolsky, Vetterling

and Flannery 1992, sec. 5.7). The hessian function has several controlling

parameters; these were left at their default settings, under which the total

number of function evaluations required is 4p2 + 4p + 2. The R programs

used to generate all of the results presented here are available at

web address removed for blinding.

We evaluated the approximations using three measures - the relative error

of the generalised variance (the determinant of the inverse of the observed

information matrix), the maximum relative error of the standard errors of

the parameter estimates and the maximum absolute error of the correlations

between parameter estimates. Since all three measures gave a similar picture

of the relative performance of the approximations, we present just the second

of these here (Table 3).

Based on the orders of their truncation and round-off errors, one would

expect to see progressive improvement in the approximations from h1 through

to h4, though this general behavior will be distorted for some specific func-

tions. Leaving aside the BDR 5.2 example for a moment, this pattern is borne

out generally in Table 3. Differences between h2 and h3 are usually small,

but these can reduce relative errors by two or more orders of magnitude
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compared to h1. The complex-step approximation h4 can offer a consider-

able further improvement; the improvement is particularly marked in the last

three rows of Table 3, which involve the delta method, where the complex-

step approach offers improvements to both the first and second derivatives

that are required.

The performance of the hessian function is often similar to that of h4, but

it performs poorly for BDR 4.6 and BDR 4.3. In these examples, the errors

can be reduced by increasing the number of iterations of the Richardson

extrapolation procedure, but this increases the computational cost.

For the least squares fit to BDR 5.2, h4 has slightly larger approximation

error than h3. This is due to the absence of truncation error. In the absence

of truncation error, it is best to take the step sizes δj to be as large as possible,

to minimize round-off error but, as discussed in Section 2, the step sizes used

for h3 and h4 are different and favour h3. If a step size of δj = ε1/4θj is used

for h4 as well as h3 then, as in other examples, the error is smaller for h4.

When the errors in example BDR 5.2 are assumed to follow a scaled t4

distribution, none of the approximations work well (Table 3) and the ap-

proximation h2 gives a matrix that is not even positive definite. There are

several factors to consider here. The first is that the true Hessian matrix,

H, is poorly conditioned; its largest element is H2,2 = 8761818 and its small-

est elements are H4,7 = 0 and H7,8 = 0.692. Moreover, the 4th and 6th

order derivatives of the negative log-likelihood function with respect to θ2

are very large and consequently the approximations have large truncation

errors; for example, the absolute errors of h3 and h4 for approximating H2,2

are −408.99 and −7.91 respectively. However, it remains true that all ele-

ments of the Hessian matrix are approximated more accurately by h4 than
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by h3. But when the Hessian matrix is inverted, the approximation errors

happen to combine in such a way that h3 leads to a better approximation of

the inverse matrix than h4. Whilst one might expect that this would be a

rather unusual phenomenon, this example shows that it can occur.

4.2 Computational times

Again we focus on the inverse of the Hessian matrix, since this is usually

the quantity of most direct interest in statistical applications. Thus the

computing times include the time needed for matrix inversion. We present

timings relative to the time taken to compute h3, which is the most accurate

of the three finite difference approximations discussed in Section 2.

Generally, computational times increase through h1, h2, h3 and hessian,

reflecting the increasing numbers of function evaluations required, though

the details depend on the specific function involved. The approximation h4

requires only half as many function evaluations as h3, but these involve com-

plex arguments of the function. The impact of this on overall computational

time depends strongly on the function being evaluated and as a result h4

may be faster or slower than h3. The heaviest computational cost is for

BRD 2.3, which involves the lgamma function, since evaluating the gamma

function with complex argument is 6–7 times slower than evaluating the func-

tion with real argument. Nonetheless, computational times for h4 are always

markedly less than those for the comparably accurate hessian.

5. DISCUSSION

Generally, either the complex-step approximation h4 or the Richardson ex-

trapolation scheme implemented in the hessian function gave the most ac-
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curate results. The hessian function was considerably slower and gave poor

results in some examples. Richardson extrapolation can also be implemented

in the complex-step framework to reduce truncation errors (Lai and Crassidis

2007), but we have not investigated this.

The approximation h3, though less accurate than h4 was the best of the

three finite difference approximations considered and would be adequate in

practice for any of the examples considered. It was also the only method

that performed at all well for the BDR 5.2 example with t4 errors, though

as discussed in Section 4, this is a fortuitous result of inverting the approxi-

mated Hessian matrix, and even in this example the Hessian matrix itself was

more accurately approximated by h4. However, the fundamental message of

that example is that all of the numerical differentiation methods considered

can fail if the function of interest has high-order derivatives of very large

magnitude, because of large truncation errors.

The complex-step method is certainly worth considering if if high accu-

racy is required. As emphasised in Section 3, some caution is needed in

implementing the method, though the only issues that arose in the examples

of Section 4 were the need to redefine the lgamma function and calculate

squared terms by multiplication rather than exponentiation.

This paper has focused on numerical differentiation. Two other ap-

proaches to differentiation are symbolic differentiation and algorithmic dif-

ferentiation. Symbolic algebra systems such as MAPLE allow one to differen-

tiate functions symbolically and then generate code automatically in various

languages to evaluate the resulting derivatives. Algorithmic differentiation

(Griewank, 2000) is based on the idea that computer code for evaluating

any function can be broken down into a series of elementary codes that may
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be differentiated individually, by simple look-up, and then combined using

the chain rule. This enables derivatives to be calculated as accurately as

by symbolic differentiation; see Skaug and Fournier (2006) for a statisti-

cal application. The complex-step approximation used in conjunction with

equation (12) is closely linked to what is known as forward-mode algorithmic

differentiation; see Martins et al. (2003) for details. One advantage of the

complex-step method is that it is easy to implement, at least following the

informal approach of Section 3, as the basic algorithm is similar to finite

difference methods. However, a proper comparison between automatic dif-

ferentiation and the complex-step method is beyond the scope of this article.
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Table 1. Leading terms of the truncation errors of different approximations

to the second derivative, ∂ 2f/∂θjθk, and the number of function evaluations

required to approximate the entire Hessian matrix assuming that symmetry

is exploited. Dr and Dr,s denote respectively the partial derivatives ∂ rf/∂θrj

and ∂ r+sf/∂θrjθ
s
k evaluated at θ.

Leading term in truncation error

Approx. j = k j 6= k Evaluations

h1,j,k(θ) δD3
1
2
(δjD2,1 + δkD1,2)

1
2
(p2 + 3p+ 2)

h2,j,k(θ) 7
12
δ2D4

1
12

(
2δ2
jD3,1 + 3δjδkD2,2 + 2δ2

kD1,3

)
p2 + p+ 1

h3,j,k(θ) 1
3
δ2D4

1
6

(
δ2
jD3,1 + δ2

kD1,3

)
2 (p2 + p)

h4,j,k(θ) 1
90
δ4D6 −1

6

(
δ2
jD3,1 − δ2

kD1,3

)
p2 + p

Table 2. CPU times (seconds) for 1,000,000 evaluations of the log-likelihood

function for a single Poisson observation by programming the function di-

rectly or by using the function dpois.

Calculation Approximation

method g1(θ) g2(θ) g4(θ)

Equation (6) 0.30 0.55 1.06

Standard dpois 0.90 1.79 –

Extended dpois 1.13 2.02 1.58
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Table 3. Numerical errors in approximating the standard errors of the

parameter estimates. The measure of error is the maximum over the different

parameters of log10 ({approxSE − trueSE}/trueSE). The notation 2(2) in

the final line indicates that there are two parameters of interest and two

nuisance parameters whose standard errors are not considered.

Approximation

Example Parameters h1(θ) h2(θ) h3(θ) h4(θ) hessian

BDR 2.3 2 -4.49 -6.90 -7.11 -10.47 -11.53

BDR 4.6 4 -3.40 -3.31 -5.74 -7.34 -3.12

BDR 5.4 6 -3.66 -5.94 -6.06 -8.44 -8.11

BDR 5.2 LS 7 -4.36 -7.00 -7.93 -7.07 -10.77

BDR 5.2 t4 8 -1.59 – -3.67 -1.79 -0.01

BDR 4.3 1 -4.47 -6.01 -6.26 -9.50 -5.90

BDR 3.5 EXP 2 -4.88 -7.08 -7.31 -12.02 -10.68

BDR 3.5 LN 2(2) -5.74 -7.53 -7.54 -11.17 -11.49
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Table 4. CPU times of different approximations relative to the CPU time

of h3.

Approximation

Example Parameters h1(θ) h2(θ) h3(θ) h4(θ) hessian

BDR 2.3 2 0.69 1.00 1.00 2.14 3.57

BDR 4.6 4 0.42 0.75 1.00 1.38 2.80

BDR 5.4 6 0.41 0.75 1.00 1.74 3.23

BDR 5.2 LS 7 0.34 0.72 1.00 0.36 2.49

BDR 5.2 t4 8 0.33 0.63 1.00 0.40 2.35

BDR 4.3 1 0.99 1.04 1.00 0.95 1.63

BDR 3.5 EXP 2 0.96 1.09 1.00 0.91 1.96

BDR 3.5 LN 2(2) 0.60 0.84 1.00 0.76 2.38
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Figure Captions

Figure 1. Absolute errors of the approximations g1(θ) (upper black line),

g2(θ) (grey line) and g4(θ) (lower black line) to the first derivative of the

function f(θ) = 4 log(θ)− θ at θ = 5. Towards the right hand of the x-axis,

the absolute error for g2(θ) coincides with that of g4(θ) and is not visible on

the plot. The horizontal and vertical grey dashed lines indicate the machine

accuracy. The triangular symbols indicate the ‘optimal’ choices of δ for g1(θ)

and g2(θ) (see text).

Figure 2. Absolute errors of the approximations h1(θ) (upper black line),

h2(θ) (grey line) and h3(θ) (middle black line) and h4(θ) (lower black line)

to the second derivative of the function f(θ) = 4 log(θ) − θ at θ = 5. The

horizontal and vertical grey dashed lines indicate the machine accuracy. The

triangular symbols indicate the ‘optimal’ choices of δ for the different esti-

mators (see text).

Figure 3. Absolute errors of the approximations h1(θ) (upper black line),

h2(θ) (grey line) and h3(θ) (middle black line) and h4(θ) (lower black line)

to the partial derivative ∂2f/∂θ1∂θ2, where f is given by equation (11).

The horizontal and vertical grey dashed lines indicate the machine accuracy.

The triangular symbols indicate the ‘optimal’ choices of δ for the different

estimators (see text).

Figure 4. R code redefining the function dpois so that it can be used with

the complex-step method.
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Figure 4:

dpois.new <- function(x, lambda, log=FALSE) {

rlambda <- Re(lambda)

dpois.val <- stats::dpois(x,rlambda,log)

if (is.complex(lambda)) dpois.val <-

dpois.val + 1i * Im(lambda) *

ifelse(log, x/rlambda-rlambda, (x/rlambda-1) *

exp(-rlambda + x*log(rlambda) - lgamma(x+1)))

dpois.val

}

dpois <- function(x, lambda, log=FALSE) UseMethod("dpois")

dpois.default <- dpois.new
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