Chapter 3: Homogeneous Markov Processes on Discrete State Spaces

L. Breuer
University of Kent, UK

November 7, 2013
From now on we shall convene on the technical assumption

\[\tilde{\lambda} := \inf\{\lambda_i : i \in E\} > 0 \]
From now on we shall convene on the technical assumption

\[\lambda := \inf \{ \lambda_i : i \in E \} > 0 \]

which holds for all applications that we will examine.
From now on we shall convene on the technical assumption

\[\tilde{\lambda} := \inf \{ \lambda_i : i \in E \} > 0 \]

which holds for all applications that we will examine. Then a Markov process \(\mathcal{Y} \) is called \textbf{irreducible}, \textbf{transient}, \textbf{recurrent} or \textbf{positive recurrent}.
From now on we shall convene on the technical assumption

\[\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0 \]

which holds for all applications that we will examine. Then a Markov process \(\mathcal{Y} \) is called **irreducible**, **transient**, **recurrent** or **positive recurrent** if its embedded Markov chain \(\mathcal{X} \) is.
An initial distribution π is called **stationary**
An initial distribution π is called \textit{stationary} if the process \mathcal{Y}^π is stationary,
An initial distribution π is called stationary if the process Y^π is stationary, i.e. if

$$\mathbb{P}(Y_{t_1}^\pi = j_1, \ldots, Y_{t_n}^\pi = j_n) = \mathbb{P}(Y_{t_1+s}^\pi = j_1, \ldots, Y_{t_n+s}^\pi = j_n)$$

for all $n \in \mathbb{N}$, $0 \leq t_1 < \ldots < t_n$, and states $j_1, \ldots, j_n \in E$, and $s \geq 0$.
A distribution π on E is stationary if and only if $\pi G = 0$ holds.
Theorem 3.9

A distribution π on E is stationary if and only if $\pi G = 0$ holds.

Proof:
First we obtain

$$\pi P(t) = \pi e^{G \cdot t} = \sum_{n=0}^{\infty} \frac{t^n}{n!} \pi G^n = \pi I + \sum_{n=1}^{\infty} \frac{t^n}{n!} \pi G^n = \pi + 0 = \pi$$

for all $t \geq 0$, with 0 denoting the zero measure on E.
Proof of theorem 3.9 (contd.)

With this, theorem 3.8 yields

\[P(Y_{t_1} = j_1, \ldots, Y_{t_n} = j_n) \]

\[= \sum_{i \in E} \pi_i P_{i,j_1}(t_1) P_{j_1,j_2}(t_2 - t_1) \ldots P_{j_{n-1},j_n}(t_n - t_{n-1}) \]
With this, theorem 3.8 yields

\[P(Y_{t_1}^{\pi} = j_1, \ldots, Y_{t_n}^{\pi} = j_n) = \sum_{i \in E} \pi_i P_{i,j_1}(t_1) P_{j_1,j_2}(t_2 - t_1) \cdots P_{j_{n-1},j_n}(t_n - t_{n-1}) \]

\[= \pi_{j_1} P_{j_1,j_2}(t_2 - t_1) \cdots P_{j_{n-1},j_n}(t_n - t_{n-1}) \]

for all times \(t_1 < \ldots < t_n \) with \(n \in \mathbb{N} \), and states \(j_1, \ldots, j_n \in E \).

Hence the process \(Y^{\pi} \) is stationary.
With this, theorem 3.8 yields

\[\mathbb{P}(Y_{t_1}^\pi = j_1, \ldots, Y_{t_n}^\pi = j_n) \]

\[= \sum_{i \in E} \pi_i P_{i,j_1}(t_1) P_{j_1,j_2}(t_2 - t_1) \cdots P_{j_{n-1},j_n}(t_n - t_{n-1}) \]

\[= \pi_{j_1} P_{j_1,j_2}(t_2 - t_1) \cdots P_{j_{n-1},j_n}(t_n - t_{n-1}) \]

\[= \sum_{i \in E} \pi_i P_{i,j_1}(t_1 + s) P_{j_1,j_2}(t_2 - t_1) \cdots P_{j_{n-1},j_n}(t_n - t_{n-1}) \]
Proof of theorem 3.9 (contd.)

With this, theorem 3.8 yields

$$P(Y_{t_1}^\pi = j_1, \ldots, Y_{t_n}^\pi = j_n)$$

$$= \sum_{i \in E} \pi_i P_{i,j_1}(t_1) P_{j_1,j_2}(t_2 - t_1) \ldots P_{j_{n-1},j_n}(t_n - t_{n-1})$$

$$= \pi_{j_1} P_{j_1,j_2}(t_2 - t_1) \ldots P_{j_{n-1},j_n}(t_n - t_{n-1})$$

$$= \sum_{i \in E} \pi_i P_{i,j_1}(t_1 + s) P_{j_1,j_2}(t_2 - t_1) \ldots P_{j_{n-1},j_n}(t_n - t_{n-1})$$

$$= P(Y_{t_1+s}^\pi = j_1, \ldots, Y_{t_n+s}^\pi = j_n)$$

for all times $t_1 < \ldots < t_n$ with $n \in \mathbb{N}$, and states $j_1, \ldots, j_n \in E$.

Hence the process Y^π is stationary.
Proof of theorem 3.9 (contd.)

With this, theorem 3.8 yields

\[P(Y_{t_1}^\pi = j_1, \ldots, Y_{t_n}^\pi = j_n) \]

\[= \sum_{i \in E} \pi_i P_{i,j_1}(t_1) P_{j_1,j_2}(t_2 - t_1) \ldots P_{j_n-1,j_n}(t_n - t_{n-1}) \]

\[= \pi_{j_1} P_{j_1,j_2}(t_2 - t_1) \ldots P_{j_n-1,j_n}(t_n - t_{n-1}) \]

\[= \sum_{i \in E} \pi_i P_{i,j_1}(t_1 + s) P_{j_1,j_2}(t_2 - t_1) \ldots P_{j_n-1,j_n}(t_n - t_{n-1}) \]

\[= P(Y_{t_1+s}^\pi = j_1, \ldots, Y_{t_n+s}^\pi = j_n) \]

for all times \(t_1 < \ldots < t_n \) with \(n \in \mathbb{N} \), and states \(j_1, \ldots, j_n \in E \).

Hence the process \(Y^\pi \) is stationary.
On the other hand, if π is a stationary distribution,
On the other hand, if π is a stationary distribution, then we necessarily obtain

$$\pi P(t) = \pi e^{G \cdot t} = \pi$$

for all $t \geq 0$.

As above, this means

$$\sum_{n=1}^{\infty} t^n \pi G^n = 0$$

for all $t \geq 0$, which yields $\pi G = 0$ because of the uniqueness of the zero power series.
On the other hand, if π is a stationary distribution, then we necessarily obtain

$$\pi P(t) = \pi e^{G \cdot t} = \pi$$

for all $t \geq 0$. As above, this means

$$\sum_{n=1}^{\infty} \frac{t^n}{n!} \pi G^n = 0$$

for all $t \geq 0$, for all $t \geq 0$, for all $t \geq 0$.
On the other hand, if π is a stationary distribution, then we necessarily obtain

$$\pi P(t) = \pi e^{G \cdot t} = \pi$$

for all $t \geq 0$. As above, this means

$$\sum_{n=1}^{\infty} \frac{t^n}{n!} \pi G^n = 0$$

for all $t \geq 0$, which yields

$$\pi G = 0$$
On the other hand, if \(\pi \) is a stationary distribution, then we necessarily obtain

\[
\pi P(t) = \pi e^{G \cdot t} = \pi
\]

for all \(t \geq 0 \). As above, this means

\[
\sum_{n=1}^{\infty} \frac{t^n}{n!} \pi G^n = 0
\]

for all \(t \geq 0 \), which yields

\[
\pi G = 0
\]

because of the uniqueness of the zero power series.
Balance equations

The equation $\pi G = 0$ is equivalent to an equation system

$$\sum_{i \neq j} \pi_i g_{ij} = -\pi_j g_{jj} \iff \sum_{i \neq j} \pi_i g_{ij} = \pi_j \sum_{i \neq j} g_{ji}$$

for all $j \in E$.

L. Breuer
Chapter 3: Homogeneous Markov Processes on Discrete State Spaces
The equation $\pi G = 0$ is equivalent to an equation system

$$\sum_{i \neq j} \pi_i g_{ij} = -\pi_j g_{jj} \quad \iff \quad \sum_{i \neq j} \pi_i g_{ij} = \pi_j \sum_{i \neq j} g_{ji}$$

for all $j \in E$. We call the value $\pi_i g_{ij}$ **stochastic flow** from state i to state j in equilibrium.
The equation $\pi G = 0$ is equivalent to an equation system

$$\sum_{i \neq j} \pi_i g_{ij} = -\pi_j g_{jj} \iff \sum_{i \neq j} \pi_i g_{ij} = \pi_j \sum_{i \neq j} g_{ji}$$

for all $j \in E$. We call the value $\pi_i g_{ij}$ **stochastic flow** from state i to state j in equilibrium. Then the above equations mean that the accrued stochastic flow into any state j equals the flow out of this state.
The equation $\pi G = 0$ is equivalent to an equation system

$$
\sum_{i \neq j} \pi_i g_{ij} = -\pi_j g_{jj} \iff \sum_{i \neq j} \pi_i g_{ij} = \pi_j \sum_{i \neq j} g_{ji}
$$

for all $j \in E$. We call the value $\pi_i g_{ij}$ **stochastic flow** from state i to state j in equilibrium. Then the above equations mean that the accrued stochastic flow into any state j equals the flow out of this state. The above equations are called the (global) **balance equations**.
The generator of the Poisson process with parameter \(\lambda \) is given by

\[
G = \begin{pmatrix}
-\lambda & \lambda & 0 & 0 & 0 & \cdots \\
0 & -\lambda & \lambda & 0 & \cdots \\
0 & 0 & -\lambda & \lambda & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{pmatrix}
\]
Example: Poisson process

The generator of the Poisson process with parameter λ is given by

$$G = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \cdots \\ 0 & -\lambda & \lambda & 0 & \cdots \\ 0 & 0 & -\lambda & \lambda & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

This process has no stationary distribution, which can be seen as follows.
Example: Poisson process

The generator of the Poisson process with parameter λ is given by

$$G = \begin{pmatrix}
-\lambda & \lambda & 0 & 0 & \cdots \\
0 & -\lambda & \lambda & 0 & \cdots \\
0 & 0 & -\lambda & \lambda & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots
\end{pmatrix}$$

This process has no stationary distribution, which can be seen as follows. The balance equations for the Poisson process are given by

$$\pi_0 \lambda = 0 \quad \text{and} \quad \pi_i \lambda = \pi_{i-1} \lambda$$

for all $i \geq 1$.
Example: Poisson process

The generator of the Poisson process with parameter λ is given by

$$G = \begin{pmatrix}
-\lambda & \lambda & 0 & 0 & \cdots \\
0 & -\lambda & \lambda & 0 & \cdots \\
0 & 0 & -\lambda & \lambda & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}$$

This process has no stationary distribution, which can be seen as follows. The balance equations for the Poisson process are given by

$$\pi_0 \lambda = 0 \quad \text{and} \quad \pi_i \lambda = \pi_{i-1} \lambda$$

for all $i \geq 1$. These are solvable only by $\pi_i = 0$ for all $i \in E$.
Example: Poisson process

The generator of the Poisson process with parameter λ is given by

$$G = \begin{pmatrix}
-\lambda & \lambda & 0 & 0 & \cdots \\
0 & -\lambda & \lambda & 0 & \cdots \\
0 & 0 & -\lambda & \lambda & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}$$

This process has no stationary distribution, which can be seen as follows. The balance equations for the Poisson process are given by

$$\pi_0 \lambda = 0 \quad \text{and} \quad \pi_i \lambda = \pi_{i-1} \lambda$$

for all $i \geq 1$. These are solvable only by $\pi_i = 0$ for all $i \in E$, which means that there is no stationary distribution π.
Theorem 3.11

Let \mathcal{Y} be a Markov process with embedded Markov chain \mathcal{X}.
Theorem 3.11

Let Y be a Markov process with embedded Markov chain X. Let X be irreducible and positive recurrent.

Proof:

According to theorems 2.25 and 2.18, the transition matrix P of X admits a unique stationary distribution ν with $\nu P = \nu$. The generator G is defined by $G = \Lambda(P - I)$ with $\Lambda = \text{diag}(\lambda_i : i \in E)$. L. Breuer

Chapter 3: Homogeneous Markov Processes on Discrete State Spaces
Theorem 3.11

Let \mathcal{Y} be a Markov process with embedded Markov chain \mathcal{X}. Let \mathcal{X} be irreducible and positive recurrent. Further assume that $\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0$.

Proof: According to theorems 2.25 and 2.18, the transition matrix P of \mathcal{X} admits a unique stationary distribution ν with $\nu P = \nu$. The generator G is defined by $G = \Lambda (P - I)$ with $\Lambda = \text{diag} (\lambda_i : i \in E)$.

L. Breuer
Chapter 3: Homogeneous Markov Processes on Discrete State Spaces
Theorem 3.11

Let \mathcal{Y} be a Markov process with embedded Markov chain \mathcal{X}. Let \mathcal{X} be irreducible and positive recurrent. Further assume that $\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0$. Then there is a unique stationary distribution for \mathcal{Y}.
Theorem 3.11

Let \(\mathcal{Y} \) be a Markov process with embedded Markov chain \(\mathcal{X} \). Let \(\mathcal{X} \) be irreducible and positive recurrent. Further assume that
\[
\check{\lambda} := \inf \{ \lambda_i : i \in E \} > 0.
\]
Then there is a unique stationary distribution for \(\mathcal{Y} \).

Proof:
According to theorems 2.25 and 2.18, the transition matrix \(P \) of \(\mathcal{X} \) admits a unique stationary distribution \(\nu \) with \(\nu P = \nu \).
Theorem 3.11

Let \mathcal{Y} be a Markov process with embedded Markov chain \mathcal{X}. Let \mathcal{X} be irreducible and positive recurrent. Further assume that
\[\tilde{\lambda} := \inf \{ \lambda_i : i \in E \} > 0. \]
Then there is a unique stationary distribution for \mathcal{Y}.

Proof:
According to theorems 2.25 and 2.18, the transition matrix P of \mathcal{X} admits a unique stationary distribution ν with $\nu P = \nu$. The generator G is defined by
\[G = \Lambda (P - I) \]
Let \mathcal{Y} be a Markov process with embedded Markov chain \mathcal{X}. Let \mathcal{X} be irreducible and positive recurrent. Further assume that $	ilde{\lambda} := \inf\{\lambda_i : i \in E\} > 0$. Then there is a unique stationary distribution for \mathcal{Y}.

Proof:
According to theorems 2.25 and 2.18, the transition matrix P of \mathcal{X} admits a unique stationary distribution ν with $\nu P = \nu$. The generator G is defined by

$$G = \Lambda(P - I)$$

with

$$\Lambda = \text{diag}(\lambda_i : i \in E)$$
Hence the measure

\[\mu := \nu \Lambda^{-1} \]
Hence the measure

$$\mu := \nu \Lambda^{-1}$$

is stationary for \(\mathcal{Y} \).
Hence the measure
\[\mu := \nu \Lambda^{-1} \]
is stationary for \(\mathcal{Y} \). Since \(\hat{\lambda} > 0 \), the measure \(\mu \) is finite,
Hence the measure

\[\mu := \nu \Lambda^{-1} \]

is stationary for \(\mathcal{Y} \). Since \(\check{\lambda} > 0 \), the measure \(\mu \) is finite, with total mass bounded by \(\check{\lambda}^{-1} < \infty \).
Hence the measure

\[\mu := \nu \Lambda^{-1} \]

is stationary for \(\mathcal{Y} \). Since \(\check{\lambda} > 0 \), the measure \(\mu \) is finite, with total mass bounded by \(\check{\lambda}^{-1} < \infty \). Now the normalization

\[\pi_j := \frac{\mu_j}{\sum_{i \in E} \mu_i} = \frac{\nu_j/\lambda_j}{\sum_{i \in E} \nu_i/\lambda_i} \]

for all \(j \in E \)
Hence the measure

\[\mu := \nu \Lambda^{-1} \]

is stationary for \(\mathcal{Y} \). Since \(\check{\lambda} > 0 \), the measure \(\mu \) is finite, with total mass bounded by \(\check{\lambda}^{-1} < \infty \). Now the normalization

\[
\pi_j := \frac{\mu_j}{\sum_{i \in E} \mu_i} = \frac{\nu_j/\lambda_j}{\sum_{i \in E} \nu_i/\lambda_i}
\]

for all \(j \in E \) yields a stationary distribution for \(\mathcal{Y} \).
Hence the measure

\[\mu := \nu \lambda^{-1} \]

is stationary for \(\mathcal{Y} \). Since \(\lambda > 0 \), the measure \(\mu \) is finite, with total mass bounded by \(\lambda^{-1} < \infty \). Now the normalization

\[
\pi_j := \frac{\mu_j}{\sum_{i \in E} \mu_i} = \frac{\nu_j/\lambda_j}{\sum_{i \in E} \nu_i/\lambda_i}
\]

for all \(j \in E \) yields a stationary distribution for \(\mathcal{Y} \). This is unique because \(\nu \) is unique.
We define a **skip–free Markov process** by

$$g_{ij} = 0 \quad \text{for all states} \quad i, j \in E \subset \mathbb{N}_0 \quad \text{with} \quad |i - j| > 1$$
Skip-free Markov processes

We define a skip–free Markov process by

$$g_{ij} = 0 \quad \text{for all states } i, j \in E \subset \mathbb{N}_0 \text{ with } |i - j| > 1$$

Denote the remaining infinitesimal transition rates by

$$\lambda_i := g_{i,i+1} \quad \text{and} \quad \mu_i := g_{i,i-1}$$

for all possible values of i.
We define a skip–free Markov process by

\[g_{ij} = 0 \quad \text{for all states} \quad i, j \in E \subset \mathbb{N}_0 \quad \text{with} \quad |i - j| > 1 \]

Denote the remaining infinitesimal transition rates by

\[\lambda_i := g_{i,i+1} \quad \text{and} \quad \mu_i := g_{i,i-1} \]

for all possible values of \(i \). The rates \(\lambda_i \) and \(\mu_i \) are called arrival rates and departure rates, respectively.
We define a **skip–free Markov process** by

\[g_{ij} = 0 \quad \text{for all states} \quad i, j \in E \subset \mathbb{N}_0 \quad \text{with} \quad |i - j| > 1 \]

Denote the remaining infinitesimal transition rates by

\[\lambda_i \equiv g_{i,i+1} \quad \text{and} \quad \mu_i \equiv g_{i,i-1} \]

for all possible values of \(i \). The rates \(\lambda_i \) and \(\mu_i \) are called **arrival rates** and **departure rates**, respectively. The state transition graph of such a process assumes the form
Its balance equations are given by

\[\lambda_0 \pi_0 = \mu_1 \pi_1 \]
Skip-free Markov processes

Its balance equations are given by

\[\lambda_0 \pi_0 = \mu_1 \pi_1 \]

and

\[(\lambda_i + \mu_i) \pi_i = \lambda_{i-1} \pi_{i-1} + \mu_{i+1} \pi_{i+1} \]

for all \(i \in \mathbb{N} \).
Skip-free Markov processes

Its balance equations are given by

\[\lambda_0 \pi_0 = \mu_1 \pi_1 \]

and

\[(\lambda_i + \mu_i) \pi_i = \lambda_{i-1} \pi_{i-1} + \mu_{i+1} \pi_{i+1} \]

for all \(i \in \mathbb{N} \). By induction on \(i \) it is shown that these are equivalent to the equation system

\[\lambda_{i-1} \pi_{i-1} = \mu_i \pi_i \]

for all \(i \in \mathbb{N} \).
This system is solved by successive elimination

\[\pi_i = \pi_0 i - 1 \prod_{j=0}^{\lambda_i - 1} \mu_j + 1 = \pi_0 \lambda_0 \lambda_1 \cdots \lambda_{i-1} \mu_1 \mu_2 \cdots \mu_i \]

for all \(i \geq 1\). The solution \(\pi\) is a probability distribution if and only if it can be normalized, i.e. if

\[\sum_{n \in E} \pi_n = 1.\]

This condition implies

\[1 = \sum_{n \in E} \pi_0 n - 1 \prod_{j=0}^{\lambda_i - 1} \lambda_j \mu_j + 1 = \pi_0 \sum_{n \in E} n - 1 \prod_{j=0}^{\lambda_i - 1} \lambda_j \mu_j + 1 \]

with the empty product being defined as one. This means that \(\pi_0 = \left(\sum_{n \in E} n - 1 \prod_{j=0}^{\lambda_i - 1} \lambda_j \mu_j + 1 \right)^{-1}\) and thus \(\pi\) is a probability distribution if and only if the series in the brackets converges.
Skip-free Markov processes

This system is solved by successive elimination with a solution of the form

\[\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_j+1} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} \]

for all \(i \geq 1 \).
Skip-free Markov processes

This system is solved by successive elimination with a solution of the form

\[\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_j+1} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} \]

for all \(i \geq 1 \). The solution \(\pi \) is a probability distribution if and only if it can be normalized,
Skip-free Markov processes

This system is solved by successive elimination with a solution of the form

\[
\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_j + 1} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i}
\]

for all \(i \geq 1 \). The solution \(\pi \) is a probability distribution if and only if it can be normalized, i.e. if \(\sum_{n \in E} \pi_n = 1 \).
Skip-free Markov processes

This system is solved by successive elimination with a solution of the form

$$\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_j+1} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i}$$

for all $i \geq 1$. The solution π is a probability distribution if and only if it can be normalized, i.e. if $\sum_{n \in E} \pi_n = 1$. This condition implies

$$1 = \sum_{n \in E} \pi_0 \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_j+1} = \pi_0 \sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_j+1}$$

with the empty product being defined as one.
Skip-free Markov processes

This system is solved by successive elimination with a solution of the form

\[\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i} \]

for all \(i \geq 1 \). The solution \(\pi \) is a probability distribution if and only if it can be normalized, i.e. if \(\sum_{n \in E} \pi_n = 1 \). This condition implies

\[1 = \sum_{n \in E} \pi_0 \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}} \]

with the empty product being defined as one. This means that

\[\pi_0 = \left(\sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}} \right)^{-1} \]
This system is solved by successive elimination with a solution of the form

$$\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i}$$

for all $i \geq 1$. The solution π is a probability distribution if and only if it can be normalized, i.e. if $\sum_{n \in E} \pi_n = 1$. This condition implies

$$1 = \sum_{n \in E} \pi_0 \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}}$$

with the empty product being defined as one. This means that

$$\pi_0 = \left(\sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}} \right)^{-1}$$

and thus π is a probability distribution if and only if the series in the brackets converges.
Let $X \sim \text{Exp}(\lambda)$ and $Y \sim \text{Exp}(\mu)$ denote two independent random variables.
Let $X \sim \text{Exp}(\lambda)$ and $Y \sim \text{Exp}(\mu)$ denote two independent random variables. Then

$$\min(X, Y) \sim \text{Exp}(\lambda + \mu)$$
Let $X \sim \text{Exp}(\lambda)$ and $Y \sim \text{Exp}(\mu)$ denote two independent random variables. Then

$$\min(X, Y) \sim \text{Exp}(\lambda + \mu)$$

$$\mathbb{P}(X < Y) = \frac{\lambda}{\lambda + \mu}$$
Let $X \sim \text{Exp}(\lambda)$ and $Y \sim \text{Exp}(\mu)$ denote two independent random variables. Then

$$\min(X, Y) \sim \text{Exp}(\lambda + \mu)$$

$$\mathbb{P}(X < Y) = \frac{\lambda}{\lambda + \mu}$$

$$\mathbb{P}(X = Y) = 0$$
Let $Z := \min(X, Y)$.

Independence of X and Y yields

$$P(Z > t) = P(X > t) \cdot P(Y > t)$$

and thus

$$P(\min(X, Y) > t) = e^{-\lambda t} e^{-\mu t} = e^{-(\lambda + \mu) t}$$

for all $t \geq 0$.

L. Breuer

Chapter 3: Homogeneous Markov Processes on Discrete State Spaces
Let $Z := \min(X, Y)$. Then

$$Z > t \iff X > t \text{ and } Y > t$$
Proof - 1

Let $Z := \min(X, Y)$. Then

$$Z > t \iff X > t \text{ and } Y > t$$

Independence of X and Y yields

$$P(Z > t) = P(X > t) \cdot P(Y > t)$$
Let \(Z := \min(X, Y) \). Then

\[Z > t \iff X > t \quad \text{and} \quad Y > t \]

Independence of \(X \) and \(Y \) yields

\[P(Z > t) = P(X > t) \cdot P(Y > t) \]

and thus

\[P(\min(X, Y) > t) = e^{-\lambda t} e^{-\mu t} = e^{-(\lambda+\mu)t} \]

for all \(t \geq 0 \).
Conditioning on $X \in dt$ yields

$$
\mathbb{P}(X < Y) = \int_{0}^{\infty} \lambda e^{-\lambda t} \mathbb{P}(Y > t) \, dt
$$
Conditioning on $X \in dt$ yields

$$P(X < Y) = \int_0^\infty \lambda e^{-\lambda t} P(Y > t) \, dt$$

$$= \lambda \int_0^\infty e^{-\lambda t} e^{-\mu t} \, dt = \frac{\lambda}{\lambda + \mu}$$
Conditioning on $X \in dt$ yields

$$
P(X < Y) = \int_0^\infty \lambda e^{-\lambda t} P(Y > t) \, dt
$$

$$
= \lambda \int_0^\infty e^{-\lambda t} e^{-\mu t} \, dt = \frac{\lambda}{\lambda + \mu}
$$

Finally,

$$
P(X = Y) = \lim_{h \to 0} \int_0^\infty \lambda e^{-\lambda t} P(Y \in [t, t + h]) \, dt
$$
Conditioning on $X \in dt$ yields

$$\mathbb{P}(X < Y) = \int_{0}^{\infty} \lambda e^{-\lambda t} \mathbb{P}(Y > t) \, dt$$

$$= \lambda \int_{0}^{\infty} e^{-\lambda t} e^{-\mu t} \, dt = \frac{\lambda}{\lambda + \mu}$$

Finally,

$$\mathbb{P}(X = Y) = \lim_{h \to 0} \int_{0}^{\infty} \lambda e^{-\lambda t} \mathbb{P}(Y \in [t, t + h]) \, dt$$

$$= \int_{0}^{\infty} \lambda e^{-\lambda t} \lim_{h \to 0} \left(e^{-\mu t} - e^{-\mu (t+h)} \right) \, dt = 0$$
Example: M/M/1 queue

Arrivals: Poisson process with rate $\lambda > 0$
Example: M/M/1 queue

Arrivals: Poisson process with rate $\lambda > 0$

Service times: iid, exponentially distributed with rate $\mu > 0$
Example: M/M/1 queue

Arrivals: Poisson process with rate $\lambda > 0$

Service times: iid, exponentially distributed with rate $\mu > 0$

1 server
Example: M/M/1 queue

Arrivals: Poisson process with rate $\lambda > 0$

Service times: iid, exponentially distributed with rate $\mu > 0$

1 server

The arrival process and the service times are independent.
Example: M/M/1 queue

Arrivals: Poisson process with rate $\lambda > 0$

Service times: iid, exponentially distributed with rate $\mu > 0$

1 server

The arrival process and the service times are independent.

Let Y_t denote the number of users in the system at time t.
Example: M/M/1 queue

Arrivals: Poisson process with rate $\lambda > 0$

Service times: iid, exponentially distributed with rate $\mu > 0$

1 server

The arrival process and the service times are independent.

Let Y_t denote the number of users in the system at time t.

State space $E = \mathbb{N}_0$
The M/M/1 queue as a Markov process

Holding time in state 0:

Holding time in state $i \geq 1$:

$$H_i = \min(A, S), \text{ where } A \sim \exp(\lambda) \text{ and } S \sim \exp(\mu)$$

Hence, $H_i \sim \exp(\lambda + \mu)$ for $i \geq 1$.

Further:

$$p_{ij} = \begin{cases}
 P(A < S) = \frac{\lambda}{\lambda + \mu}, & j = i + 1 \\
 P(S < A) = \frac{\mu}{\lambda + \mu}, & j = i - 1
\end{cases}$$

for $i \geq 1$.

L. Breuer
Chapter 3: Homogeneous Markov Processes on Discrete State Spaces
The M/M/1 queue as a Markov process

Holding time in state 0: $H_0 \sim \text{Exp}(\lambda)$
The M/M/1 queue as a Markov process

Holding time in state 0: $H_0 \sim \text{Exp}(\lambda)$

$p_{01} = 1$
Holding time in state 0: \(H_0 \sim \text{Exp}(\lambda) \)

\(p_{01} = 1 \)

Holding time in state \(i \geq 1 \):
Holding time in state 0: $H_0 \sim \text{Exp}(\lambda)$

$p_{01} = 1$

Holding time in state $i \geq 1$:
$H_i = \min(A, S)$, where $A \sim \text{Exp}(\lambda)$ and $S \sim \text{Exp}(\mu)$
The M/M/1 queue as a Markov process

Holding time in state 0: \(H_0 \sim \text{Exp}(\lambda) \)

\(p_{01} = 1 \)

Holding time in state \(i \geq 1 \):
\(H_i = \min(A, S) \), where \(A \sim \text{Exp}(\lambda) \) and \(S \sim \text{Exp}(\mu) \)

Hence, \(H_i \sim \text{Exp}(\lambda + \mu) \) for \(i \geq 1 \).
Holding time in state 0: $H_0 \sim \text{Exp}(\lambda)$

$p_{01} = 1$

Holding time in state $i \geq 1$:
$H_i = \min(A, S)$, where $A \sim \text{Exp}(\lambda)$ and $S \sim \text{Exp}(\mu)$

Hence, $H_i \sim \text{Exp}(\lambda + \mu)$ for $i \geq 1$.

Further

$$p_{ij} = \begin{cases}
\mathbb{P}(A < S) = \frac{\lambda}{\lambda + \mu}, & j = i + 1 \\
\mathbb{P}(S < A) = \frac{\mu}{\lambda + \mu}, & j = i - 1
\end{cases}$$

for $i \geq 1$.
The generator matrix

\[g_{01} = \lambda \cdot p_{01} = \lambda \]
The generator matrix

\[g_{01} = \lambda \cdot p_{01} = \lambda \text{ and for } i \geq 1 \]
The generator matrix

\[g_{01} = \lambda \cdot p_{01} = \lambda \text{ and for } i \geq 1 \]

\[g_{ij} = \begin{cases}
(\lambda + \mu) \cdot \frac{\lambda}{\lambda + \mu} = \lambda, & j = i + 1 \\
(\lambda + \mu) \cdot \frac{\mu}{\lambda + \mu} = \mu, & j = i - 1
\end{cases} \]
The generator matrix

\[g_{01} = \lambda \cdot p_{01} = \lambda \text{ and for } i \geq 1 \]

\[g_{ij} = \begin{cases}
(\lambda + \mu) \cdot \frac{\lambda}{\lambda + \mu} = \lambda, & j = i + 1 \\
(\lambda + \mu) \cdot \frac{\mu}{\lambda + \mu} = \mu, & j = i - 1
\end{cases} \]

Hence,

\[G = \begin{pmatrix}
-\lambda & \lambda & 0 & 0 & \cdots \\
\mu & -\lambda - \mu & \lambda & 0 & \cdots \\
0 & \mu & -\lambda - \mu & \lambda & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{pmatrix} \]
Stationary distribution

$Y = (Y_t : t \geq 0)$ is a skip-free Markov process on $E = \mathbb{N}_0$ with arrival rates λ_i and departure rates μ_i. Thus the stationary distribution π is given by

$$\pi_0 = \left(\sum_{n \in E} (n-1) \prod_{j=0} \lambda_j \mu_j + 1 \right)^{-1} = \left(\infty \sum_{n=0} \rho^n \right)^{-1} = (1 - \rho)$$

if $\rho := \lambda/\mu < 1$ and $\pi_i = \pi_0 \rho^i$ for $i \geq 1$. For $\rho \geq 1$ there is no stationary distribution.
\(\mathcal{Y} = (Y_t : t \geq 0) \) is a skip-free Markov process on \(E = \mathbb{N}_0 \)
Stationary distribution

\[Y = (Y_t : t \geq 0) \text{ is a skip-free Markov process on } E = \mathbb{N}_0 \text{ with arrival rates } \lambda_i = \lambda \]
\(\mathcal{Y} = (Y_t : t \geq 0) \) is a skip-free Markov process on \(E = \mathbb{N}_0 \) with arrival rates \(\lambda_i = \lambda \) and departure rates \(\mu_i = \mu \).
Stationary distribution

\(\mathcal{Y} = (Y_t : t \geq 0) \) is a skip-free Markov process on \(E = \mathbb{N}_0 \) with arrival rates \(\lambda_i = \lambda \) and departure rates \(\mu_i = \mu \).

Thus the stationary distribution \(\pi \) is given by

\[
\pi_0 = \left(\sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_j+1} \right)^{-1} = \left(\sum_{n=0}^{\infty} \rho^n \right)^{-1} = (1 - \rho)
\]

if \(\rho := \lambda/\mu < 1 \)
\(\mathcal{Y} = (Y_t : t \geq 0) \) is a skip-free Markov process on \(E = \mathbb{N}_0 \) with arrival rates \(\lambda_i = \lambda \) and departure rates \(\mu_i = \mu \).

Thus the stationary distribution \(\pi \) is given by

\[
\pi_0 = \left(\sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}} \right)^{-1} = \left(\sum_{n=0}^{\infty} \rho^n \right)^{-1} = (1 - \rho)
\]

if \(\rho := \lambda/\mu < 1 \) and

\[
\pi_i = \pi_0 \rho^i
\]

for \(i \geq 1 \).
\(\mathcal{Y} = (Y_t : t \geq 0) \) is a skip-free Markov process on \(E = \mathbb{N}_0 \) with arrival rates \(\lambda_i = \lambda \) and departure rates \(\mu_i = \mu \).

Thus the stationary distribution \(\pi \) is given by

\[
\pi_0 = \left(\sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}} \right)^{-1} = \left(\sum_{n=0}^{\infty} \rho^n \right)^{-1} = (1 - \rho)
\]

if \(\rho := \lambda/\mu < 1 \) and

\[
\pi_i = \pi_0 \rho^i
\]

for \(i \geq 1 \). For \(\rho \geq 1 \) there is no stationary distribution.