Mathematical Analysis Worksheet 5

The (ε, δ) -definition of continuity

We recall the definition of continuity: Let $f : [a, b] \to \mathbb{R}$ and $x_0 \in [a, b]$. f is continuous at x_0 if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$. We sometimes indicate that the δ may depend on ε by writing $\delta(\varepsilon)$.

As with convergence of sequences, all proofs of continuity of functions using the definition follow a fixed format.

Example 1. Question: Prove that $f(x) = x^3 + 2x - 1$ is continuous at x = 1. Answer: Let $\varepsilon > 0$ be given. Let $0 < \delta < \min\{1, \varepsilon/9\}$. Then for $|x - 1| < \delta$ we have

$$|f(x) - f(1)| = |x^3 + 2x - 1 - 2| = |x^3 + 2x - 3|$$

= |x - 1||x² + x + 3|.

Since $\delta < 1$, and $|x - 1| < \delta$ we have $x \in (0, 2)$, so $|x^2 + x + 3| < 9$. Therefore,

$$|f(x) - f(1)| < 9\delta < \varepsilon.$$

Notes:

- 1. The wording in bold always appears in the proof of continuity using the (ε, δ) -definition.
- 2. The sequence of equalities and inequalities ending in "< ε " depends on the function being studied. This is where your skill and experience come in. The aim is to always to extract a positive power of δ .
- 3. The value of δ is filled in last, when you know what it has to be from your sequence of inequalities ending in "< ε ".
- 4. There are many ways of choosing δ . In this proof, we estimated $|x^2 + x + 3|$ for x near 1. This required putting an upper bound on δ (independent of ε). Here, we chose $\delta < 1$. An obvious alternative is to write

$$|x^{3} + 2x - 1 - 2| = |x - 1| |(x - 1)^{2} + 3(x - 1) + 5| < \delta^{3} + 3\delta^{2} + 5\delta$$

Then we choose δ so that all three terms on the right hand side are less than $\varepsilon/3$, i.e. $\delta < \min\left\{\frac{\sqrt{\varepsilon}}{\sqrt{3}}, \frac{\sqrt{\varepsilon}}{\sqrt{2}}, \frac{\varepsilon}{15}\right\}.$

Exercises 2. Using the (ε, δ) -definition of continuity, show that the following functions are continuous at x = 2.

1. $f(x) = x^2 - 5x + 1$,

2.
$$g(x) = \sqrt{x}$$
,

3.
$$h(x) = \frac{1}{x^2 + 1}$$
.

Discontinuous functions

To show from the (ε, δ) -definition of continuity that a function is discontinuous at a point x_0 , we need to negate the statement: "For every $\varepsilon > 0$ there exists $\delta > 0$ such that $|x - x_0| < \delta$ implies $|f(x) - f(x_0)| < \varepsilon$."

Its negative is the following (check that you understand this!):

"There exists an $\varepsilon > 0$ such that for every $\delta > 0$ there exists a point x with $|x - x_0| < \delta$ and $|f(x) - f(x_0)| \ge \varepsilon$."

Example 3. Question: Let $g : \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x) = \begin{cases} x^2 - 3 & \text{if } x \le 0, \\ \sin(x) & \text{if } x > 0. \end{cases}$$

Prove that g is discontinuous at 0.

Answer: Let $\varepsilon = 2$ and let $\delta > 0$ be given. Choose $x \in (0, \delta)$ with $x < \pi$. Then $g(x) = \sin(x) > 0$. Hence,

$$|x - 0| < \delta$$
 and $|g(x) - g(0)| = |\sin(x) - 3| > 3 \ge \varepsilon$

and g is discontinuous at 0. Notes:

- 1. The wording in bold always appears in the proof of discontinuity using the (ε, δ) -definition.
- 2. It's probably good to sketch the graph of the function.
- 3. Think about how big the gap is. This determines which ε we can choose, here we could have chosen anything up to 3.
- 4. You will need to choose x, so that it's in a suitable range (here we chose $0 < x < \pi$).

Exercises 4. Prove that the following functions are discontinuous at x = 1.

$$f(x) = \begin{cases} x^2 - 3 & \text{if } x < 1, \\ x - 1 & \text{if } x \ge 1, \end{cases} \quad and \quad g(x) = \begin{cases} 1/(x - 1) & \text{if } x \ne 1, \\ 0 & \text{if } x = 1. \end{cases}$$