Mathematical Analysis Worksheet 5

The (ε, δ)-definition of continuity

We recall the definition of continuity: Let $f:[a, b] \rightarrow \mathbb{R}$ and $x_{0} \in[a, b] . f$ is continuous at x_{0} if for every $\varepsilon>0$ there exists $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
We sometimes indicate that the δ may depend on ε by writing $\delta(\varepsilon)$.
As with convergence of sequences, all proofs of continuity of functions using the definition follow a fixed format.

Example 1. Question: Prove that $f(x)=x^{3}+2 x-1$ is continuous at $x=1$.
Answer: Let $\varepsilon>0$ be given. Let $0<\delta<\min \{1, \varepsilon / 9\}$. Then for $|x-1|<\delta$ we have

$$
\begin{aligned}
|f(x)-f(1)| & =\left|x^{3}+2 x-1-2\right|=\left|x^{3}+2 x-3\right| \\
& =|x-1|\left|x^{2}+x+3\right|
\end{aligned}
$$

Since $\delta<1$, and $|x-1|<\delta$ we have $x \in(0,2)$, so $\left|x^{2}+x+3\right|<9$. Therefore,

$$
|f(x)-f(1)|<9 \delta<\varepsilon
$$

Notes:

1. The wording in bold always appears in the proof of continuity using the (ε, δ)-definition.
2. The sequence of equalities and inequalities ending in " $<\varepsilon$ " depends on the function being studied. This is where your skill and experience come in. The aim is to always to extract a positive power of δ.
3. The value of δ is filled in last, when you know what it has to be from your sequence of inequalities ending in " $<\varepsilon$ ".
4. There are many ways of choosing δ. In this proof, we estimated $\left|x^{2}+x+3\right|$ for x near 1 . This required putting an upper bound on δ (independent of ε). Here, we chose $\delta<1$.
An obvious alternative is to write

$$
\left|x^{3}+2 x-1-2\right|=|x-1|\left|(x-1)^{2}+3(x-1)+5\right|<\delta^{3}+3 \delta^{2}+5 \delta
$$

Then we choose δ so that all three terms on the right hand side are less than $\varepsilon / 3$, i.e. $\delta<\min \left\{\sqrt[3]{\frac{\varepsilon}{3}}, \frac{\sqrt{\varepsilon}}{3}, \frac{\varepsilon}{15}\right\}$.
Exercises 2. Using the (ε, δ)-definition of continuity, show that the following functions are continuous at $x=2$.

1. $f(x)=x^{2}-5 x+1$,
2. $g(x)=\sqrt{x}$,
3. $h(x)=\frac{1}{x^{2}+1}$.

Discontinuous functions

To show from the (ε, δ)-definition of continuity that a function is discontinuous at a point x_{0}, we need to negate the statement: "For every $\varepsilon>0$ there exists $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$."
Its negative is the following (check that you understand this!):
"There exists an $\varepsilon>0$ such that for every $\delta>0$ there exists a point x with $\left|x-x_{0}\right|<\delta$ and $\left|f(x)-f\left(x_{0}\right)\right| \geq \varepsilon$."

Example 3. Question: Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(x)= \begin{cases}x^{2}-3 & \text { if } x \leq 0 \\ \sin (x) & \text { if } x>0\end{cases}
$$

Prove that g is discontinuous at 0 .
Answer: Let $\varepsilon=2$ and let $\delta>0$ be given. Choose $x \in(0, \delta)$ with $x<\pi$. Then $g(x)=\sin (x)>$ 0. Hence,

$$
|x-0|<\delta \quad \text { and } \quad|g(x)-g(0)|=|\sin (x)-3|>3 \geq \varepsilon
$$

and g is discontinuous at 0 .
Notes:

1. The wording in bold always appears in the proof of discontinuity using the (ε, δ)-definition.
2. It's probably good to sketch the graph of the function.
3. Think about how big the gap is. This determines which \& we can choose, here we could have chosen anything up to 3.
4. You will need to choose x, so that it's in a suitable range (here we chose $0<x<\pi$).

Exercises 4. Prove that the following functions are discontinuous at $x=1$.

$$
f(x)=\left\{\begin{array}{ll}
x^{2}-3 & \text { if } x<1, \\
x-1 & \text { if } x \geq 1,
\end{array} \quad \text { and } \quad g(x)= \begin{cases}1 /(x-1) & \text { if } x \neq 1 \\
0 & \text { if } x=1\end{cases}\right.
$$

