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Compartment models



Econometrics
Identifiability of the simultaneous equation 
model:

Byt+Γ xt = ut,
where yt and ut are vectors of random 
variables, xt is a vector of non-random 
exogenous variables, B and Γ are matrices 
of parameters, and ut has a normal 
distribution, with dispersion matrix Σ.
The parameter space is [B, Γ, Σ], some of 
which may be constrained.



A simple naïve Bayesian network



Ecology
Estimation of the annual survival 
probabilities of wild animals.
Collect data on previously marked 
animals.
These are either found dead or alive.
Form probability models.
Fit to data using maximum likelihood, or 
Bayesian methods.



Models for survival: Marking

We obtain information 
on survival from 
studying previously 
marked animals

These may be observed 
again alive or dead.

It is assumed that 
marking does not affect 
behaviour



Identification of Cormorant, Phalacrocorax carbo
sinensis, and great crested newt, Titurus cristatus



Recapture of Cory’s shearwater, Calonectris diomedea



Recovery/recapture
Estimation of survival/mortality from information 
on the recovery of dead marked animals and 
from observations on live marked animals.



Complexity
Models may be complicated, incorporating 
age, cohort and time components.
Models may be simplified by the use of 
covariates.
Modern focus on multi-site data can 
produce models with many parameters.
It is often unclear how many parameters 
can be estimated.



An example of a multi-site system

Multisite Systems

AAS
BBS

CCS

A B

C

ABS

BCSCAS

BAS
CBSACS

The parameter S 
represents the “transition”, 
i.e. it  represents both 
survival and movement



The British heron census, Ardea cinerea



Climatic covariates: number of frost-
days in Central England.



The Cormack-Jolly-Seber (CJS) model (1965)
Consider a simple case in which all 
animals are adults, sharing a common 
probability of annual survival, φ. If p
denotes the probability of recapture then 
the multinomial probabilities 
corresponding to any cohort, of known 
size, of marked birds have the form:
φ p,   φ2 p(1-p),   φ3 p (1-p)2 , …
Parameters may be time-dependent –
appropriate for adult animals.



Illustration of CJS recapture 
probabilities: a 3-year study

φ1 p2 φ1 φ2 (1-p2)p3 φ1 φ2 φ3(1-p2)(1-p3)p4

φ2 p3 φ2 φ3(1-p3)p4

φ3 p4



CJS recapture probabilities: what we can 
estimate

φ1 p2 φ1 φ2 (1-p2)p3 φ1 φ2 φ3(1-p2)(1-p3)p4

φ2 p3 φ2 φ3(1-p3)p4

φ3 p4



Parameter redundancy

This model has deficiency of one: we can 
only estimate the product, φ3p4. All the 
other parameters can be estimated. 



Parameter redundancy

This model has deficiency of one: we can 
only estimate the product, φ3p4. All the 
other parameters can be estimated. 

What if we only have two years of ringing?



Illustration of CJS recapture 
probabilities: a 3-year study + 2 cohorts

φ1 p2 φ1 φ2 (1-p2)p3 φ1 φ2 φ3(1-p2)(1-p3)p4

φ2 p3 φ2 φ3(1-p3)p4



Illustration of CJS recapture 
probabilities: a 3-year study + 2 cohorts

φ1 p2 φ1 φ2 (1-p2)p3 φ1 φ2 φ3(1-p2)(1-p3)p4

φ2 p3 φ2 φ3(1-p3)p4
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Parameter redundancy and identifiability
A model is identifiable if no two values of the parameters 
give the same probability distribution for the data.
A model is locally identifiable if there is a distance δ > 0, 
such that any two parameter values that give the same 
distribution must be separated by at least δ.
A parameter redundant model has parameters that cannot 
be estimated.
A parameter redundant model is not locally identifiable.
Full rank models are essentially or conditionally full rank.
An essentially full rank model is locally identifiable.
Are essentially full rank models identifiable?
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General rules
In some cases it is possible to establish 
general rules for models of particular 
structures.

This avoids having to use Maple (see 
later).

A particular illustration of this occurs with 
age-dependent recovery models



Model notation for recovery models
Ring-recovery models are described as, for example:

C/A/C, T/A/C, T/A/T, C/C/T.

In this notation, each model is specified by 3 letters, which 
designate, in order,

1. The way we model first-year survival: C or T;
2. The way we model adult survival: C, A or T; and A can 

have categories.
3. The way we model the recovery probability: C, A or T.

We use this notation in Example 4 of the first Practical.



Steps: age-dependence also in λ.
Consider, for example, the model denoted 
by C/A(2,2,3)/A(2,1,1,4). What can we 
estimate here?

Here we have the parameters:
φ

1
, φ2, φ2, φ3, φ3, φ4, φ4, φ4

λ1, λ1, λ2, λ3, λ4, λ4, λ4, λ4



Steps: age-dependence also in λ.
Consider, for example, the model denoted 
by C/A(2,2,3)/A(2,1,1,4). What can we 
estimate here?

Here we have a single step, as shown:
φ

1
, φ2, φ2 | φ3, φ3, φ4, φ4, φ4

λ1, λ1, λ2 | λ3, λ4, λ4, λ4, λ4



Theorem 1
Suppose the first step occurs at age n, 
and let m be the number of parameters 
used in the first n years.
If m = n+1, the model is parameter 
redundant.
If 1 < m < n+1, then the step does not 
cause parameter redundancy. 
Furthermore, to test for parameter 
redundancy, the parameters occurring in 
the first n years can be discarded, and the 
count started anew in year n+1.



Theorem 2
In the age-dependent model T/A/A
The step at age 1 year does not cause 
parameter-redundancy
To determine any possible redundancy 
caused by a subsequent step, the age and 
parameter counts begin again after age 1 
year, as in Theorem 1.
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How to test for parameter redundancy 
in general

Form an appropriate derivative matrix, D.
Use Maple to determine the symbolic row 
rank of D. Use this to determine if the 
model if parameter redundant or full rank.
We can also determine which parameter 
combinations can be estimated, if the 
model is parameter redundant.



The method

The approach was for exponential family models. It is 
performed using a symbolic algebra package such as Maple.

1. Calculate D = (μ is the mean, θ are parameters).

2. The number of  estimable parameters = rank(D).

3. Solve αTD = 0. The location of the zeros in α indicates 
which are the estimable parameters. 

4. Solve                     to find the full set of estimable

parameters; (j is the index for >1 solution to αTD = 0).
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Example 1: Cormack-Jolly-Seber Model
Little Penguins, Eudyptula minor, capture recapture data (1994 to 1997)

φi – probability a penguin survives from occasion i to i+1
pi – probability a penguin is recaptured on occasion i
The set of parameters is: θ = [φ1, φ2, φ3, p2, p3, p4 ]

We can now use P.
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Forming the derivative matrix (take logs first)

rank(D) = 5 < 6, so the model is parameter redundant.
In order to see which of the original parameters we can estimate:
Set αTD = 0 ⇒ αT = [ 0, 0, -φ3 / p4, 0, 0, 1]
Solving PDE, we find that the estimable parameters are: φ1, φ2, p2, p3, φ3p4 
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Example – Cormack-Jolly-Seber Model

with covariates

We now set

φi = 1/{1+exp( a + bxi )}

For example,  xi could be the mean annual banding weight,
or the SOI.

θ = [a, b, p2, p3, p4],

and we find that the model is now full rank.

See Maple practical.



Compartment models



Simple compartment model



A simple naïve Bayesian network



Naïve Bayesian Networks in general
We have n observable nodes, Y1, …, Yn, 
and a single observable node Z.
All nodes are binary.
2n+1 parameters: p, θ1|1,…, θn|1 θ1|0,…θn|0.



Naïve Bayesian network ctd
In this example we can use a reparameterisation
to show that
For n>2 the model is full rank
We can use the PLUR decomposition to determine 
parameter redundant sub-models: for example, 
when n=3,
Det(U)=-p3(1-p)3(θ1|1-θ1|0)2(θ2|1-θ2|0)2(θ3|1-θ3|0)2.
Previously conclusions followed a particular 
analysis.
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Extension theorems
These give conditions which ensure that 
results which hold for a particular 
configuration also hold for larger
configurations.

For instance, the CJS model always has 
deficiency one, when the number of 
cohorts equals the number of years of 
recapture.



Extension Theorem
Suppose a model has exhaustive summary κ1 and parameters θ1. 

Now extend that model by adding extra exhaustive summary terms κ2, 
and extra parameters θ2. (Eg add more years of ringing/recovery) New 
model’s exhaustive summary is κ = [κ1 κ2]T and parameters are θ = [θ1 
θ2]T.

If D1 is full rank and D2 is full rank, the extended model will be full rank. 
The result can be further generalised by induction.
Result is trivially always true, if you add zero or one extra parameters
Method can also be used for parameter redundant models by first 
rewriting the model in terms of its estimable set of parameters.
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Extension
Example: Ring-recovery model is a trivial example 
of extension theorem. Adding an extra year of ringing, adds one parameter. 
Adding an extra year of recovery adds no extra parameters. ∴ by induction 
general model rank is always full rank.
Example: Ring-recovery Model (T/A/T) 4 years ringing 5 years recovery (p = 
13)

Rank(D1) = 13, ∴is full rank  
Add an extra year of recovery:

θ2 = [φ6 λ6]. Rank(D2) = 2, ∴is full rank, ∴ extended model is full rank.
Add an extra year of ringing, adds one parameter ∴ extended model is full 
rank. By induction model is T/A/T model is always full rank. 
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Recapture of Dippers, Cinclus cinclus

The table shows  
capture-recapture 
data for European 
Dippers in 1981-
1986.

1981 22 11 2 0 0 0 0

1982 60 24 1 0 0 0

1983 78 34 2 0 0

1984 80 45 1 2

1985 88 51 0

1086 98 52



Dealing with missing data & near-
redundancy

Missing data in any application can change 
the parameter redundancy status.
This is easily dealt with by removing the 
probabilities associated with empty cells.
Near-redundant models are full-rank, but 
for certain data can result in poor 
estimation. This may be due to similarity 
to a parameter-redundant sub-model. 
Check eigen-values of Hessian.
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Weak identifiability: the Bayesian 
context

A parameter θ is said to be weakly identifiable
when π(θ|Y) ≈ p(θ).
This is the counterpart to near-redundancy.
For each parameter in a model, Garrett and 
Zeger(2000) considered the overlap of prior and 
posterior.
Form τ = ∫ min(p(θ), π(θ|Y))dθ.
Garrett and Zeger suggest ad-hoc threshold of 
τ = 0.35. This works well for ecological 
applications.



A Bayesian perspective: the CJS model
In population ecology we 
may devise models with 
parameters that cannot be 
estimated from the data.

Symbolic algebra can be 
used to examine whether a 
model is parameter-
redundant.

In a Bayesian context, it is 
interesting to consider the 
overlap between priors, 
p(θ) and posteriors π(θ|x).
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Recapture of Dippers, Cinclus cinclus

Note small cohort 
size in 1981.

1981 22 11 2 0 0 0 0

1982 60 24 1 0 0 0

1983 78 34 2 0 0

1984 80 45 1 2

1985 88 51 0

1086 98 52



Male mallard, Anas platyrhyncos

Model: T/C/A (1,1)
φ1,i, φa, λ1, λa here 
only two 
parameters, φa and 
λa are strongly 
identified. The 
model is near-
redundant.
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Relationship of overlap to interquartile
range: simpler to calculate
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