An $SL_2(k)$ Character Variety Whose Dimension Jumps in Characteristic 2

Ben Martin

September 25, 2002

1 Introduction

In this note we give an example of a finitely generated group Γ such that:

- (I) there exists a field Ω of characteristic 2 with a discrete valuation ν_0 and a representation $\rho_0: \Gamma \to \operatorname{SL}_2(\Omega)$ such that the induced action of Γ on the Bruhat-Tits tree of $\operatorname{SL}_2(\Omega)$ tree is fixed-point free;
- (II) for every field K of characteristic zero with a discrete valuation, no homomorphism $\rho: \Gamma \to \operatorname{SL}_2(K)$ gives rise to a fixed-point free action of Γ on the Bruhat-Tits tree of $\operatorname{SL}_2(K)$. In particular, Γ admits no ANI-representations. For terminology and background discussion, see [SZ].

If Γ were the fundamental group of a compact 3-manifold M then ρ_0 would give an essential surface in M that is not detectable by the method of ANI representations or by looking at ideal points of curves in the character variety $C(\Gamma, SL_2(\mathbb{C}))$. I do not know whether such a 3-manifold exists for this particular choice of Γ , but perhaps a similar example can be constructed for appropriate M.

2 Character Varieties

Let F be a finitely generated group and let k be an algebraically closed field. We consider representations (i.e. group homomorphisms) of F into $SL_2(k)$. Below, $T \subset SL_2(k)$ denotes the group of diagonal matrices.

The set $R(F, SL_2(k))$ of representations (i.e. group homomorphisms) $\rho: F \to SL_2(k)$ has the structure of an affine variety over k. The group $SL_2(k)$ acts on

 $R(F, SL_2(k))$ by conjugation: $(D.\rho)(\gamma) := D\rho(\gamma)D^{-1}$. Since $SL_2(k)$ is a reductive algebraic group, we have a well-defined quotient variety $C(F, SL_2(k))$, the points of which correspond to Zariski-closed conjugacy classes of representations. By results of R. W. Richardson, the conjugacy class of a representation ρ is closed if and only if ρ is completely reducible. Clearly ρ is completely reducible if and only if either $\rho(F)$ lies in some conjugate of T or ρ is irreducible. The co-ordinate ring of the affine variety $C(F, SL_2(k))$ is the ring of conjugation-invariant regular functions on $R(F, SL_2(k))$. One way to obtain such a function is as follows: given $\gamma \in \Gamma$, define Tr_{γ} : $R(\Gamma, SL_2(k)) \to k$ by $Tr_{\gamma}(\rho) = Tr \rho(\gamma) = \chi_{\rho}(\gamma)$, where Tr denotes trace and χ_{ρ} : $\Gamma \to k$ is the character of ρ . We denote by π the canonical map from $R(F, SL_2(k))$ to $C(F, SL_2(k))$.

The rest of this section is not essential for Section 3. Let \mathcal{S} be the k-algebra generated by functions of the form $\operatorname{Tr}_{\gamma}$, a subring of the co-ordinate ring of $\operatorname{C}(\Gamma,\operatorname{SL}_2(k))$. If \mathcal{S} is finitely generated as a k-algebra then \mathcal{S} is the co-ordinate ring of an affine variety $\operatorname{X}(F,\operatorname{SL}_2(k))$, and we have a dominant map $\psi\colon\operatorname{C}(F,\operatorname{SL}_2(k))\to\operatorname{X}(F,\operatorname{SL}_2(k))$. It is known that if $k=\mathbb{C}$ then \mathcal{S} is indeed finitely generated and ψ is an isomorphism (hence the name "character variety" or "variety of characters" for $\operatorname{C}(F,\operatorname{SL}_2(k))$). For general k it follows from results of Donkin that \mathcal{S} is a finitely generated k-algebra and the map ψ is finite (see [M], Theorem 1.4); note that any regular conjugation-invariant function on $\operatorname{SL}_2(k)$ is a polynomial in Tr .

Conjecture 2.1 The map ψ is an isomorphism.

3 The Example

Let Γ be the group with presentation

$$\Gamma = \langle a, b, c \mid a^2 = b^2 = c^2 = 1, [b, cac] = [b, aca] = 1, cac = aca \rangle.$$

Note that a, c generate a copy of the symmetric group S_3 . We show that:

- (a) if the characteristic of k is not 2 then the variety $C(\Gamma, SL_2(k))$ is finite, and for every $\rho \in R(\Gamma, SL_2(k))$, $\rho(\Gamma)$ is finite;
- (b) if k has characteristic 2 then $X(\Gamma, SL_2(k))$ is infinite: in particular, $C(\Gamma, SL_2(k))$ is infinite and there exists an affine curve in $C(\Gamma, SL_2(k))$ with an ideal point. (Applying the construction described in [SZ] now gives the field Ω , the discrete valuation ν_0 and the representation ρ_0 of (I) above.)

Because a finite group acting without inversions on a tree must fix a vertex ([S], I.6, Example 3.1), (a) implies (II) above.

Assume that the characteristic of k is not 2. Let $\rho: \Gamma \to \mathrm{SL}_2(k)$ be any completely reducible representation. Set $A = \rho(a), B = \rho(b), C = \rho(c)$. The hypothesis on the characteristic implies that $A, B, C \in \pm I$, and part (a) follows.

Now assume that k has characteristic 2. For $\mu \in k$, define $\rho_{\mu}: \Gamma \to \mathrm{SL}_2(k)$ by

$$\rho(a) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \rho(b) = \begin{pmatrix} 1 & \mu \\ 0 & 1 \end{pmatrix}, \rho(c) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

We have

$$\rho(c)\rho(a)\rho(c) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

and

$$\rho(a)\rho(c)\rho(a) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

so ρ is well-defined. Now $\operatorname{Tr}_{bc}(\rho_{\mu}) = \operatorname{Tr}(\rho_{\mu}(bc)) = \mu$, so the function Tr_{bc} takes on infinitely many values. It follows that $X(\Gamma, \operatorname{SL}_2(k))$ is infinite, as required.

References

 $[\mathbf{M}]$ B. Martin, Reductive subgroups of reductive groups in nonzero characteristic. To appear in J. Algebra

[S] J.-P. Serre, Trees, Springer-Verlag 1980

[SZ] S. Schanuel and X. Zhang, Detection of essential surfaces with SL_2 -trees. Math. Ann. **320** (2001), 149–165