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Abstract

This paper primarily is concerned with the sampling of the Fisher–Bingham distribution
and we describe a slice sampling algorithm for doing this. A by-product of this task gave us an
infinite mixture representation of the Fisher–Bingham distribution; the mixing distributions
being based on the Dirichlet distribution. Finite numerical approximations are considered
and a sampling algorithm based on a finite mixture approximation is compared with the slice
sampling algorithm.
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1 Introduction.

The Bingham, and more generally the Fisher–Bingham distribution, are constructed by constrain-
ing multivariate normal distributions to lie on the surface of a sphere of unit radius. They are
used in modeling spherical data which usually represent directions but in some cases they can also
be used in shape analysis.
If x = (x0, x1, . . . , xp) are distributed according to such a distribution then the norm of x is 1.
Hence x2 = (x2

0, x
2
1, . . . , x

2
p) lies on the simplex. The contribution of this paper is to transform x

to (ω, s) and to study the marginal and conditional distributions of ω and s. Here si = x2
i and

ωi = xi/|xi|, so that ωi ∈ {−1, +1}.
Clearly the Lebesgue measure in IRp+1 induces the uniform measure on the unit sphere Sp. Hence
the Fisher–Bingham distribution which is obtained in Sp via the constrained multivariate normal
random vector in with covariance Σ and mean µ ∈ IRp+1 has the density with respect to uniform
measure dSp(x) in Sp

f(x|µ,Σ) = C(µ,Σ)−1 exp{−(x− µ)tΣ(x− µ)}

where C(µ,Σ) is the corresponding normalizing constant and x ∈IRp+1 such that xtx = 1. This
distribution is an extension of the Bingham distribution which consist of µ being zero.
The uniform measure in Sp is invariant of the orthogonal transformations, it can be easily shown
that if X has FB(µ,Σ) then for each orthogonal matrix V ∈ O(p+1), Y = XV has FB(µV, V tΣV ).
So, without loss of generality, we assume that the covariance matrix is diagonal i.e. Σ = Λ =
diag(λ0, λ1, . . . , λp).
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With xtx = 1 we have in terms of (ω0, . . . , ωp, s1, . . . , sp)

(x− µ)tΣ(x− µ) = xtΣx− 2xtΣµ + µtΣµ

=
p∑

i=0

λisi − 2
p∑

i=0

λiωiµi
√

si + µtΣµ

=
p∑

i=1

(−aisi − biωi
√

si)− b0ω0

√
1− s + c

where, for i = 1, . . . , p, ai = λ0 − λi, and for i = 0, . . . , p, bi = 2λiµi, with c = µtΣµ + λ0 and
s = 1 − s0 = s1 + · · · + sp. Implementing the transformation from x to (ω0, . . . , ωp, s1, . . . , sp)
yields the joint density of interest given by

f(ω, s) ∝ exp

{
p∑

i=1

(aisi + biωi
√

si)

}
exp

{
b0ω0

√
1− s

} p∏

i=1

s
−1/2
i (1− s)−1/2 1(s ≤ 1). (1)

An important point which will come in useful later is to take, without loss of generality, λ0 to be
the largest of the λ’s and so ai ≥ 0 for all i = 1, . . . , p.
Another important point to make is that the Bingham density (i.e. when µ = 0) remains un-
changed following any addition of a constant, say ξ, to all the diagonal elements of Σ. This follows
since, with xtx = 1,

xt(Σ + ξ I)x = xtΣx + ξ.

In this case we can not expect to be able to estimate p λi’s, rather it is only the differences, such
as λi− λi′ , that we can estimate. Note that this scenario also holds whether Σ is diagonal or not.
The function in (??) is the joint density of interest and from it we will make contributions about
the Fisher–Bingham distribution by providing a mixture representation and simulating samples
using Gibbs sampling from it.
In Section 2 we provide the mixture representation of the Fisher–Bingham distribution and demon-
strate a method for truncating this to a finite mixture with known error. In some parameter cases
a workable approximation can be obtained. In Section 3 we provide a Gibbs sampling approach
to sampling the Fisher–Bingham distribution and hence compare distributions obtained from our
mixture representation and the Gibbs sampling. This problem of sampling the Fisher–Bingham
distribution was raised by a referee of the paper by Kume and Walker (2006).

2 Mixture representation of Fisher–Bingham distribution.

From the joint density of (ω, s), it is clear that, for i = 0, . . . , p, we have

P(ωi = 1|si) =
exp(bi

√
si)

exp(bi
√

si) + exp(−bi
√

si)

and the ωi are independent given the si. Hence this is easy to understand and so for the rest of
this section we will concentrate on the marginal density of s. This is given up to a constant of
proportionality, and with respect to the Lebesgue measure ds1 . . .dsp, by
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f(s) ∝ g(s) =

{
p∏

i=1

exp(aisi) cosh(bi
√

si)s
−1/2
i

}
cosh(b0

√
1− s) (1− s)−1/21 (s ≤ 1) .

Note that h(s) =
∏p

i=1 s
−1/2
i (1−s)−1/2 is proportional to Dir(s; 1/2, . . . , 1/2), the pdf at (s1, . . . , sp)

of the Dirichlet distribution with its p + 1 parameters equal to 1/2.
Now both exp(·) and cosh(·) can be expanded in powers; so

exp(aisi) =
∞∑

l=0

al
is

l
i/l!

and

cosh(bi
√

si) =
∞∑

m=0

b2m
i sm

i /(2m)!

leading to

g(s) =
∞∑

l1=0

· · ·
∞∑

lp=0

∞∑

m0=0

· · ·
∞∑

mp=0

w(l,m)Dir(s; l1 + m1 + 1/2, . . . , lp + mp + 1/2,m0 + 1/2),

where

w(l, m) =
b2m0
0 Γ(m0 + 1/2)

(2m0)!Γ (
∑p

i=1(li + mi + 1/2) + m0 + 1/2)

p∏

i=1

b2mi
i ali

i Γ(li + mi + 1/2)
li!(2mi)!

.

Hence, f(s) is an infinite mixture of Dirichlet distributions.

2.1 Finite approximation.

The idea here is to truncate the infinite mixture to a finite number of terms and to compute the
error in such a procedure. To this end, let us define

w(l, n, s, ω) =
p∏

i=1

{
li!−1(aisi)li ni!−1(ωibi

√
si)ni

}
n0!−1(ω0b0

√
1− s)n0 h(s).

So w(l,m) is the integral of w(l, n = 2m, s,ω) with respect to ds and dω, the uniform measure on
{−1, 1}p+1. We now consider a direct expansion of the expression on the right-hand side of (??)

f(ω, s) ∝
∞∑

k=0

k!−1

{
p∑

i=1

(aisi + biωi
√

si) + b0ω0

√
1− s

}k

h(s)

and see that these terms are related to w(l, n, s,ω) as

∑

l1+l2+···+lp+n0+···+np=k

w(l, n, s,ω) = k!−1

{
p∑

i=1

(aisi + biωi
√

si) + b0ω0

√
1− s

}k

h(s)
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where the summation on the left is made for all possible integer partitions of k (including zeros)
such that l1 + l2 + · · ·+ lp + n0 + · · ·+ np = k. We notice that
{

p∑

i=1

(aisi + biωi
√

si) + b0ω0

√
1− s

}
≤

p∑

i=1

(aisi+|bi|√si)+|b0|
√

1− s ≤ M

(
√

1− s + 1− s +
p∑

i=1

√
si

)
,

where M = max{ai; i = 1, . . . , p, |bi|; i = 0, . . . , p}. Also

p∑

i=0

√
si ≤

√
p + 1

and so ∑

l1+l2+···+lp+n0+···+np=k

w(l, n, s, ω) ≤ k!−1Mk(1 +
√

p + 1)k h(s).

Note that, if any of ni’s is odd then the integral of w(l, n, s,ω) with respect to dω is zero.
Therefore, collecting only the non-zero terms left the after integrating over dω and ds in the
summation above, we obtain

∑

l1+l2+···+lp+2m0+···+2mp=k

w(l, m) ≤ k!−1Mk(1 +
√

p + 1)k Γ(1/2)p+1

Γ(p/2 + 1/2)
.

Hence,

TN =
∑

l1+l2+···+lp+2m0+···+2mp≥N

w(l, m) ≤
∞∑

k=N

τ(p) Mk (1 +
√

p + 1)k

k!
,

where τ(p) = Γ(1/2)p+1/Γ(p/2 + 1/2), leading to

TN ≤ φ(N) =
τ(p) MN (1 +

√
p + 1)N

N !
eM(1+

√
p+1).

We can find a value of N , which will form the basis of our truncation, based on the decreasing
speed of φ(N). For a given error ε we find N such that TN ≤ φ(N) ≤ ε and so an approximation
to the Fisher–Bingham distribution has density function for s = (s1, . . . , sp) given by

fN (s) =
N−1∑

l1=0

· · ·
N−1∑

lp=0

[N/2]∑

m0=0

· · ·
[N/2]∑

mp=0

qN (l, m)Dir(s; l1 + m1 + 1/2, . . . , lp + mp + 1/2,m0 + 1/2),

where
qN (l, m) =

w(l,m)
∑N−1

l1=0 · · ·
∑N−1

lp=0

∑[N/2]
m0=0 · · ·

∑[N/2]
mp=0 w(l, m)

.

This works since

{(l,m) : 1 ≤ li, 2mi < N}c ⊂
{

(l, m) :
∑

i

li + 2
∑

i

mi ≥ N

}
.
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With this approximation statistical inference becomes highly feasible based on a mixture distribu-
tion for which estimating methods are well documented. For example, Titterington et al. (1988).
Problems of working directly with the Fisher–Bingham distribution are that the general expression
for the normalising constant is unknown and hence the exact likelihood function is unavailable.
The summation of w(l, m) is in fact the normalising constant for the Fisher–Bingham distribution.
Previous attempts at computing the normalizing constant have been given in Kent (1987), who
dealt with the Bingham distribution, and Kume and Wood (2005). Our approach is clearly
computationally intensive in some instances when N needs to be large; though highly accurate
estimates can be found in many cases with a small value of N . Additionally, we can in such cases
know the accuracy of the normalising constant and hence use this to consider the performance of
alternative approximations. In particular, in Table 1, we compare estimates of the normalising
constant with those obtained by Kume and Wood (2005), who use saddle–point approximations.
It is also possible to simulate approximately from the Fisher–Bingham distribution via sampling
the weights qN . However, an exact method is possible via Markov chain Monte Carlo methods; in
particular using the Gibbs sampling with slice sampling (Damien et al., 1999). This is described
in Section 3.

2.2 Large p.

When p is large, and for this we will assume that p = 50, the approximation works well with small
N . Recall we are interested in finding N such that

φ(N) =
τ(p) MN (1 +

√
p)N

N !
eM(1+

√
p+1) < ε.

Now, assuming M = 1,

φ(N) =
τ(51) (1 +

√
51)N

N !
e(1+

√
51) =

8.7× 10−13 × 8.1N

N !
× 3200

and clearly for N = 2 this turns out to be very small. In this case, the approximation is well
served by only considering terms for which

l1 + · · ·+ lp + m0 + · · ·+ mp ≤ 1

in which case our approximation becomes

f̂(s) ∝ w0 Dir(s; 1/2, . . . , 1/2) +
2p+1∑

k=1

wkDir(s; 1/2 + δ1,k, . . . , 1/2 + δp,k, 1/2 + δp+1,k),

where w0 = w(0, 0) and wk is w(l, m) with the kth element of (l1, . . . , lp,m0, . . . , mp) set to 1 and
the rest set to 0. Also, for j = 1, . . . , p,

δj,k = 1(k = j) + 1(k = j + p)

and δp+1,k = 1(k = 2p + 1). It is quite easy to see that one can take out a common term
w0 = Γ(1/2)p+1/Γ((p + 1)/2) from all the w’s leaving the terms to decay as 1/p. That is, w(l, m)
behaves as w(0, 0)/pn where

n = l1 + · · ·+ lp + m0 + · · ·+ mp.

Inference for this is quite straightforward. This would be an alternative approach to dealing with
large p for the Fisher–Bingham distribution to that given by Dryden (2005).
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3 Gibbs sampling of Fisher–Bingham distribution.

In this section we describe a slice sampling algorithm for sampling from the Fisher–Bingham
distribution. This is a natural yet non-trivial extension from the sampling algorithm which appears
in Kume and Walker (2006) which was developed to sample the Bingham distribution. The
Bingham distribution arises by taking bi = 0 for all i in the Fisher-Bingham distribution. In the
Bingham case it was not necessary to find the joint for (ω, s), we simply worked with s, since the
sign of the original variables {x0, . . . , xp} is independent of their squares.
Similar to what was shown in Kume and Walker (2006), by thinning the output of the Gibbs
method shown here we can obtain practically independent and identically distributed samples
from Fisher–Bingham.
Let us consider the density in (??) which is to be sampled. We introduce 3 latent variables (u, v, w)
and construct the joint density with (ω, s) given by

f(ω, s, u, v, w) ∝ 1{u < exp(L)}1{v < exp(b0ω0

√
1− s)}1{w < (1− s)−1/2}

p∏

i=1

s
−1/2
i 1(s ≤ 1),

where

L =
p∑

i=1

(aisi + biωi
√

si).

Clearly, the full conditional densities for u, v and w are easily seen to be uniform and are therefore
easy to sample. The full conditional mass function for ωi, i = 0, . . . , p, is also easy to obtain, and

P(ωi = +1| · · · ) =
exp(bi

√
si)

exp(−bi
√

si) + exp(bi
√

si)

noting that s0 = 1− s1 − · · · − sp.
The more complicated full conditional densities to sample are those for si, i = 1, . . . , p. Without
loss of generality we will consider the full conditional density for s1; the others will follow by
switching indices in a cyclic fashion.
It is that

f(s1| · · · ) ∝ 1{Au ∩Av ∩Aw ∩A} s
−1/2
1 ,

where Ay is a set formed by inverting the inequality involving y = (u, v, w) and

A =



0 < s1 < 1−

∑

2≤i≤p

si



 .

So,

Aw = {s1 : (1− s)−1/2 > w} =



s1 > 1−

∑

2≤i≤p

si − w−2



 .

Also,
Au = {s1 : u < exp(L)} = {s1 : a1s1 + b1ω1

√
s1 > d},
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where

d = log u−
p∑

i=2

(aisi + biωi
√

si).

Therefore, since a1 > 0
Au = {s1 : lu <

√
s1} ∪ {s1 :

√
s1 < tu},

where
lu =

{√
d/a1 + (b1/(2a1))2 − b1ω1/(2a1)

}

and
tu =

{
−

√
d/a1 + (b1/(2a1))2 − b1ω1/(2a1)

}
.

If d/a1 + (b1/(2a1))2 < 0 then Au = (0, 1) and clearly, if a1 = 0 then Au = {s1 : b1ω1
√

s1 > d}.
Finally, we have

Av =
{
s1 : v < exp(b0ω0

√
1− s)

}
.

There are two scenarios here;

(i) b0ω0 < 0: in this case we have

A+
v =



s1 > 1−

∑

2≤i≤p

si − ((− log v)/b0)2



 .

(ii) b0ω0 > 0: care is needed here. If v < 1 then there is no constraint from this. If v > 1 then
we have

A−v =



s1 < 1−

∑

2≤i≤p

si − ((log v)/b0)2



 .

Given that we will intersect this with the set A, we may as well take

A−v =



s1 < 1−

∑

2≤i≤p

si − 1(v > 1)((log v)/b0)2



 .

Hence, Av = A+
v if b0ω0 > 0 and Av = A−v if b0ω0 < 0.

Writing the intersection of the sets as (ξl, ξu) then

f(s1| · · · ) ∝ 1{s1 ∈ (ξl, ξu)}s−1/2
1 .

It is therefore possible to sample this density by taking

s1 =
{

τ(ξ1/2
u − ξ

1/2
l ) + ξ

1/2
l

}2
,

where τ is a uniform r.v. from the interval (0, 1).
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The aim here is to compare densities obtained for s1 from both approaches; namely using samples
from the Gibbs sampler and the approximation based on a mixture representation. Marginally, it
is clear that s1 will be a mixture of beta distributions and that f(s1) ∝ g(s1) and

g(s1) =
∞∑

l1=0

· · ·
∞∑

lp=0

∞∑

m0=0

· · ·
∞∑

mp=0

w(l, m)Be


s1; l1 + m1 + 1/2, m0 + 1/2 +

∑

i6=1

(li + mi + 1/2)


 .

The normalising constant will be the reciprocal of

∞∑

l1=0

· · ·
∞∑

lp=0

∞∑

m0=0

· · ·
∞∑

mp=0

w(l,m).

With the approximation outlined in Section 2, we take N = 5 with p = 3 and take a1 = 0.1,
a2 = 0.3, a3 = 2.0, b0 = 0, b1 = 1.0, b2 = 0.9 and b3 = 0.3. The numerical construction of the
marginal density of s1 is given in Figure 2 together with the histogram of a random sample of size
105 from s1 generated using our Gibbs method. Note it is easy to see that f(0) = ∞ due to the
term of the mixture with l1 = 0 and m1 = 0.

4 Discussion

The key to this paper is the introduction of the variable ω into the Fisher–Bingham distribution. It
serves two purposes. The first is that we can use it to facilitate a Gibbs sampling approach to sam-
ple from the Fisher–Bingham distribution. The second is that it allows a mixture representation
of the Fisher–Bingham distribution.
For the former, it is clear from equation (??) that each si has a non-central chi–squared distribution
with 1 degree of freedom, and therefore the simulation method described could be easily adopted
to generate samples from convolutions of such distributions constrained to have sum 1. Such a
distribution would generalise those considered by Fearnhead and Meligkotsidou (2004).
For the latter, the mixture representation of the Fisher–Bingham distribution permits a finite
approximation based on evaluation of the error. Once a finite mixture is constructed, inference
becomes quite straightforward; whereas for the Fisher–Bingham distribution the normalising con-
stant does not always have a closed form. Interestingly, as p gets large, the value of N required
to get useful approximations decreases and so the terms in the mixture are manageable.
Our mixture representation suggests a number of generalizations to constructing distributions
on the sphere. One is to allow the weights to be arbitrary, rather then based on the w(l, m)
construction. Another is to assign a probability distribution on N .
We could also attempt to approximate sampling from the Fisher–Bingham distribution by sam-
pling the weights w(l, m), though this would probably end up being quite messy.
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p=2 p=3 p=4
c Ex Sp Ex Sp Ex Sp
3 3.85 3.84 6.57 6.55 8.80 8.78
4 4.34 4.34 7.70 7.69 10.72 10.70
5 4.67 4.67 8.47 8.47 12.08 12.07

Table 1: Exact (correct to 3 decimal places) and saddle point approximations for a range of choices
of p and c where a = 1/c, 2/c, . . . , p/c with p = 2, 3, 4 and c = 3, 4, 5
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Figure 1: The numerical approximate marginal density function of s1 with N = 5.
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