Mark Burchell

Dean

About

Academic career

Professor Mark Burchell is the Dean of the Faculty of Sciences within which are seven Schools: Biosciences, Computing, Engineering and Digital Arts, Medway School of Pharmacy (joint with the University of Greenwich), Mathematics, Statistics and Actuarial Science, Physical Sciences and Sport and Exercise Sciences. His Personal Assistant is Joanna Walpole.

Mark Burchell is a Professor of Space Science whose academic work significantly contributes to scientific research and has recently featured on the following links:

Comets could have sparked life on Earth

BBC 2 Horizon - The Trouble with Space Junk

Mark Burchell began his academic career as an undergraduate at Birmingham University (1978-1981) obtaining a Bsc (Hons) 1st class. He was awarded a research council studentship to study for a PhD in Experimental Particle Physics at Imperial College (London) (1981 – 1984), after which he held post-doc positions at Imperial for the next two years. He went to the University of California Santa Cruz (1986-1989) and became a CERN fellow (1989-1992). In 1993 he was offered a Lectureship in Space Science at the University of Kent, where he was promoted to Senior Lecturer in 2000, to Reader in 2002 and Professor of Space Science in 2007.

 

Publications

Also view these in the Kent Academic Repository

Article

  • Harriss, K. and Burchell, M. (2017). Hypervelocity impacts into ice‐topped layered targets: Investigating the effects of ice crust thickness and subsurface density on crater morphology. Meteoritics and Planetary Science [Online] 52:1505-1522. Available at: http://dx.doi.org/10.1111/maps.12913.
  • Morris, A. and Burchell, M. (2017). Hypervelocity impacts in the laboratory on hot rock targets. Procedia Engineering [Online] 204:300-307. Available at: https://doi.org/10.1016/j.proeng.2017.09.749.
  • Hicks, L. et al. (2017). Magnetite in Comet Wild 2: Evidence for parent body aqueous alteration. Meteoritics and Planetary Science [Online] 52:2075-2096. Available at: https://doi.org/10.1111/maps.12909.
  • Hibbert, R. et al. (2017). The Hypervelocity Impact Facility at the University of Kent: Recent Upgrades and Specialized Capabilities. Procedia Engineering [Online] 204:208-214. Available at: https://doi.org/10.1016/j.proeng.2017.09.775.
  • Wickham-Eade, J. et al. (2017). Raman identification of olivine grains in fine grained mineral assemblages fired into aerogel. Procedia Engineering [Online] 204:413-420. Available at: https://doi.org/10.1016/j.proeng.2017.09.796.
  • Kearsley, A. et al. (2017). Hypervelocity impact in low earth orbit: finding subtle impactor signatures on the Hubble Space Telescope. Procedia Engineering [Online] 204:492-499. Available at: https://doi.org/10.1016/j.proeng.2017.09.746​.
  • Burchell, M. and Morris, A. (2017). Laboratory tests of catastrophic disruption of rotating bodies. Icarus [Online] 296:91-98. Available at: https://doi.org/10.1016/j.icarus.2017.05.016.
  • Burchell, M. et al. (2017). Survival of Fossilised Diatoms and Forams in Hypervelocity Impacts with Peak Shock Pressures in the 1 – 19 GPa Range. Icarus [Online] 290:81-88. Available at: http://dx.doi.org/10.1016/j.icarus.2017.02.028.
  • Harriss, K. and Burchell, M. (2016). A study of the observed shift in the peak position of olivine Raman spectra as a result of shock induced by hypervelocity impacts. Meteoritics and Planetary Science [Online] 51:1289-1300. Available at: http://dx.doi.org/10.1111/maps.12660.
  • McDermott, K. et al. (2016). Survivability of copper projectiles during hypervelocity impacts in porous ice: A laboratory investigation of the survivability of projectiles impacting comets or other bodies. Icarus [Online] 268:102-117. Available at: http://doi.org/10.1016/j.icarus.2015.12.037.
  • Corsaro, R. et al. (2016). Characterization of space dust using acoustic impact detection. The Journal of the Acoustical Society of America [Online] 140:1429-1438. Available at: https://doi.org/10.1121/1.4960782.
  • Wozniakiewicz, P. et al. (2015). The survivability of phyllosilicates and carbonates impacting Stardust Al foils: Facilitating the search for cometary water. Meteoritics & Planetary Science [Online] 50:2003-2023. Available at: http://doi.org/10.1111/maps.12568.
  • Burchell, M. et al. (2015). SMART-1 end of life shallow regolith impact simulations. Meteoritics & Planetary Science [Online] 50:1436-1448. Available at: http://doi.org/10.1111/maps.12479.
  • Jones, S. et al. (2015). Aerogel dust collection for in situ mass spectrometry analysis. Icarus [Online] 247:71-76. Available at: http://doi.org/10.1016/j.icarus.2014.09.047.
  • Fielding, L. et al. (2015). Space science applications for conducting polymer particles: Synthetic mimics for cosmic dust and micrometeorites. Chemical Communications [Online] 51:16886-16899. Available at: http://dx.doi.org/10.1039/c5cc07405c.
  • Croat, T. et al. (2015). Survival of refractory presolar grain analogs during Stardust-like impact into Al foils: Implications for Wild 2 presolar grain abundances and study of the cometary fine fraction. Meteoritics & Planetary Science [Online] 50:1378-1391. Available at: http://doi.org/10.1111/maps.12474.
  • Leliwa-Kopystynski, J., Włodarczyk, I. and Burchell, M. (2015). Analytical model of impact disruption of satellites and asteroids. Icarus [Online] 268:266-280. Available at: http://doi.org/10.1016/j.icarus.2015.12.023.
  • Burchell, M. et al. (2014). Survival of fossils under extreme shocks induced by hypervelocity impacts. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences [Online] 372:20130190. Available at: http://dx.doi.org/10.1098/rsta.2013.0190.
  • Sterken, V. et al. (2014). Stardust Interstellar Preliminary Examination X: Impact speeds and directions of interstellar grains on the Stardust dust collector. Meteoritics & Planetary Science [Online] 49:1680-1697. Available at: http://doi.org/10.1111/maps.12219.
  • Burchell, M. (2014). Human spaceflight and an asteroid redirect mission: Why? Space Policy [Online] 30:163-169. Available at: http://dx.doi.org/10.1016/j.spacepol.2014.07.003.
  • Westphal, A. et al. (2014). Coordinated Microanalyses of Seven Particles of Probable Interstellar Origin from the Stardust Mission. Microscopy and Microanalysis [Online] 20:1692-1693. Available at: http://doi.org/10.1017/S1431927614010198.
  • Butterworth, A. et al. (2014). Stardust Interstellar Preliminary Examination IV: Scanning transmission X-ray microscopy analyses of impact features in the Stardust Interstellar Dust Collector. Meteoritics and Planetary Science [Online] 49:1562-1593. Available at: http://doi.org/10.1111/maps.12220.
  • Brenker, F. et al. (2014). Stardust Interstellar Preliminary Examination V: XRF analyses of interstellar dust candidates at ESRF ID13. Meteoritics and Planetary Science [Online] 49:1594-1611. Available at: http://doi.org/10.1111/maps.12206.
  • Westphal, A. et al. (2014). Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft. Science [Online] 345:786-791. Available at: http://dx.doi.org/10.1126/science.1252496.
  • Westphal, A. et al. (2014). Final reports of the Stardust Interstellar Preliminary Examination. Meteoritics & Planetary Science [Online] 49:1720-1733. Available at: http://dx.doi.org/10.1111/maps.12221.
  • Simionovici, A. et al. (2014). Stardust Interstellar Preliminary Examination VI: Quantitative elemental analysis by synchrotron X-ray fluorescence nanoimaging of eight impact features in aerogel. Meteoritics and Planetary Science [Online] 49:1612-1625. Available at: http://doi.org/10.1111/maps.12208.
  • Flynn, G. et al. (2014). Stardust Interstellar Preliminary Examination VII: Synchrotron X-ray fluorescence analysis of six Stardust interstellar candidates measured with the Advanced Photon Source 2-ID-D microprobe. Meteoritics and Planetary Science [Online] 49:1626-1644. Available at: http://doi.org/10.1111/maps.12144.
  • Postberg, F. et al. (2014). Stardust Interstellar Preliminary Examination IX: High-speed interstellar dust analog capture in Stardust flight-spare aerogel. Meteoritics and Planetary Science [Online] 49:1666-1679. Available at: http://doi.org/10.1111/maps.12173.
  • Burchell, M. et al. (2014). Survival of Organic Materials in Hypervelocity Impacts of Ice on Sand, Ice, and Water in the Laboratory. Astrobiology [Online] 14:473-485. Available at: http://dx.doi.org/10.1089/ast.2013.1007.
  • Westphal, A. et al. (2014). Stardust Interstellar Preliminary Examination I: Identification of tracks in aerogel. Meteoritics and Planetary Science [Online] 49:1509-1521. Available at: http://doi.org/10.1111/maps.12168.
  • Cockell, C., Burchell, M. and Martins, Z. (2014). Editorial: The fifth UK Astrobiology Conference (ASB5). International Journal of Astrobiology [Online] 13:99-100. Available at: http://dx.doi.org/10.1017/S1473550414000032.
  • Price, M. et al. (2014). Limits on methane release and generation via hypervelocity impact of Martian analogue materials. International Journal of Astrobiology [Online] 13:132-140. Available at: http://dx.doi.org/10.1017/S1473550413000384.
  • Gangappa, R., Burchell, M. and Hogg, S. (2014). Morphological and Molecular Analysis Calls for a Reappraisal of the Red Rain Cells of Kerala. Current Microbiology [Online] 68:192-198. Available at: http://dx.doi.org/10.1007/s00284-013-0464-9.
  • Wozniakiewicz, P. et al. (2014). Micron-scale hypervelocity impact craters: Dependence of crater ellipticity and rim morphology on impact trajectory, projectile size, velocity, and shape. Meteoritics & Planetary Science [Online] 49:1929-1947. Available at: http://doi.org/10.1111/maps.12364.
  • Price, M. et al. (2013). Survival of yeast spores in hypervelocity impact events up to velocities of 7.4kms−1. Icarus [Online] 222:263-272. Available at: http://dx.doi.org/10.1016/j.icarus.2012.10.035.
  • Foster, N. et al. (2013). Identification by Raman spectroscopy of Mg–Fe content of olivine samples after impact at 6kms−1 onto aluminium foil and aerogel: In the laboratory and in Wild-2 cometary samples. Geochimica Et Cosmochimica Acta [Online] 121:1-14. Available at: http://dx.doi.org/10.1016/j.gca.2013.07.022.
  • Wozniakiewicz, P. et al. (2013). Erratum: Grain sorting in cometary dust from the outer solar nebula (The Astrophysical Journal Letters (2012) 760 (L23)). Astrophysical Journal Letters [Online] 764:L18-L18. Available at: http://dx.doi.org/10.1088/2041-8205/764/1/L18.
  • Stroud, R. et al. (2013). Stardust Interstellar Preliminary Examination XI: Identification and elemental analysis of impact craters on Al foils from the Stardust Interstellar Dust Collector. Meteoritics & Planetary Science [Online] 49:1698-1719. Available at: http://dx.doi.org/10.1111/maps.12136.
  • Gainsforth, Z. et al. (2013). Stardust Interstellar Preliminary Examination VIII: Identification of crystalline material in two interstellar candidates. Meteoritics & Planetary Science [Online] 49:1645-1665. Available at: http://doi.org/10.1111/maps.12148.
  • Frank, D. et al. (2013). Stardust Interstellar Preliminary Examination II: Curating the interstellar dust collector, picokeystones, and sources of impact tracks. Meteoritics & Planetary Science [Online] 49:1522-1547. Available at: http://doi.org/10.1111/maps.12147.
  • Price, M., Kearsley, A. and Burchell, M. (2013). Validation of the Preston–Tonks–Wallace strength model at strain rates approaching ∼1011 s−1 for Al-1100, tantalum and copper using hypervelocity impact crater morphologies. International Journal of Impact Engineering [Online] 52:1-10. Available at: http://dx.doi.org/10.1016/j.ijimpeng.2012.09.001.
  • Fendyke, S., Price, M. and Burchell, M. (2013). Hydrocode modelling of hypervelocity impacts on ice. Advances in Space Research [Online] 52:705-714. Available at: http://dx.doi.org/10.1016/j.asr.2013.04.010.
  • Loft, K. et al. (2013). Impacts into metals targets at velocities greater than 1 km s−1: A new online resource for the hypervelocity impact community and an illustration of the geometric change of debris cloud impact patterns with impact velocity. International Journal of Impact Engineering [Online] 56:47-60. Available at: http://dx.doi.org/10.1016/j.ijimpeng.2012.07.007.
  • Morris, A., Price, M. and Burchell, M. (2013). IS THE LARGE CRATER ON THE ASTEROID (2867) STEINS REALLY AN IMPACT CRATER? Astrophysical Journal [Online] 774:L11. Available at: http://dx.doi.org/10.1088/2041-8205/774/1/L11.
  • Bechtel, H. et al. (2013). Stardust Interstellar Preliminary Examination III: Infrared spectroscopic analysis of interstellar dust candidates. Meteoritics & Planetary Science [Online] 49:1548-1561. Available at: http://doi.org/10.1111/maps.12125.
  • Stodolna, J. et al. (2012). Microstructure modifications of silicates induced by the collection in aerogel: Experimental approach and comparison with Stardust results. Meteoritics & Planetary Science [Online] 47:696-707. Available at: http://dx.doi.org/10.1111/j.1945-5100.2011.01305.x.
  • Kearsley, A. et al. (2012). Experimental impact features in Stardust aerogel: How track morphology reflects particle structure, composition, and density. Meteoritics & Planetary Science [Online] 47:737-762. Available at: http://dx.doi.org/10.1111/j.1945-5100.2012.01363.x.
  • Wozniakiewicz, P. et al. (2012). The origin of crystalline residues in Stardust Al foils: Surviving cometary dust or crystallized impact melts? Meteoritics & Planetary Science [Online] 47:660-670. Available at: http://dx.doi.org/10.1111/j.1945-5100.2011.01328.x.
  • Wozniakiewicz, P. et al. (2012). Stardust impact analogs: Resolving pre- and postimpact mineralogy in Stardust Al foils. Meteoritics & Planetary Science [Online] 47:708-728. Available at: http://dx.doi.org/10.1111/j.1945-5100.2012.01338.x.

Conference or workshop item

  • Collinson, M. et al. (2012). Towards the role of interfacial shear in shock-induced intermetallic reactions. in: pp. 327-330. Available at: http://dx.doi.org/10.1063/1.3686285.
Showing 50 of 169 total publications in KAR. [See all in KAR]