Measures of Investment Risk

Financial Mathematics Clinic

SLAS – University of Kent
1 Introduction

2 Glossary

3 Motivation

4 Measures of investment risk
1 Introduction

2 Glossary

3 Motivation

4 Measures of investment risk
Introduction

These slides are (mainly) aimed to

- Undergraduate students.
- Postgraduate students doing Financial Mathematics for the first time.
Introduction

These slides are (mainly) aimed to

- Undergraduate students.
- Postgraduate students doing Financial Mathematics for the first time.

Objective

- Learn some ways to measure the risk of different investments when we don’t know the whole distribution of the returns.
1 Introduction

2 Glossary

3 Motivation

4 Measures of investment risk
• **Return.** The return of an asset or investment is the percentage increase of its market value over a particular period of time.

• **Random variable.** Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space and consider the measurable space \((\mathbb{R}, \mathcal{B}(\mathbb{R}))\) and \(X : \Omega \rightarrow \mathbb{R}\) be a measurable function. Then \(X\) is called a random variable.

• **Downside risk.** It can be thought as the potential loss derived from a fall in the price of an asset (or the value of a security).
1. Introduction

2. Glossary

3. Motivation

4. Measures of investment risk
If we are to choose from different investments, how do we know which one is the best?
If we are to choose from different investments, how do we know which one is the best?

- It totally depends on the person doing the investment, for example,
If we are to choose from different investments, how do we know which one is the best?

- It totally depends on the person doing the investment, for example,
 - One could choose the one with the largest return.
If we are to choose from different investments, how do we know which one is the best?

- It totally depends on the person doing the investment, for example,
 - One could choose the one with the largest return.
 - One could choose the safest one.
Motivation

If we are to choose from different investments, how do we know which one is the best?

- It totally depends on the person doing the investment, for example,
 - One could choose the one with the largest return.
 - One could choose the safest one.

- One way to do it is through the underlying risk of each investment.
If we are to choose from different investments, how do we know which one is the best?

- It totally depends on the person doing the investment, for example,
 - One could choose the one with the largest return.
 - One could choose the safest one.

- One way to do it is through the underlying risk of each investment.

- Hence we need methods to measure it.

- Hereafter, we let X be the random variable associated to the return.
4 Measures of investment risk
One of the most commonly used measurements of risk, is given by the variance of X, i.e.,

$$\text{Var}(X) = \begin{cases} \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx & \text{if } X \text{ is continuous} \\ \sum_{i} (x_i - \mu)^2 p_i & \text{if } X \text{ is discrete} \end{cases}$$

It measures the variability. It is also common to use the standard deviation

$$\text{SD}(X) = \sqrt{\text{Var}(X)}.$$
Variance of return

One of the most commonly used measurements of risk, is given by the variance of X, i.e.,

$$\text{Var}(X) = \begin{cases}
\int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx & \text{if } X \text{ is continuous} \\
\sum_i (x_i - \mu)^2 p_i & \text{if } X \text{ is discrete}
\end{cases}$$

It measures the variability.
One of the most commonly used measurements of risk, is given by the variance of X, i.e.,

$$\text{Var}(X) = \begin{cases}
\int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx & \text{if } X \text{ is continuous} \\
\sum_i (x_i - \mu)^2 p_i & \text{if } X \text{ is discrete}
\end{cases}$$

It measures the variability.

It is also common to use the standard deviation

$$\text{SD}(X) = \sqrt{\text{Var}(X)}.$$
The semi-variance of return (SV) is defined as:

\[
\text{Var}(X) = \begin{cases}
\int_{-\infty}^{\mu} (x - \mu)^2 f(x) \, dx & \text{if } X \text{ is continuous} \\
\sum_{x_i \leq \mu} (x_i - \mu)^2 p_i & \text{if } X \text{ is discrete}
\end{cases}
\]
The semi-variance of return (SV) is defined as:

\[
\text{Var}(X) = \begin{cases}
\int_{-\infty}^{\mu} (x - \mu)^2 f(x) \, dx & \text{if } X \text{ is continuous} \\
\sum_{x_i \leq \mu} (x_i - \mu)^2 p_i & \text{if } X \text{ is discrete}
\end{cases}
\]

- Used to measure the \textit{downside risk}.

Semi-variance of return
The semi-variance of return (SV) is defined as:

\[
\text{Var}(X) = \begin{cases}
\int_{-\infty}^{\mu} (x - \mu)^2 f(x) \, dx & \text{if } X \text{ is continuous} \\
\sum_{x_i \leq \mu} (x_i - \mu)^2 p_i & \text{if } X \text{ is discrete}
\end{cases}
\]

- Used to measure the \textit{downside risk}.

Value at Risk (VaR)

- It estimates the potential loss on a portfolio over a given future time period \(T \) i.e., \((\text{in a bad period, how much could we loose?})\).

\[
\text{VaR}(X; q) = -L \quad \text{where} \quad P(X < L) = q
\]

In other words, with probability \(q \) we will not lose more than \(L \) in time \(T \).

Common values for \(q \) are 0.05, 0.01. If we know the distribution it can be obtained directly, otherwise...

We can estimate it using simulation techniques or historical data.
Value at Risk (VaR)

- It estimates the potential loss on a portfolio over a given future time period \(T \) i.e., \textit{(in a bad period, how much could we lose?)}.
- It is defined as the largest number \(L \) s.t. the probability that the loss on the portfolio is greater than \(\text{VaR} \) is \(q \), i.e.

\[
\text{VaR}(X; q) = -L \quad \text{where} \quad \mathbb{P}(X < L) = q
\]
Value at risk (VaR)

- It estimates the potential loss on a portfolio over a given future time period T i.e., \textit{(in a bad period, how much could we lose?)�.}
- It is defined as the largest number L s.t. the probability that the loss on the portfolio is greater than VaR is q, i.e.

$$VaR(X; q) = -L \quad \text{ where } \quad \mathbb{P}(X < L) = q$$

- In other words. With probability q we will not loose more than L in time T.

Value at risk (VaR)

- It estimates the potential loss on a portfolio over a given future time period T i.e., *(in a bad period, how much could we lose?)*.
- It is defined as the largest number L s.t. the probability that the loss on the portfolio is greater than VaR is q, i.e.

$$VaR(X; q) = -L \quad \text{where} \quad \mathbb{P}(X < L) = q$$

- In other words. With probability q we will not loose more than L in time T.
- Common values for q are .05, .01.
Value at risk (VaR)

- It estimates the potential loss on a portfolio over a given future time period T i.e., *(in a bad period, how much could we lose?)*.

- It is defined as the largest number L s.t. the probability that the loss on the portfolio is greater than VaR is q, i.e.

 $VaR(X; q) = -L \quad \text{ where } \quad P(X < L) = q$

- In other words. With probability q we will not loose more than L in time T.

- Common values for q are .05, .01.

- If we know the distribution it can be obtained directly, otherwise...
Value at risk (\textit{VaR})

- It estimates the potential loss on a portfolio over a given future time period T i.e., \textit{(in a bad period, how much could we lose?)}.
- It is defined as the largest number L s.t. the probability that the loss on the portfolio is greater than \textit{VaR} is q, i.e.

 \[
 \text{VaR}(X; q) = -L \quad \text{where} \quad \mathbb{P}(X < L) = q
 \]

- In other words. With probability q we will not loose more than L in time T.
- Common values for q are .05, .01.
- If we know the distribution it can be obtained directly, otherwise...
- We can estimate it using simulation techniques or historical data.
Tail value at risk (Tail VaR)

- VaR answers: how bad things can get?
Tail value at risk (Tail VaR)

- VaR answers: how bad things can get?
- We could also ask: if things go bad, how bad can they get?
Tail value at risk (Tail VaR)

- VaR answers: how bad things can get?
- We could also ask: if things go bad, how bad can they get?
- The tail VaR answer this and mathematically is defined as

\[TVaR(X; q) = \mathbb{E}(-X | X \leq \text{VaR}(X; q)) \]
Tail value at risk (Tail VaR)

- VaR answers: how bad things can get?
- We could also ask: if things go bad, how bad can they get?
- The tail VaR answer this and mathematically is defined as

\[TVaR(X; q) = \mathbb{E}(-X | X \leq \text{VaR}(X; q)) \]

- It quantifies the expected value of the loss given that it has fallen below the VaR.
Exercise

Suppose that the annual return X for a particular stock has the following pdf

$$f(x) = 0.00075(100 - (x - 5)^2) \quad -5 \leq x \leq 15$$

Obtain

- Expected return μ (ans. 5).
- Variance of return (ans. 20).
- Semi-variance of return (ans. 10).
- VaR over 1 year with 95% confidence for a portfolio consisting of £100 millions invested in the stock (ans. 2.293).
- TVaR with 95% confidence (ans. 2.3392).
To book a maths/stats appointment...

www.kent.ac.uk/learning
QUESTIONS?