Basic Annuities

Financial Mathematics Clinic

SLAS – University of Kent
1 INTRODUCTION

2 GLOSSARY

3 MOTIVATION

4 BASIC ANNUITIES
These slides are (mainly) aimed to

- Undergraduate students.
- Postgraduate students doing Financial Mathematics for the first time.
Introduction

These slides are (mainly) aimed to

- Undergraduate students.
- Postgraduate students doing Financial Mathematics for the first time.

Objective

- Understand the basic mathematical principles of basic annuities.
Glossary

- *Discount factor*. Given a rate of interest \(i \), the discount factor is given by \(v = (1 + i)^{-1} \).

- *Geometric series*. The sum of an infinite number of terms that have a constant ratio \(r \) between successive terms. If \(|r| < 1\) then the series converges, i.e.

\[
\sum_{k=0}^{\infty} r^k = \frac{1}{1 - r}
\]
1 Introduction

2 Glossary

3 Motivation

4 Basic Annuities
Motivation

An annuity can be broadly defined as a series of payments made at equal intervals of time.
Motivation

- An *annuity* can be broadly defined as a series of payments made at equal intervals of time.
- Annuities are everywhere e.g. house rents, mortgage payments and insurance for retirement.
An annuity can be broadly defined as a series of payments made at equal intervals of time.

Annuities are everywhere e.g. house rents, mortgage payments and insurance for retirement.

Originally it was restricted to annual payments, but is has been extended to other intervals.
Motivation

- An *annuity* can be broadly defined as a series of payments made at equal intervals of time.
- Annuities are everywhere e.g. house rents, mortgage payments and insurance for retirement.
- Originally it was restricted to annual payments, but is has been extended to other intervals.
- Payments can be "certain" (mortgage and rent) or not (pension plans).
1 Introduction

2 Glossary

3 Motivation

4 Basic Annuities
An annuity-immediate is the one that pays level payments at the end of \(n \) periods, with a constant rate of interest in each of them.
Annuity-Immediate

- An annuity-immediate is the one that pays level payments at the end of n periods, with a constant rate of interest in each of them.

- There are two important equations of value.
The present value (using the discount factor v) is

$$a_{\overline{n}|} = v^1 + v^2 + \cdots + v^n \quad \text{(geometric progression)}$$

$$= \frac{v - v^{n+1}}{1 - v} \quad \text{(some algebra)}$$

$$= \frac{1 - v^n}{i}. $$
Annuity-Immediate (Cont.)

- The present value (using the discount factor \(v \)) is

\[
\bar{a}_n = v^1 + v^2 + \cdots + v^n \quad \text{(geometric progression)}
\]

\[
= \frac{v - v^{n+1}}{1 - v} \quad \text{(some algebra)}
\]

\[
= \frac{1 - v^n}{i}.
\]

- The accumulated value is

\[
\bar{s}_n = \bar{a}_n (1 + i)^n
\]

\[
= \frac{(1 + i)^n - 1}{i}
\]
An annuity-due is the one that pays level payments at the beginning of \(n \) periods, with a constant rate of interest in each of them.
An annuity-due is the one that pays level payments at the beginning of n periods, with a constant rate of interest in each of them.

There are two important equations of value.
The present value (using the discount factor \(v \)) is

\[
\ddot{a}_{\bar{n}} = 1 + v^1 + \cdots + v^{n-1}
\]

(geometric progression)

\[
= \frac{1 - v^n}{1 - v}
\]

(some algebra)

\[
= \frac{1 - v^n}{iv}.
\]
The present value (using the discount factor v) is

$$\ddot{a}_{\overline{n}|} = 1 + v^1 + \cdots + v^{n-1} \quad \text{(geometric progression)}$$

$$= \frac{1 - v^n}{1 - v} \quad \text{(some algebra)}$$

$$= \frac{1 - v^n}{iv}.$$

The accumulated value is

$$\ddot{s}_{\overline{n}|} = \ddot{a}_{\overline{n}|}(1 + i)^n$$

$$= \frac{(1 + i)^n - 1}{iv}.$$
A perpetuity is an annuity paying an infinite number of level payments, e.g. perpetual bonds.
Perpetuity

- A perpetuity is an annuity paying an infinite number of level payments, e.g. perpetual bonds.
- There is no accumulated value.
Perpetuity

- A perpetuity is an annuity paying an infinite number of level payments, e.g. perpetual bonds.
- There is no accumulated value.
- For immediate perpetuities,

\[a_{\infty} = v + v^2 + v^3 + \cdots \]

(geometric series)

\[= \frac{v}{1 - v} \]

\[= \frac{1}{i} \]
A perpetuity is an annuity paying an infinite number of level payments, e.g. perpetual bonds.

There is no accumulated value.

For immediate perpetuities,

\[a_\infty = v + v^2 + v^3 + \cdots \quad \text{(geometric series)} \]

\[= \frac{v}{1 - v} \]

\[= \frac{1}{i} \]

For due perpetuities,

\[\ddot{a}_\infty = 1 + v + v^2 \cdots = \frac{1}{v} \ a_\infty = \frac{1}{i}v \]
Immediate and due annuities are just the top of the iceberg.
Immediate and due annuities are just the top of the iceberg.

In practice there are much more general annuities, e.g. deferred annuities, annuities with geometrically or arithmetically increasing (decreasing) payments, annuities with different payment and interest periods...
Immediate and due annuities are just the top of the iceberg.

In practice there are much more general annuities, e.g. *deferred annuities*, annuities with geometrically or arithmetically *increasing* (decreasing) payments, annuities with different payment and interest periods...

It is impossible to memorise all the formulas!
Immediate and due annuities are just the top of the iceberg.

In practice there are much more general annuities, e.g. deferred annuities, annuities with geometrically or arithmetically increasing (decreasing) payments, annuities with different payment and interest periods...

It is impossible to memorise all the formulas!

But... for each particular case, the basic principles are useful, i.e. draw a timeline, identify the periods and use equations of value.
To book a maths/stats appointment...

www.kent.ac.uk/learning
QUESTIONS?