Statistics Notebook

September 26, 2023

The statistics problem solving cycle

Data are numbers in context and the goal of statistics is to get information from those data usually through problem solving. A procedure or paradigm for statistical problem solving and scientific enquiry is illustrated in the diagram. The dotted line means that, following discussion, the problem may need to be re-formulated and at least more than one iteration completed.

Descriptive Statistics

Given a sample of n observations $x_{1}, x_{2}, \ldots, x_{n}$ we define the sample mean to be

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

and the corrected sum of squares (measures the total variability in the sample from the mean) by

$$
S_{x x}=\sum\left(x_{i}-\bar{x}\right)=\sum x_{i}^{2}-n \bar{x}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}
$$

$\frac{S_{x x}}{n}$ is sometimes called the mean square deviation. An unbiased estimator of the population variance, σ^{2}, is $s^{2}=\frac{S_{x x}}{(n-1)}$. The sample standard deviation is s. In calculating s^{2}, the divisor $(n-1)$ is called the degrees of freedom (df). Note that s is also sometimes written $\hat{\sigma}$.
If the sample mean data are ordered from the smallest to largest then the:
minimum (Min) is the smallest value;
lower quartile (LQ) is the $\frac{1}{4}(n+1)$-th value;
median (Med) is the middle [or the $\frac{1}{2}(n+1)$-th] value;
upper quartile (UQ) is the $\frac{3}{4}(n+1)$-th value;
maximum (Max) is the largest value.
These five values constitute a five-number summary of the data. They can be represented diagrammatically by a box-and-whisker plot, commonly called boxplot.

Grouped Frequency Data

If the data are given in the form of a grouped frequency distribution where we have f_{i} observations in an interval whose mid-point is x_{i} then, if $\sum f_{i}=n$

$$
\bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{\sum f_{i} x_{i}}{n}
$$

$$
S_{x x}=\sum f_{i}\left(x_{i}-\bar{x}\right)^{2}=\sum f_{i} x_{i}^{2}-\frac{\left(\sum f_{i} x_{i}\right)^{2}}{n}
$$

Events \& probabilities

The intersection of two events A and B is $A \cap B$. The union of A and B is $A \cup B$. A and B are mutually exclusive if they cannot both occur, denoted $A \cap B=\varnothing$, where \emptyset is called the null event. For an event A, $0 \leq P(A) \leq 1$. For two events A and B

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

If A and B are mutually exclusive then,

$$
P(A \cup B)=P(A)+P(B)
$$

Equally likely outcomes If a complete set of n elementary outcomes are all equally likely to occur, then the probability of each elementary outcomes is $\frac{1}{n}$. If an event A consists of m of these n elements then $P(A)=\frac{m}{n}$.

Independent events A, B are independent if and only if $P(A \cap B)=P(A) P(B)$.
Conditional Probability of A given B :

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad \text { if } \quad P(B) \neq 0
$$

Bayes' Theorem: $P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}$
Theorem of Total Probability The k events $B_{1}, B_{2}, \ldots, B_{k}$ form a partition of the sample space S, if $B_{1} \cup$ $B_{2} \cup \ldots \cup B_{k}=S$ and no two of the B_{i} 's can occur together. Then $P(A)=\sum P\left(A \mid B_{i}\right) P\left(B_{i}\right)$. In this case Bayes' Theorem generalizes to

$$
P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{\sum_{j} P\left(A \mid B_{j}\right) P\left(B_{j}\right)}, \quad i=1,2, \ldots, k
$$

If B^{\prime} is the complement of the event $B, P\left(B^{\prime}\right)=1-P(B)$ and $P(A)=P(A \mid B) P(B)+P\left(A \mid B^{\prime}\right) P\left(B^{\prime}\right)$ is a special case of the theorem of the total probability. The complement of B is commonly denoted \bar{B}.

A hypothesis test involves testing a claim, or null hypothesis H_{0}, about a parameter against an alternative, H_{1}. A decision to reject H_{0}, or not reject H_{0} uses sample evidence to calculate a test statistic which is judged again a critical value. H_{0} is maintained unless it is made untenable by sample evidence. Rejecting H_{0}, when we should not is a Type I error. The probability (we are prepared to accept) of making a Type I error is called significance level a and yields the critical value. The smallest a at which we can just reject H_{0} is the p-value of the test. Not rejecting H_{0} when we should is a Type II error, with probability b. The power of a hypothesis test is $1-b$. An interval estimate for a parameter is a calculated range within which it is deemed likely to fall. Given a, the set of intervals from infinitely repeated random samples of size n will contain the parameter $(100-a) \%$ of the time: each interval is $(100-a) \%$ confidence interval.

One sample Hypothesis Testing

1. For $X \sim N\left(\mu, \sigma^{2}\right), \sigma^{2}$ known; random sample evidence \bar{x} and n. Null hypothesis, $H_{0}: \mu=\mu_{0} ; 2$-sided alternative $H_{1}: \mu \neq \mu_{0}$. Test statistic $z_{\text {calc }}=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}} \sim N(0,1)$. Reject the H_{0} (at the a level) if $\left|z_{c a l c}\right| \geq z_{a / 2}$, the critical value of z.
2. For $X \sim N\left(\mu, \sigma^{2}\right)$, σ^{2} unknown; random sample evidence \bar{x}, s and n. Null hypothesis, $H_{0}: \mu=\mu_{0} ; 2$-sided alternative $H_{1}: \mu \neq \mu_{0}$. Test statistic $t_{\text {calc }}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \sim t_{(n-1)}$, the t-distribution with $(n-1)$ degrees of freedom. For $n>30$ and if X has any distribution, $t \sim N(0,1)$. Reject H_{0} if $\left|t_{c a l c}\right| \geq t_{a / 2}$ the critical value of t with $(n-1)$ df.
3. For $X \sim N\left(\mu, \sigma^{2}\right), \sigma^{2}$ unknown; random sample evidence s and n. Null hypothesis $H_{0}: \sigma^{2}=\sigma_{0}^{2}$; alternative $H_{1}: \sigma^{2}>\sigma_{0}^{2}$. Test statistic $x_{c a l c}^{2}=(n-1) s^{2} / \sigma_{0}^{2} \sim x_{n-1}^{2}$. Reject H_{0} if $x_{c a l c}^{2}>x_{a}^{2}$, the critical value of x^{2} with $(n-1)$ df. In each case the p-value is the tail area outside the calculated statistic.

Two sample hypothesis test

For $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right), \sigma_{1}^{2}, \sigma_{2}^{2}$ unknown; random sample evidence $\bar{x}_{1}, \bar{x}_{2}, s_{1}^{2}, s_{2}^{2}, n_{1}$ and n_{2}.

1. Null hypothesis, $H_{0}: \mu_{1}-\mu_{2}=c ; 2$-sided alternative $H_{1}: \mu_{1}-\mu_{2} \neq c$. Test statistic $t_{\text {calc }}=\frac{\left(\overline{\left.x_{1}-\overline{x_{2}}-c\right)}\right.}{s \sqrt{1 / n_{1}+1 / n_{2}}} \sim$ $t_{\left(n_{1}+n_{2}-2\right)}$ and $s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}+n_{2}-2\right)}$, assuming $\sigma_{1}^{2}=\sigma_{2}^{2}$. Reject H_{0} if $\left|t_{c a l c}\right| \geq t_{a / 2}$, the critical value of t with $\left(n_{1}+n_{2}-2\right) \mathrm{df}$.
2. Null hypothesis $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$; alternative $H_{1}: \sigma_{1}^{2}>\sigma_{2}^{2}$. Test statistic $F_{\text {calc }}=\frac{\left(n_{1}-1\right) s_{1}^{2}}{\left(n_{2}-1\right) s_{2}^{2}} \sim F_{n_{1}-1, n_{2}-1}$. Reject H_{0} if $F_{\text {calc }}>F_{a}$ the critical value of F with $n_{1}-1$ and $n_{2}-1 \mathrm{df}$.
Confidence interval for a population mean- σ^{2} unknown
If X has mean μ and variance σ^{2}, with $n>30$ an approximate $(100-a) \%$ confidence interval for μ is $\bar{x}-\frac{t_{a / 2} s}{\sqrt{n}}$ to $\bar{x}+\frac{t_{a / 2} s}{\sqrt{n}}$. If $X \sim N\left(\mu, \sigma^{2}\right)$ the interval is exact for all n.

Name/parameters	Conditions/application	pdf/pmf	Mean	Variance	mgf	Notes
Binomial $\operatorname{Bin}(n, p)$ Positive integer n Probability $p, 0 \leq p \leq 1$	n independent success/fail trials each with probability p of success. $X=$ number of successes.	$\begin{aligned} & P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \\ & x=0,1, \ldots, n \end{aligned}$	$n p$	$n p(1-p)$	$\left(1-p+p \mathrm{e}^{\prime}\right)^{n}$	$\begin{aligned} & X \sim \operatorname{Bin}(n, p) \\ & \quad \Rightarrow n-X \sim \operatorname{Bin}(n, 1-p) \end{aligned}$
Geometric $\operatorname{Geom}(p)$ Probability $p, 0 \leq p \leq 1$	Repeated independent success/fail trials each with probability p of success. $X=$ number of trials up to and including the first success.	$\begin{aligned} & P(X=x)=(1-p)^{x-1} p \\ & x=1,2, \ldots \end{aligned}$	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$	$\frac{p e^{l}}{1-(1-p) \mathrm{e}^{l}}$	Has the "lack of memory" property $P(X>a+b \mid X>b)=P(X>a)$
Poisson $\mathrm{Po}(\lambda)$ λ a positive number	Events occur randomly at a constant rate. $X=$ number of occurrences in some interval. λ is the expected number of occurrences	$\begin{aligned} & P(X=x)=\mathrm{e}^{-\lambda} \frac{\lambda^{x}}{x!} \\ & x=0,1,2, \ldots \end{aligned}$	λ	λ	$\exp \left(\lambda\left(\mathrm{e}^{t}-1\right)\right)$	Useful as approximation to $\operatorname{Bin}(n, p)$ if n is large and p is small
Normal $N\left(\mu, \sigma^{2}\right)$ μ, σ both real; $\sigma>0$	A widely used distribution for symmetrically distributed random variables with mean μ and standard deviation σ.	$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$ all real x	μ	σ^{2}	$\exp \left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right)$	Can approximate Binomial, Poisson Pascal and Gamma distributions (see Central Limit Theorem)
Exponential Expon(θ)	Events are occurring at rate θ per unit time. $X=$ time to first occurrence.	$\begin{aligned} & f(x)=\theta \exp (-\theta x) \\ & x>0 \end{aligned}$	$\frac{1}{\theta}$	$\frac{1}{\theta^{2}}$	$\frac{\theta}{\theta-t}, t<\theta$	Has the "lack of memory"property $P(X>a+b \mid X>b)=P(X>a)$
Negative-binomial or Pascal Pasc (r, p) Positive integer n Probability $p, 0 \leq p \leq 1$	Repeated independent success/fail trials each with probability p of success. $X=$ number of trials up to and including the r-th success.	$\begin{aligned} & P(X=x)=\binom{x-1}{r-1} p^{r}(1-p)^{x-r} \\ & x=r, r+1, r+2, \ldots \end{aligned}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^{2}}$	$\left(\frac{p c^{\prime}}{1-(1-p) \mathrm{e}^{t}}\right)^{r}$	$\operatorname{Pasc}(1, p) \equiv \operatorname{Geom}(p)$
Gamma $\mathrm{Ga}(\alpha, \beta)$ $\alpha, \beta>0$	Generalization of the exponential distribution; if α is an integer it represents the waiting time to the α-th occurrence of a random event where β is the expected number of events.	$\begin{aligned} & \int(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \mathrm{e}^{-\phi x} \\ & x>0 \end{aligned}$	$\stackrel{\frac{\alpha}{\beta}}{\alpha>1}$	$\frac{\alpha}{\beta^{2}}$	$\left(\frac{\beta}{\beta-t}\right)^{a}, t<\beta$	$\operatorname{Ga}(1, \lambda) \equiv \operatorname{Expon}(\lambda)$ If ν is an integer, $\operatorname{Ga}(\nu / 2,2)$ is χ_{ν}^{2}, the Chi-squared distribution with $\nu \mathrm{df}$.

Statistics \& Sampling Distributions Populations and samples

A (statistical) population is the complete set of all possible measurements or values, corresponding to the entire collection of units, for which inferences are to be made from taking a sample- the set of measurements or values that are actually collected from a population.
Simple random sample: every item in the population is equally likely to be in the sample, independently of which other members of the population are chosen.
Parameter: a quantity that describes an aspect of the population, eg. the population mean μ of variance σ^{2}.
Statistic: a quantity calculated from the sample, eg. the sample mean \bar{x}, or variance s^{2}.
Sampling distributions: the value of a statistic will in general vary from sample to sample, in which case it will have its own probability distribution, called sampling distribution. A statistic is used to estimate the value of a parameter θ in a distribution is called an estimator (the random variable) or an estimate (the value). If $\hat{\theta}$ is an estimator of θ, the mean of its sampling distribution, $E[\hat{\theta}]$, is called the sampling mean. The variance, $\operatorname{Var}(\hat{\theta})$, is called the sampling variance.
$\sqrt{\operatorname{Var}(\hat{\theta})}$ is called the standard error of $\hat{\theta}$. If $E[\hat{\theta}]=\theta$ then $\hat{\theta}$ is an unbiased estimator of θ, e.g. \bar{X} is an unbiased estimator of μ and has sampling variance σ^{2} / n where $\operatorname{Var}\left(X_{i}\right)=\sigma^{2},(i=1,2, \ldots, n)$.

Corrected sum of squares

$$
S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-n \bar{x}^{2}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}
$$

has expectation $(n-1) \sigma^{2}$ so that dividing $S_{x x}$ by $(n-1)$ will give an unbiased estimator of σ^{2}, denoted s^{2}.

Normal and Chi-square distributions

If $X_{1}, X_{2}, \ldots, X_{n}$ are independently and identically $\sim N\left(\mu, \sigma^{2}\right)$ then $\sum\left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim x_{n}^{2}$, a Chi-square distribution with n degrees of freedom.
Also, $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ independently of $\frac{S_{x x}}{\sigma^{2}} \sim x_{(n-1)}^{2}$.
Simple Linear Regression To fit the straight line $y=\alpha+\beta x$ to the data $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$ by the method
of least squares the estimates of slope, β, and intercept, α, are given by

$$
b=\frac{\sum x_{i} y_{i}-\frac{1}{n}\left(\sum x_{i} \sum y_{i}\right)}{\sum x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}}=\frac{S_{x y}}{S_{x x}}, \quad a=\bar{y}-b \bar{x}
$$

If we assume that the x_{i} are known and the the y_{i} have normal distribution with means $\alpha+\beta x_{i}$, and constant variance σ^{2}, written as $y_{i} \sim N\left(\alpha+\beta x_{i}, \sigma^{2}\right)$, then if x_{0} is a fixed value

$$
\begin{aligned}
& b \sim N\left(\beta, \frac{\sigma^{2}}{S_{x x}}\right) \\
& a \sim N\left(\alpha, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right)\right. \\
& a+b x_{0} \sim N\left(\alpha+\beta x_{0}, \sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)\right.
\end{aligned}
$$

A common alternative is to use $\hat{\alpha}$ for a and $\hat{\beta}$ for b.

Correlation

Given observations $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$ on two random variables X and Y the Pearson (product moment) correlation between them is given by

$$
r=\frac{S_{x y}}{\sqrt{S_{x x} S_{x y}}}=\frac{\sum x_{i} y_{i}-\frac{1}{n}\left(\sum x_{i} \sum y_{i}\right)}{\sqrt{\sum x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}} \sqrt{\sum y_{i}^{2}-\frac{1}{n}\left(\sum y_{i}\right)^{2}}}
$$

We use r to estimate the correlation, ρ, between X and Y. For large n, r is approximately, $\sim N\left(\rho, \frac{1}{n-2}\right)$. The (Spearman) Rank Correlation Coefficient is given by

$$
r_{S}=1-\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)}
$$

where d_{i} is the difference between the ranks of $\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$. If ranks are tied, see Kotz, S. and Johnson, L. (1988) Encyclopedia of Statistical Sciences.

Time Series

A time series $Y_{t},(t=1,2, \ldots, n)$ is a set of n observations recorded through time t , (e.g. days, weeks, months). The arithmetic mean of blocks k successive values

$$
\frac{Y_{1}+Y_{2}+\ldots+Y_{k}}{k}, \frac{Y_{2}+Y_{3}+\ldots+Y_{k+1}}{k}, \ldots
$$

is a simple model average of order k, itself a time series which is smoother than Y_{t} and can be used to track, or estimate, the underlying level, μ_{t}, of Y_{t}. If $0<a<1$ an exponentially weighted moving average (EWMA) at time t uses a discounted weighted average of current and past data to estimate μ_{t} with

$$
\hat{\mu_{t}}=a Y_{t}+a(1-a) Y_{t-1}+a(1-a)^{2} Y_{t-2}+\ldots
$$

This is equivalent to the recurrence relation

$$
\hat{\mu_{t}}=a Y_{t}+(1-a) \hat{\mu_{t-1}}
$$

Moving averages are often plotted on the same graph as Y_{t}. If Y_{t} additionally contains trend, R_{t}, the rate of change of data per unit time, and $\mu_{t}=\mu_{t-1}+R_{t-1}$, then the recurrence relation is

$$
\hat{\mu}_{t}=a Y_{t}+(1-a)\left(\hat{\mu}_{t-1}+\hat{R}_{t-1}\right)
$$

If $0<b<1$ the trend smoothing equation is

$$
\hat{R}_{t}=b\left(\hat{\mu}_{t}-\hat{\mu}_{t-1}\right)+(1-b) \hat{R}_{t-1}
$$

known as Holt's Linear Exponential Smoothing. If Y_{t} also contains seasonality, S_{t}, a smoothing constant $\gamma,(0<\gamma<$ 1), is used in seasonal smoothing equation, $\hat{S}_{t}=\gamma Y_{t} / \hat{\mu}_{t}+(1-\gamma) \hat{S}_{t-k}$, assuming periodicity is k, with multiplicative seasonality. For monthly data $k=12$.

Forecasting from time n (now) to time $n+h,(h=1,2, \ldots)$ Level only, $\hat{Y}_{n+h}=\hat{\mu}_{n}$ the latest EWMA.
Level and constant trend, $\hat{Y}_{n+h}=a+b(n+h)$, the simple linear regression trend line of Y_{t} again t.
Level and changing trend, $\hat{Y}_{n+h}=\hat{\mu}_{n}+h \hat{R}_{n}$.
Level, changing trend and seasonality $\hat{Y}_{n+h}=\hat{\mu}+h \hat{R}_{n}$, where $\hat{\mu}_{n}=a Y_{n} / \hat{S}_{n-12}+(1-a)\left(\hat{\mu}_{n-1}+\hat{R}_{n-1}\right)$.

Permutations and combinations

The number of ways selecting r objects out of a total of n, where the order of selection is important, is the number of permutations: ${ }^{n} \mathrm{P}_{r}=\frac{n!}{(n-r)!}$. The number of ways in which r objects can be selected from n when the order of selection is not important is the number of combinations: ${ }^{n} \mathrm{C}_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!} \cdot{ }^{n} \mathrm{C}_{r}$ must equal to 1 , so $0!=1$ and ${ }^{n} \mathrm{C}_{0}=1 ;{ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{n-r}$. Also,

$$
\begin{gathered}
{ }^{n} \mathrm{C}_{0}+{ }^{n} \mathrm{C}_{1}+\ldots+{ }^{n} \mathrm{C}_{n-1}+{ }^{n} \mathrm{C}_{n}=2^{n} \\
{ }^{n+1} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{r}+{ }^{n} \mathrm{C}_{r-1}
\end{gathered}
$$

Random variables

Data arise from observations on variables that are measured on different scales. Anominal scale is used for named categories (e.g. race, gender) and ordinal scale for data that can be ranked (e.g. attitudes, position)- no arithmetic are valid with either. Interval scale measurements can be added and subtracted only (e.g. temperature), but with ratio scale measurements (e.g. age, weight) multiplication and division can be used meaningfully as well. Generally, random variables are either discrete or continuous. Note: in reality, all data are discrete because the accuracy of measuring is always limited.
A discrete random variable X can take one of the values x_{1}, x_{2}, \ldots, , the probabilities $p_{i}=P\left(X=x_{i}\right)$ must satisfy $p_{i} \geq 0$ and $p_{1}+p_{2}+\ldots=1$. The pairs $\left(x_{i}, p_{i}\right)$ form the probability mass function (pmf) of X.
A continuous random variable X takes values x from a continuous set of possible values. It has probability density function (pdf) $f(x)$ that satisfies $f(x) \geq 0$ and $\int f(x) d x=1$ with $P(a \leq x \leq b)=\int_{a}^{b} f(x) d x$.

Expected values

The expected value of a function $H(X)$ of a random variable X is defined as

$$
\left\{\begin{array}{c}
\sum H\left(x_{i}\right) P\left(X=x_{i}\right), \quad X \text { discrete } \\
\int H(x) f(x) d x, \quad X \text { continuous }
\end{array}\right.
$$

Expectation is linear in that the expectation of a linear combination of functions is the same linear combination of expectations. For example,

$$
E\left[X^{2}+\log X+1\right]=E\left[X^{2}\right]+E[\log X]+1
$$

but

$$
E[\log X] \neq \log E[X] \text { and } E[1 / X] \neq 1 / E[X]
$$

Variance

The variance of a random variable is defined as

$$
\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-\mu^{2}
$$

Properties:

$\operatorname{Var}(X) \geq 0$ and is equal to 0 only if X is constant
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$, where a and b are constants.

Moment generating functions

The moment generating function (mgf) of a random variable is defined as

$$
M_{X}(t)=E[\exp (t X)] \text { if this exists }
$$

$E\left[X^{k}\right]$ can be evaluated as the:
(i) coefficient of $\frac{t^{r}}{r!}$ is the power of expansion of $M_{X}(t)$
(ii) r-th derivative of $M_{X}(t)$ evaluated at $t=0$

Measures of location

The mean or expectation of the random variable X is $E[X]$, the long-run average of realisations of X. The mode is where the pmf or pdf achieves a maximum (if it does so). For a random variable, X, the median is such that $P(X \geq$ median $)=1 / 2$, so that 50% of values of X occur above and 50% below the median.

Percentiles

x_{p} is the $100-p$-th percentile of a random variable X if $P\left(X \leq x_{p}\right)=p$. For example, the 5 th percentile, $x_{0.05}$ has 5% of the values smaller than or equal to it. The median is the 50 -th percentile, the llower quartile is the 25 th percentile, the upper quartile is the 75 th percentile.

Measures of dispersion

The inner-quartile range is defined to be the difference between the upper and lower quartiles, $U Q-L Q$. The standard deviation is defined as the square root of the variance, $\sigma=\sqrt{\operatorname{Var}(X)}$, and is in the same units as the random variable X.

Cumulative Distribution Function

This is defined as a function of any real value t by

$$
F(t)=P(X \leq t)
$$

If X is a continuous random variable, F is a continuous function of t; if X is discrete, then F is a step function.

The Central Limit Theorem

If a random sample of size n is taken from any distribution with mean μ and variance σ^{2}, the sampling distribution of the mean will approximately $\sim N\left(\mu, \sigma^{2} / n\right)$ where \sim means "is distributed as". The larger the n is, the better the approximation.

The standard normal and Student's t distribution If a random variable $X \sim N\left(\mu, \sigma^{2}\right), z=(X-\mu) \sigma \sim$

$N(0,1)$, the standard normal distribution. The t distribution with $(n-1)$ degrees of freedom is used in place of z for small samples size n from normal populations when σ^{2} is unknown. As n increases the distribution of t converges to $N(0,1)$. These distributions are used, e.g., for inference about means, differences between means and in regression.

Fisher's \mathbf{F} distribution

If $X_{1} \sim x_{\nu_{1}}^{2}$ and $X_{2} \sim x_{\nu_{2}}^{2}$ are independent random variables then

the F distribution with $\left(\nu_{1}, \nu_{2}\right)$ degrees of freedom. This distribution is used, for example, for inference about the ratio of two variances, in Analysis of Variance (ANOVA), and in simple and multiple linear regression.

