Integrable field theories with defects

Ed Corrigan

Department of Mathematical Sciences, Durham University
Classical and Quantum Integrable Models
University of Kent

July 2010

Contents

Integrable dynamical systems and field theory have a long history (over 100 years) - with many developments since 1968

Integrable field theory in the presence of boundaries (one boundary or two), or defects (shocks), is more recent.

The nurnose here is to aive (from a nersonal nersnective) a small collection of ideas and questions.

Contents

Integrable dynamical systems and field theory have a long history (over 100 years) - with many developments since 1968.

Integrable field theory in the presence of boundaries (one boundary or two), or defects (shocks), is more recent.

The nurnose here is to give (from a nersonal nersnective) a small collection of ideas and questions.

Contents

Integrable dynamical systems and field theory have a long history (over 100 years) - with many developments since 1968.

Integrable field theory in the presence of boundaries (one boundary or two), or defects (shocks), is more recent.

The purpose here is to give (from a personal perspective) a small collection of ideas and questions.

Contents

Integrable dynamical systems and field theory have a long history (over 100 years) - with many developments since 1968.

Integrable field theory in the presence of boundaries (one boundary or two), or defects (shocks), is more recent.
The purpose here is to give (from a personal perspective) a small collection of ideas and questions.

- Sine-Gordon field theory - a lightning review
- Bäcklund transformations and defects

Contents

Integrable dynamical systems and field theory have a long history (over 100 years) - with many developments since 1968.

Integrable field theory in the presence of boundaries (one boundary or two), or defects (shocks), is more recent.
The purpose here is to give (from a personal perspective) a small collection of ideas and questions.

- Sine-Gordon field theory - a lightning review
- Bäcklund transformations and defects

Contents

Integrable dynamical systems and field theory have a long history (over 100 years) - with many developments since 1968.

Integrable field theory in the presence of boundaries (one boundary or two), or defects (shocks), is more recent.
The purpose here is to give (from a personal perspective) a small collection of ideas and questions.

- Sine-Gordon field theory - a lightning review
- Bäcklund transformations and defects
- Solitons and defects

Defects in sine-Gordon quantum field theory

Contents

Integrable dynamical systems and field theory have a long history (over 100 years) - with many developments since 1968.

Integrable field theory in the presence of boundaries (one boundary or two), or defects (shocks), is more recent.
The purpose here is to give (from a personal perspective) a small collection of ideas and questions.

- Sine-Gordon field theory - a lightning review
- Bäcklund transformations and defects
- Solitons and defects
- Defects in sine-Gordon quantum field theory
references are not comprehensive.

Contents

Integrable dynamical systems and field theory have a long history (over 100 years) - with many developments since 1968.

Integrable field theory in the presence of boundaries (one boundary or two), or defects (shocks), is more recent.

The purpose here is to give (from a personal perspective) a small collection of ideas and questions.

- Sine-Gordon field theory - a lightning review
- Bäcklund transformations and defects
- Solitons and defects
- Defects in sine-Gordon quantum field theory

Contents

Integrable dynamical systems and field theory have a long history (over 100 years) - with many developments since 1968.

Integrable field theory in the presence of boundaries (one boundary or two), or defects (shocks), is more recent.

The purpose here is to give (from a personal perspective) a small collection of ideas and questions.

- Sine-Gordon field theory - a lightning review
- Bäcklund transformations and defects
- Solitons and defects
- Defects in sine-Gordon quantum field theory

Apology: references are not comprehensive.

The sine-Gordon field theory

From a physicist's perspective - began with Skyrme (1959-62).

c is a constant with the dimensions of velocity (usually set

to unity),
m is a constant with dimensions of inverse length ($\hbar m$ has
the dimensions of mass)

The sine-Gordon field theory

From a physicist's perspective - began with Skyrme (1959-62).

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=-\frac{m^{2}}{\beta} \sin \beta u .
$$

- c is a constant with the dimensions of velocity (usually set
to unity),
- m is a constant with dimensions of inverse length ($\hbar m$ has
the dimensions of mass);
- β sets the scale of the field $u:$ as $\beta \rightarrow 0, s-G \rightarrow$ linear.

The sine-Gordon field theory

From a physicist's perspective - began with Skyrme (1959-62).

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=-\frac{m^{2}}{\beta} \sin \beta u .
$$

- c is a constant with the dimensions of velocity (usually set to unity),
- m is a constant with dimensions of inverse length ($\hbar m$ has the dimensions of mass);
- β sets the scale of the field $u:$ as $\beta \rightarrow 0, \mathrm{~s}-\mathrm{G} \rightarrow$ linear.

The sine-Gordon field theory

From a physicist's perspective - began with Skyrme (1959-62).

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=-\frac{m^{2}}{\beta} \sin \beta u .
$$

- c is a constant with the dimensions of velocity (usually set to unity),
- m is a constant with dimensions of inverse length ($\hbar m$ has the dimensions of mass);
- β sets the scale of the field u : as $\beta \rightarrow 0, \mathrm{~s}-\mathrm{G} \rightarrow$ linear.

All these constants can be removed by scaling t, x and u,
though β in particular is important for quantization.

The sine-Gordon field theory

From a physicist's perspective - began with Skyrme (1959-62).

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=-\frac{m^{2}}{\beta} \sin \beta u .
$$

- c is a constant with the dimensions of velocity (usually set to unity),
- m is a constant with dimensions of inverse length ($\hbar m$ has the dimensions of mass);
- β sets the scale of the field u : as $\beta \rightarrow 0, \mathrm{~s}-\mathrm{G} \rightarrow$ linear.

All these constants can be removed by scaling t, x and u, though β in particular is important for quantization.

For the following reasons the sine-Gordon nonlinear wave equation provides a paradigm:

- it is (almost) the simplest (a single scalar field), relativistic, integrable nonlinear wave equation in two dimensions (one time, one space) (t, x);
- it is simple enough to allow direct computations in the classical or quantum domains;

For the following reasons the sine-Gordon nonlinear wave equation provides a paradigm:

- it is (almost) the simplest (a single scalar field), relativistic, integrable nonlinear wave equation in two dimensions (one time, one space) (t, x);
- it is simple enough to allow direct computations in the classical or quantum domains;
interesting phenomena

For the following reasons the sine-Gordon nonlinear wave equation provides a paradigm:

- it is (almost) the simplest (a single scalar field), relativistic, integrable nonlinear wave equation in two dimensions (one time, one space) (t, x);
- it is simple enough to allow direct computations in the classical or quantum domains;
- it is complicated enough to display a wide range of
interesting phenomena;

For the following reasons the sine-Gordon nonlinear wave equation provides a paradigm:

- it is (almost) the simplest (a single scalar field), relativistic, integrable nonlinear wave equation in two dimensions (one time, one space) (t, x);
- it is simple enough to allow direct computations in the classical or quantum domains;
- it is complicated enough to display a wide range of interesting phenomena;

For the following reasons the sine-Gordon nonlinear wave equation provides a paradigm:

- it is (almost) the simplest (a single scalar field), relativistic, integrable nonlinear wave equation in two dimensions (one time, one space) (t, x);
- it is simple enough to allow direct computations in the classical or quantum domains;
- it is complicated enough to display a wide range of interesting phenomena;
- though originally studied on the range $-\infty<x<\infty$, or on a circle (periodic boundary conditions), there are new features when the model is restricted to a half-line ($x<0$, say), or to an interval ($x \in[-L, L]$), by suitable boundary conditions, or if there are 'impurities' or 'defects'.

Expanding the right hand side of the sine-Gordon equation reveals....

Expanding the right hand side of the sine-Gordon equation reveals....

$$
\begin{aligned}
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} & -\frac{\partial^{2} u}{\partial x^{2}}=-m^{2} u+ \\
& +\frac{m^{2} \beta^{2}}{3!} u^{3}-\frac{m^{2} \beta^{4}}{5!} u^{5}+\ldots
\end{aligned}
$$

The first three (linear) terms taken alone are simply the Klein-Gordon equation for a relativistic scalar particle with mass parameter m.

From a perturbative quantum field theory perspective it looks unexceptional until one starts to calculate - and finds that particle production is disallowed.

Expanding the right hand side of the sine-Gordon equation reveals....

$$
\begin{aligned}
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} & -\frac{\partial^{2} u}{\partial x^{2}}=-m^{2} u+ \\
& +\frac{m^{2} \beta^{2}}{3!} u^{3}-\frac{m^{2} \beta^{4}}{5!} u^{5}+\ldots
\end{aligned}
$$

The first three (linear) terms taken alone are simply the Klein-Gordon equation for a relativistic scalar particle with mass parameter m.

From a perturbative quantum field theory perspective it looks unexceptional until one starts to calculate - and finds that particle production is disallowed.

Expanding the right hand side of the sine-Gordon equation reveals....

$$
\begin{aligned}
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} & -\frac{\partial^{2} u}{\partial x^{2}}=-m^{2} u+ \\
& +\frac{m^{2} \beta^{2}}{3!} u^{3}-\frac{m^{2} \beta^{4}}{5!} u^{5}+\ldots
\end{aligned}
$$

The first three (linear) terms taken alone are simply the Klein-Gordon equation for a relativistic scalar particle with mass parameter m.

From a perturbative quantum field theory perspective it looks unexceptional until one starts to calculate - and finds that particle production is disallowed.

Energy and momentum

The sine-Gordon equation provides the stationary points of an action given by the Lagrangian density:

Energy and momentum

The sine-Gordon equation provides the stationary points of an action given by the Lagrangian density:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} u \partial^{\mu} u-\frac{m^{2}}{\beta^{2}}(1-\cos \beta u) .
$$

The corresponding conserved energy and momentum are given by

Energy and momentum

The sine-Gordon equation provides the stationary points of an action given by the Lagrangian density:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} u \partial^{\mu} u-\frac{m^{2}}{\beta^{2}}(1-\cos \beta u) .
$$

The corresponding conserved energy and momentum are given by

Energy and momentum

The sine-Gordon equation provides the stationary points of an action given by the Lagrangian density:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} u \partial^{\mu} u-\frac{m^{2}}{\beta^{2}}(1-\cos \beta u) .
$$

The corresponding conserved energy and momentum are given by

$$
\mathcal{E}=\int_{-\infty}^{\infty} d x\left(\frac{1}{2}\left(u_{t}^{2}+u_{x}^{2}\right)+\frac{m^{2}}{\beta^{2}}(1-\cos \beta u)\right)
$$

Energy and momentum

The sine-Gordon equation provides the stationary points of an action given by the Lagrangian density:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} u \partial^{\mu} u-\frac{m^{2}}{\beta^{2}}(1-\cos \beta u) .
$$

The corresponding conserved energy and momentum are given by

$$
\begin{gathered}
\mathcal{E}=\int_{-\infty}^{\infty} d x\left(\frac{1}{2}\left(u_{t}^{2}+u_{x}^{2}\right)+\frac{m^{2}}{\beta^{2}}(1-\cos \beta u)\right) \\
\mathcal{P}=-\int_{-\infty}^{\infty} d x u_{t} u_{x}
\end{gathered}
$$

Well-defined provided u is 'smooth' with $u_{t}, u_{x} \rightarrow 0, \beta u \rightarrow 2 n \pi$.

Energy and momentum

The sine-Gordon equation provides the stationary points of an action given by the Lagrangian density:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} u \partial^{\mu} u-\frac{m^{2}}{\beta^{2}}(1-\cos \beta u) .
$$

The corresponding conserved energy and momentum are given by

$$
\begin{gathered}
\mathcal{E}=\int_{-\infty}^{\infty} d x\left(\frac{1}{2}\left(u_{t}^{2}+u_{x}^{2}\right)+\frac{m^{2}}{\beta^{2}}(1-\cos \beta u)\right) \\
\mathcal{P}=-\int_{-\infty}^{\infty} d x u_{t} u_{x}
\end{gathered}
$$

Well-defined provided u is 'smooth' with $u_{t}, u_{x} \rightarrow 0, \beta u \rightarrow 2 n \pi$, as $x \rightarrow \pm \infty$, where n is an integer or zero.

Solitons

It is easy to check that the following gives an exact (real) solution to the sine-Gordon equation:
where a, b are real constants satisfying

Solitons

It is easy to check that the following gives an exact (real) solution to the sine-Gordon equation:

$$
e^{i \beta u / 2}=\frac{1+i E}{1-i E}, \quad E=e^{a x+b t+c}
$$

where a, b are real constants satisfying

Solitons

It is easy to check that the following gives an exact (real) solution to the sine-Gordon equation:

$$
e^{i \beta u / 2}=\frac{1+i E}{1-i E}, \quad E=e^{a x+b t+c}
$$

where a, b are real constants satisfying

$$
a^{2}-b^{2}=m^{2}
$$

and c is a constant that need not be real, but e^{c} is real.

Solitons

It is easy to check that the following gives an exact (real) solution to the sine-Gordon equation:

$$
e^{i \beta u / 2}=\frac{1+i E}{1-i E}, \quad E=e^{a x+b t+c}
$$

where a, b are real constants satisfying

$$
a^{2}-b^{2}=m^{2}
$$

and c is a constant that need not be real, but e^{c} is real.

- Useful to put $a=m \cosh \theta, b=-m \sinh \theta$; and θ is the 'rapidity'

Solitons

It is easy to check that the following gives an exact (real) solution to the sine-Gordon equation:

$$
e^{i \beta u / 2}=\frac{1+i E}{1-i E}, \quad E=e^{a x+b t+c}
$$

where a, b are real constants satisfying

$$
a^{2}-b^{2}=m^{2}
$$

and c is a constant that need not be real, but e^{c} is real. Note:

- Useful to put $a=m \cosh \theta, b=-m \sinh \theta$; and θ is the 'rapidity'.
- We take $a>0$.

Solitons

It is easy to check that the following gives an exact (real) solution to the sine-Gordon equation:

$$
e^{i \beta u / 2}=\frac{1+i E}{1-i E}, \quad E=e^{a x+b t+c}
$$

where a, b are real constants satisfying

$$
a^{2}-b^{2}=m^{2}
$$

and c is a constant that need not be real, but e^{c} is real. Note:

- Useful to put $a=m \cosh \theta, b=-m \sinh \theta$; and θ is the 'rapidity'.
- We take $a>0$.

Properties

Assume first $E>0$ (ie $e^{c}>0$).

- The spatial derivative u_{x} is given by

$$
u_{x}=\frac{4 a}{\beta} \frac{E}{1+E^{2}}
$$

which implies u is monotonically increasing.

- As $x \rightarrow-\infty$, $e^{i \beta u / 2} \rightarrow 1$; thus $u \rightarrow 0$ is a suitable choice for $x \rightarrow-\infty$.
- As $x \rightarrow+\infty, e^{i \beta u / 2} \rightarrow-1$; since u is always increasing we must have $u \rightarrow 2 \pi / \beta$ for $x \rightarrow+\infty$.

Properties

Assume first $E>0$ (ie $e^{c}>0$).

- The spatial derivative u_{x} is given by

$$
u_{x}=\frac{4 a}{\beta} \frac{E}{1+E^{2}}
$$

which implies u is monotonically increasing.

- As $x \rightarrow-\infty, e^{i \beta u / 2} \rightarrow 1$; thus $u \rightarrow 0$ is a suitable choice for $x \rightarrow-\infty$.
- As $x \rightarrow+\infty, e^{i \beta u / 2} \rightarrow-1$; since u is always increasing we must have $u \rightarrow 2 \pi / \beta$ for $x \rightarrow+\infty$.

A soliton snapshot

The lower curve represents u_{x} (and is similar in general shape to the energy density) and the upper curve represents the soliton itself smoothly interpolating $u=0$ to $u=2 \pi$.

The solution is changing rapidly within a small region in the neighbourhood of $x=0$.

A soliton snapshot

The lower curve represents u_{x} (and is similar in general shape to the energy density) and the upper curve represents the soliton itself smoothly interpolating $u=0$ to $u=2 \pi$.

The solution is changing rapidly within a small region in the neighbourhood of $x=0$.

- For $\theta>0$ the soliton is travelling along the x-axis in a positive direction with velocity $b / a=\tanh \theta$. Its energy and momentum are calculated directly to be

$$
(\mathcal{E}, \mathcal{P})=\frac{8 m}{\beta^{2}}(\cosh \theta, \sinh \theta)
$$

This expression is the energy-momentum of a relativistic particle $(c=1)$ of mass $M=8 m / \beta^{2}$.

- For $\theta>0$ the soliton is travelling along the x-axis in a positive direction with velocity $b / a=\tanh \theta$.
- Its energy and momentum are calculated directly to be

$$
(\mathcal{E}, \mathcal{P})=\frac{8 m}{\beta^{2}}(\cosh \theta, \sinh \theta)
$$

This expression is the energy-momentum of a relativistic particle ($c=1$) of mass $M=8 m / \beta^{2}$.

- For $\theta>0$ the soliton is travelling along the x-axis in a positive direction with velocity $b / a=\tanh \theta$.
- Its energy and momentum are calculated directly to be

$$
(\mathcal{E}, \mathcal{P})=\frac{8 m}{\beta^{2}}(\cosh \theta, \sinh \theta)
$$

This expression is the energy-momentum of a relativistic particle ($c=1$) of mass $M=8 m / \beta^{2}$.

- Note: assigning the units of action $(M L)$ to the action requires $[u]^{2}=M L$ and hence $\left[\beta^{2}\right]=1 / M L$ (which is why a physicist might prefer not to put $\beta=1$). Since $[m]=1 / L$, this means that M has the same dimensions as $\hbar m$, and it corresponds to a classically generated mass.
- For $\theta>0$ the soliton is travelling along the x-axis in a positive direction with velocity $b / a=\tanh \theta$.
- Its energy and momentum are calculated directly to be

$$
(\mathcal{E}, \mathcal{P})=\frac{8 m}{\beta^{2}}(\cosh \theta, \sinh \theta)
$$

This expression is the energy-momentum of a relativistic particle ($c=1$) of mass $M=8 m / \beta^{2}$.

- Note: assigning the units of action (ML) to the action requires $[u]^{2}=M L$ and hence $\left[\beta^{2}\right]=1 / M L$ (which is why a physicist might prefer not to put $\beta=1$). Since $[m]=1 / L$, this means that M has the same dimensions as $\hbar m$, and it corresponds to a classically generated mass.
- A strongly localised field configuration \sim a particle.

An anti-soliton

Return to the expression for a soliton:

$$
e^{i \beta u / 2}=\frac{1+i E}{1-i E}, \quad E=e^{a x+b t+c}
$$

and replace c by $c+i \pi$ (equivalently, replace E by $-E$). Note

which is always negative - this time the solution interpolates from 0 to -2π, with identical energy-momentum. Define a conserved ('topological') charge

An anti-soliton

Return to the expression for a soliton:

$$
e^{i \beta u / 2}=\frac{1+i E}{1-i E}, \quad E=e^{a x+b t+c}
$$

and replace c by $c+i \pi$ (equivalently, replace E by $-E$). Note

$$
u_{x}=-\frac{4 a}{\beta} \frac{E}{1+E^{2}}
$$

which is always negative - this time the solution interpolates from 0 to -2π, with identical energy-momentum.
Define a conserved ('topological') charge

An anti-soliton

Return to the expression for a soliton:

$$
e^{i \beta u / 2}=\frac{1+i E}{1-i E}, \quad E=e^{a x+b t+c}
$$

and replace c by $c+i \pi$ (equivalently, replace E by $-E$). Note

$$
u_{x}=-\frac{4 a}{\beta} \frac{E}{1+E^{2}}
$$

which is always negative - this time the solution interpolates from 0 to -2π, with identical energy-momentum. Define a conserved ('topological') charge

$$
Q=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d x u_{x}=\frac{1}{2 \pi}[u(t, \infty)-u(t,-\infty)]
$$

An anti-soliton

Return to the expression for a soliton:

$$
e^{i \beta u / 2}=\frac{1+i E}{1-i E}, \quad E=e^{a x+b t+c}
$$

and replace c by $c+i \pi$ (equivalently, replace E by $-E$). Note

$$
u_{x}=-\frac{4 a}{\beta} \frac{E}{1+E^{2}}
$$

which is always negative - this time the solution interpolates from 0 to -2π, with identical energy-momentum. Define a conserved ('topological') charge

$$
Q=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d x u_{x}=\frac{1}{2 \pi}[u(t, \infty)-u(t,-\infty)]
$$

Then $Q=1$ for a soliton and $Q=-1$ for an anti-soliton.

Multi-solitons

It is also possible to check directly (use Maple/Mathematica) that the following expression is also a solution and describes two solitons (stems from the 60s - see any soliton book):

$$
e^{i \beta u / 2}=\frac{1+i E_{1}+i E_{2}-\Omega_{12} E_{1} E_{2}}{1-i E_{1}-i E_{2}-\Omega_{12} E_{1} E_{2}}, \quad \Omega_{12}=\tanh ^{2}\left(\frac{\theta_{1}-\theta_{2}}{2}\right),
$$

where

$$
E_{k}=e^{a_{k} x+b_{k} t+c_{k}}, a_{k}=m \cosh \theta_{k}, b_{k}=-m \sinh \theta_{k}, \quad k=1,2
$$

the sum of the individual soliton energies and momenta.
\square

Multi-solitons

It is also possible to check directly (use Maple/Mathematica) that the following expression is also a solution and describes two solitons (stems from the 60s - see any soliton book):

$$
e^{i \beta u / 2}=\frac{1+i E_{1}+i E_{2}-\Omega_{12} E_{1} E_{2}}{1-i E_{1}-i E_{2}-\Omega_{12} E_{1} E_{2}}, \quad \Omega_{12}=\tanh ^{2}\left(\frac{\theta_{1}-\theta_{2}}{2}\right)
$$

where

$$
E_{k}=e^{a_{k} x+b_{k} t+c_{k}}, a_{k}=m \cosh \theta_{k}, b_{k}=-m \sinh \theta_{k}, \quad k=1,2
$$

Also

$$
(\mathcal{E}, \mathcal{P})=\left(\mathcal{E}_{1}, \mathcal{P}_{1}\right)+\left(\mathcal{E}_{2}, \mathcal{P}_{2}\right)
$$

the sum of the individual soliton energies and momenta.

Multi-solitons

It is also possible to check directly (use Maple/Mathematica) that the following expression is also a solution and describes two solitons (stems from the 60s - see any soliton book):

$$
e^{i \beta u / 2}=\frac{1+i E_{1}+i E_{2}-\Omega_{12} E_{1} E_{2}}{1-i E_{1}-i E_{2}-\Omega_{12} E_{1} E_{2}}, \quad \Omega_{12}=\tanh ^{2}\left(\frac{\theta_{1}-\theta_{2}}{2}\right)
$$

where

$$
E_{k}=e^{a_{k} x+b_{k} t+c_{k}}, a_{k}=m \cosh \theta_{k}, b_{k}=-m \sinh \theta_{k}, \quad k=1,2
$$

Also

$$
(\mathcal{E}, \mathcal{P})=\left(\mathcal{E}_{1}, \mathcal{P}_{1}\right)+\left(\mathcal{E}_{2}, \mathcal{P}_{2}\right)
$$

the sum of the individual soliton energies and momenta.
Generalises to any number of solitons (point to note, rapidities are all different).

Again, u_{x} is positive and, taking as example $\theta_{1}=0, \theta_{2}=0.5$, two maxima are clearly seen in the regions where the solution is changing rapidly:

In this snapshot the moving soliton is to the left of the stationary one (and the red curve represents $\sin (u / 2)$). Since the derivative is always positive, u increases from $0 \rightarrow 4 \pi$.

Remarks:

- Either E_{1} or E_{2} or both can be replaced by $-E_{1},-E_{2}$, respectively, to give solutions with soliton-anti-soliton, or two solitons.
- A simple time-periodic solution (known as a 'breather') may be constructed by setting

$$
\theta_{1}=i \lambda, \quad \theta_{2}=-i \lambda, \quad c_{1}=c_{2}
$$

- The energy-momentum of this breather is given by

$$
(\mathcal{E}, \mathcal{P})=\frac{16 m}{\beta^{2}}(\cos \lambda, 0) \equiv 2 M(\cos \lambda, 0)
$$

Evidently, the energy of a breather is less than the mass of two solitons, indicating a bound-state - further evidence for Skyrme that this was an interesting model to analyse.

Further remarks

- A 'real' version of sine-Gordon is sinh-Gordon $\partial^{2} u=-\sinh u$; it is at first sight less interesting because it has no real solitons.
It is sometimes convenient to use light-cone variables $z=t+x, \bar{z}=t-x$. Then the sinh-Gordon equation reads $4 \partial \partial u=-\sinh u$. also conformally invariant under the transformation

Further remarks

- A 'real' version of sine-Gordon is sinh-Gordon $\partial^{2} u=-\sinh u$; it is at first sight less interesting because it has no real solitons.
- It is sometimes convenient to use light-cone variables $z=t+x, \bar{z}=t-x$. Then the sinh-Gordon equation reads $4 \partial \bar{\partial} u=-\sinh u$.
- The Liouville equation is simpler-looking: $4 \partial \bar{\partial} u=-e^{u}$. It is also conformally invariant under the transformation

(Zamolodchikov) It can be useful to consider theory

Further remarks

- A 'real' version of sine-Gordon is sinh-Gordon $\partial^{2} u=-\sinh u$; it is at first sight less interesting because it has no real solitons.
- It is sometimes convenient to use light-cone variables $z=t+x, \bar{z}=t-x$. Then the sinh-Gordon equation reads $4 \partial \bar{\partial} u=-\sinh u$.
- The Liouville equation is simpler-looking: $4 \partial \bar{\partial} u=-e^{u}$. It is also conformally invariant under the transformation

$$
z \rightarrow z^{\prime}(z), \bar{z} \rightarrow \bar{z}^{\prime}(\bar{z}), u^{\prime}=u+\ln \left(\frac{d \bar{z}^{\prime}}{d \bar{z}} \frac{d z^{\prime}}{d z}\right)
$$

- (Zamolodchikov) It can be useful to consider sinh/sine-Gordon as a perturbation of a conformal field theory.

Further remarks

- A 'real' version of sine-Gordon is sinh-Gordon $\partial^{2} u=-\sinh u$; it is at first sight less interesting because it has no real solitons.
- It is sometimes convenient to use light-cone variables $z=t+x, \bar{z}=t-x$. Then the sinh-Gordon equation reads $4 \partial \bar{\partial} u=-\sinh u$.
- The Liouville equation is simpler-looking: $4 \partial \bar{\partial} u=-e^{u}$. It is also conformally invariant under the transformation

$$
z \rightarrow z^{\prime}(z), \bar{z} \rightarrow \bar{z}^{\prime}(\bar{z}), u^{\prime}=u+\ln \left(\frac{d \bar{z}^{\prime}}{d \bar{z}} \frac{d z^{\prime}}{d z}\right)
$$

- (Zamolodchikov) It can be useful to consider sinh/sine-Gordon as a perturbation of a conformal field theory.

Affine Toda field theory

The sinh/sine-Gordon model is the simplest of a large class of field theories based on Lie algebra data (the sinh/sine-Gordon model is based on the roots of a_{1} or su(2)).

In many respects the whole class may be considered together though the sinh/sine-Gordon model is particularly special - they are all integrable in a sense that generalises Liouville's theorem for finite dynamical systems (meaning there are 'enough' conserved quantities in involution).
(Toda, Mikhailov-Olshanetsky-Perelomov, Segal, Wilson, Olive-Turok, ...)

A very interesting story that we have no time for.

Affine Toda field theory

The sinh/sine-Gordon model is the simplest of a large class of field theories based on Lie algebra data (the sinh/sine-Gordon model is based on the roots of a_{1} or su(2)).

In many respects the whole class may be considered together though the sinh/sine-Gordon model is particularly special - they are all integrable in a sense that generalises Liouville's theorem for finite dynamical systems (meaning there are 'enough' conserved quantities in involution).
(Toda, Mikhailov-Olshanetsky-Perelomov, Segal, Wilson, Olive-Turok, ...)
A very interesting story that we have no time for.

Bäcklund transformations

Return for a while to the sine-Gordon equation we began with

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=-\frac{m^{2}}{\beta} \sin \beta u
$$

or, alternatively, scaling away all constants, $u_{t t}-u_{x x}=-\sin u$.
A remarkable observation of Bäcklund (1882) concerns two solutions to the sine-Gordon equation related by first order differential equations:

Bäcklund transformations

Return for a while to the sine-Gordon equation we began with

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=-\frac{m^{2}}{\beta} \sin \beta u
$$

or, alternatively, scaling away all constants, $u_{t t}-u_{x x}=-\sin u$.
A remarkable observation of Bäcklund (1882) concerns two solutions to the sine-Gordon equation related by first order differential equations:

Bäcklund transformations

Return for a while to the sine-Gordon equation we began with

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=-\frac{m^{2}}{\beta} \sin \beta u
$$

or, alternatively, scaling away all constants, $u_{t t}-u_{x x}=-\sin u$.
A remarkable observation of Bäcklund (1882) concerns two solutions to the sine-Gordon equation related by first order differential equations:

$$
\begin{aligned}
& u_{x}=v_{t}+\lambda \sin \left(\frac{u+v}{2}\right)+\lambda^{-1} \sin \left(\frac{u-v}{2}\right) \\
& v_{x}=u_{t}-\lambda \sin \left(\frac{u+v}{2}\right)+\lambda^{-1} \sin \left(\frac{u-v}{2}\right) .
\end{aligned}
$$

Eliminating v gives the sine-Gordon equation for u, and

Bäcklund transformations

Return for a while to the sine-Gordon equation we began with

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=-\frac{m^{2}}{\beta} \sin \beta u
$$

or, alternatively, scaling away all constants, $u_{t t}-u_{x x}=-\sin u$.
A remarkable observation of Bäcklund (1882) concerns two solutions to the sine-Gordon equation related by first order differential equations:

$$
\begin{aligned}
& u_{x}=v_{t}+\lambda \sin \left(\frac{u+v}{2}\right)+\lambda^{-1} \sin \left(\frac{u-v}{2}\right) \\
& v_{x}=u_{t}-\lambda \sin \left(\frac{u+v}{2}\right)+\lambda^{-1} \sin \left(\frac{u-v}{2}\right) .
\end{aligned}
$$

Eliminating v gives the sine-Gordon equation for u, and vice-versa.

The first interesting remark concerns the choice $v=0$. With this choice u satisfies:

$$
\begin{aligned}
& u_{x}=\left(\lambda+\lambda^{-1}\right) \sin \left(\frac{u}{2}\right) \\
& u_{t}=\left(\lambda-\lambda^{-1}\right) \sin \left(\frac{u}{2}\right)
\end{aligned}
$$

whose solution is precisely the single soliton we had at the beginning provided we identify $\lambda=e^{\theta}$, where θ is the soliton's rapidity.

That is, u is given by

$$
e^{i u / 2}=\frac{1+i E}{1-i E}, \quad E=e^{a x+b t+c}
$$

with $a=\cosh \theta, b=-\sinh \theta$.

The second point concerns energy and momentum, which are each clearly seen to be boundary terms. For example:

$$
\mathcal{P}=-\int_{-\infty}^{\infty} d x u_{t} u_{x}=-\int_{-\infty}^{\infty} d x\left(\lambda-\lambda^{-1}\right) \sin \left(\frac{u}{2}\right) u_{x} .
$$

Hence,

$$
\mathcal{P}=\left(\lambda-\lambda^{-1}\right)\left[\cos \left(\frac{u}{2}\right)\right]_{-\infty}^{\infty}=-4 \sinh \theta .
$$

A similar argument yields the energy as a boundary contribtion

It was also noted that the Bäcklund transformation can be used
to generate miltinle solitons. For examnle taking y he a cingle soliton and solving for u leads to a double-soliton.

The second point concerns energy and momentum, which are each clearly seen to be boundary terms. For example:

$$
\mathcal{P}=-\int_{-\infty}^{\infty} d x u_{t} u_{x}=-\int_{-\infty}^{\infty} d x\left(\lambda-\lambda^{-1}\right) \sin \left(\frac{u}{2}\right) u_{x} .
$$

Hence,

$$
\mathcal{P}=\left(\lambda-\lambda^{-1}\right)\left[\cos \left(\frac{u}{2}\right)\right]_{-\infty}^{\infty}=-4 \sinh \theta .
$$

A similar argument yields the energy as a boundary contribtion

$$
\mathcal{E}=-\left(\lambda+\lambda^{-1}\right)\left[\cos \left(\frac{u}{2}\right)\right]_{-\infty}^{\infty}=4 \cosh \theta .
$$

It was also noted that the Bäcklund transformation can be used
to generate multiple solitons. For example, taking v be a single soliton and solving for u leads to a double-soliton.

The second point concerns energy and momentum, which are each clearly seen to be boundary terms. For example:

$$
\mathcal{P}=-\int_{-\infty}^{\infty} d x u_{t} u_{x}=-\int_{-\infty}^{\infty} d x\left(\lambda-\lambda^{-1}\right) \sin \left(\frac{u}{2}\right) u_{x}
$$

Hence,

$$
\mathcal{P}=\left(\lambda-\lambda^{-1}\right)\left[\cos \left(\frac{u}{2}\right)\right]_{-\infty}^{\infty}=-4 \sinh \theta
$$

A similar argument yields the energy as a boundary contribtion

$$
\mathcal{E}=-\left(\lambda+\lambda^{-1}\right)\left[\cos \left(\frac{u}{2}\right)\right]_{-\infty}^{\infty}=4 \cosh \theta
$$

It was also noted that the Bäcklund transformation can be used to generate multiple solitons. For example, taking v be a single soliton and solving for u leads to a double-soliton.

An almost physical example - a defect or shock

Bowcock, EC, Zambon (2002)
Typical shock (or bore) in fluid mechanics: flow flips from supersonic to subsonic,

An almost physical example - a defect or shock

Bowcock, EC, Zambon (2002)
Typical shock (or bore) in fluid mechanics:

- flow flips from supersonic to subsonic, abrupt change of depth in a channel.

An almost physical example - a defect or shock

Bowcock, EC, Zambon (2002)
Typical shock (or bore) in fluid mechanics:

- flow flips from supersonic to subsonic,
> - abrupt change of depth in a channel. - Velocity field changes rapidly over a small distance, - Model bv a discontinuity in $\mathbf{v}(\mathbf{x} . t)$ - There remain conserved quantities - mass, momentum, for example.

An almost physical example - a defect or shock

Bowcock, EC, Zambon (2002)
Typical shock (or bore) in fluid mechanics:

- flow flips from supersonic to subsonic,
- abrupt change of depth in a channel.
- Velocity field changes rapidly over a small distance,
- Model by a discontinuity in $\mathbf{v}(\mathbf{x}, t)$,
- There remain conserved quantities - mass, momentum, for example.
- Are shocks allowed in integrable QFT?
- If ves, what are their nronerties?

An almost physical example - a defect or shock

Bowcock, EC, Zambon (2002)
Typical shock (or bore) in fluid mechanics:

- flow flips from supersonic to subsonic,
- abrupt change of depth in a channel.
- Velocity field changes rapidly over a small distance,
- Model by a discontinuity in $\mathbf{v}(\mathbf{x}, t)$,
- There remain conserved quantities - mass, momentum, for example.
- Are shocks allowed in integrable QFT?
- If yes, what are their properties?

An almost physical example - a defect or shock

Bowcock, EC, Zambon (2002)
Typical shock (or bore) in fluid mechanics:

- flow flips from supersonic to subsonic,
- abrupt change of depth in a channel.
- Velocity field changes rapidly over a small distance,
- Model by a discontinuity in $\mathbf{v}(\mathbf{x}, t)$,
- There remain conserved quantities - mass, momentum, for example.
- Are shocks allowed in integrable QFT?
- If yes, what are their properties?

$$
u(x, t) \quad x_{0} \quad v(x, t)
$$

Start with a single selected point on the x-axis, say $x=0$, and denote the field to the left of it $(x<0)$ by u, and to the right $(x>0)$ by v, with field equations in their respective domains:

$$
\partial^{2} u=-\frac{\partial U}{\partial u}, \quad x<0, \quad \partial^{2} v=-\frac{\partial V}{\partial V}, \quad x>0
$$

- How can the fields be 'sewn' together preserving integrability?

One natural choice (δ-impurity) would be to put

$$
u(x, t) \quad x_{0} \quad v(x, t)
$$

Start with a single selected point on the x-axis, say $x=0$, and denote the field to the left of it $(x<0)$ by u, and to the right $(x>0)$ by v, with field equations in their respective domains:

$$
\partial^{2} u=-\frac{\partial U}{\partial u}, \quad x<0, \quad \partial^{2} v=-\frac{\partial V}{\partial v}, \quad x>0
$$

- How can the fields be 'sewn' together preserving integrability?

One natural choice (δ-impurity) would be to put $u(0, t)=v(0, t), \quad u_{x}(0, t)-v_{x}(0, t)=\mu u(0, t)$, - but; integrability tends to be lost

$$
u(x, t) \quad x_{0} \quad v(x, t)
$$

Start with a single selected point on the x-axis, say $x=0$, and denote the field to the left of it $(x<0)$ by u, and to the right $(x>0)$ by v, with field equations in their respective domains:

$$
\partial^{2} u=-\frac{\partial U}{\partial u}, \quad x<0, \quad \partial^{2} v=-\frac{\partial V}{\partial v}, \quad x>0
$$

- How can the fields be 'sewn' together preserving integrability?

One natural choice (δ-impurity) would be to put

$$
u(0, t)=v(0, t), \quad u_{x}(0, t)-v_{x}(0, t)=\mu u(0, t)
$$

- but, integrability tends to be lost.
(Goodman, Holmes and Weinstein (2002)).

$$
u(x, t) \quad x_{0} \quad v(x, t)
$$

Start with a single selected point on the x-axis, say $x=0$, and denote the field to the left of it $(x<0)$ by u, and to the right $(x>0)$ by v, with field equations in their respective domains:

$$
\partial^{2} u=-\frac{\partial U}{\partial u}, \quad x<0, \quad \partial^{2} v=-\frac{\partial V}{\partial v}, \quad x>0
$$

- How can the fields be 'sewn' together preserving integrability?

One natural choice (δ-impurity) would be to put

$$
u(0, t)=v(0, t), \quad u_{x}(0, t)-v_{x}(0, t)=\mu u(0, t),
$$

- but, integrability tends to be lost.
(Goodman, Holmes and Weinstein (2002)).
- Problem: there is a distinguished point, translation symmetry is lost and the conservation laws - at least some of them - (for example, momentum), are violated unless the impurity has the property of adding by itself compensating terms.
Consider the field contributions to momentum:

Then, using the field equations, $2 \dot{\mathcal{P}}$ is given by

- Problem: there is a distinguished point, translation symmetry is lost and the conservation laws - at least some of them - (for example, momentum), are violated unless the impurity has the property of adding by itself compensating terms.
Consider the field contributions to momentum:

$$
\mathcal{P}=-\int_{-\infty}^{0} d x u_{t} u_{x}-\int_{-\infty}^{0} d x v_{t} v_{x}
$$

Then, using the field equations, $2 \dot{\mathcal{P}}$ is given by

$=-\int_{-\infty}^{0}$$d x\left[u_{t}^{2}+u_{x}^{2}-2 U(u)\right]_{x}-\int_{0}^{\infty}$

- Problem: there is a distinguished point, translation symmetry is lost and the conservation laws - at least some of them - (for example, momentum), are violated unless the impurity has the property of adding by itself compensating terms.
Consider the field contributions to momentum:

$$
\mathcal{P}=-\int_{-\infty}^{0} d x u_{t} u_{x}-\int_{-\infty}^{0} d x v_{t} v_{x}
$$

Then, using the field equations, $2 \dot{\mathcal{P}}$ is given by

$$
=-\int_{-\infty}^{0} d x\left[u_{t}^{2}+u_{x}^{2}-2 U(u)\right]_{x}-\int_{0}^{\infty} d x\left[v_{t}^{2}+v_{x}^{2}-2 V(v)\right]_{x}
$$

- Problem: there is a distinguished point, translation symmetry is lost and the conservation laws - at least some of them - (for example, momentum), are violated unless the impurity has the property of adding by itself compensating terms.
Consider the field contributions to momentum:

$$
\mathcal{P}=-\int_{-\infty}^{0} d x u_{t} u_{x}-\int_{-\infty}^{0} d x v_{t} v_{x}
$$

Then, using the field equations, $2 \dot{\mathcal{P}}$ is given by

$$
\begin{gathered}
=-\int_{-\infty}^{0} d x\left[u_{t}^{2}+u_{x}^{2}-2 U(u)\right]_{x}-\int_{0}^{\infty} d x\left[v_{t}^{2}+v_{x}^{2}-2 V(v)\right]_{x} \\
=-\left[u_{t}^{2}+u_{x}^{2}-2 U(u)\right]_{x=0}+\left[v_{t}^{2}+v_{x}^{2}-2 V(v)\right]_{x=0}
\end{gathered}
$$

- Problem: there is a distinguished point, translation symmetry is lost and the conservation laws - at least some of them - (for example, momentum), are violated unless the impurity has the property of adding by itself compensating terms.
Consider the field contributions to momentum:

$$
\mathcal{P}=-\int_{-\infty}^{0} d x u_{t} u_{x}-\int_{-\infty}^{0} d x v_{t} v_{x}
$$

Then, using the field equations, $2 \dot{\mathcal{P}}$ is given by

$$
\begin{gathered}
=-\int_{-\infty}^{0} d x\left[u_{t}^{2}+u_{x}^{2}-2 U(u)\right]_{x}-\int_{0}^{\infty} d x\left[v_{t}^{2}+v_{x}^{2}-2 V(v)\right]_{x} \\
=-\left[u_{t}^{2}+u_{x}^{2}-2 U(u)\right]_{x=0}+\left[v_{t}^{2}+v_{x}^{2}-2 V(v)\right]_{x=0} \\
=-2 \frac{d \Omega}{d t}
\end{gathered}
$$

If there are 'sewing' conditions for which the last step is valid then $\mathcal{P}+\Omega$ will be conserved, with Ω a function of u, v - and possibly derivatives - evaluated at $x=0$.

Next, consider the energy density and calculate

$$
\dot{\mathcal{E}}=\left[u_{x} u_{t}\right]_{0}-\left[v_{x} v_{t}\right]_{0} .
$$

If there are 'sewing' conditions for which the last step is valid then $\mathcal{P}+\Omega$ will be conserved, with Ω a function of u, v - and possibly derivatives - evaluated at $x=0$.

Next, consider the energy density and calculate

$$
\dot{\mathcal{E}}=\left[u_{x} u_{t}\right]_{0}-\left[v_{x} v_{t}\right]_{0} .
$$

Setting $u_{x}=v_{t}+X(u, v), \quad v_{x}=u_{t}+Y(u, v)$ we find

This is a total time derivative provided
for some D.

If there are 'sewing' conditions for which the last step is valid then $\mathcal{P}+\Omega$ will be conserved, with Ω a function of u, v - and possibly derivatives - evaluated at $x=0$.
Next, consider the energy density and calculate

$$
\dot{\mathcal{E}}=\left[u_{x} u_{t}\right]_{0}-\left[v_{x} v_{t}\right]_{0} .
$$

Setting $u_{x}=v_{t}+X(u, v), \quad v_{x}=u_{t}+Y(u, v)$ we find

$$
\dot{\mathcal{E}}=u_{t} X-v_{t} Y
$$

This is a total time derivative provided
for some D. Then

If there are 'sewing' conditions for which the last step is valid then $\mathcal{P}+\Omega$ will be conserved, with Ω a function of u, v - and possibly derivatives - evaluated at $x=0$.
Next, consider the energy density and calculate

$$
\dot{\mathcal{E}}=\left[u_{x} u_{t}\right]_{0}-\left[v_{x} v_{t}\right]_{0} .
$$

Setting $u_{x}=v_{t}+X(u, v), \quad v_{X}=u_{t}+Y(u, v)$ we find

$$
\dot{\mathcal{E}}=u_{t} X-v_{t} Y
$$

This is a total time derivative provided

$$
X=-\frac{\partial D}{\partial u}, \quad Y=\frac{\partial D}{\partial v}
$$

for some D.

If there are 'sewing' conditions for which the last step is valid then $\mathcal{P}+\Omega$ will be conserved, with Ω a function of u, v - and possibly derivatives - evaluated at $x=0$.
Next, consider the energy density and calculate

$$
\dot{\mathcal{E}}=\left[u_{x} u_{t}\right]_{0}-\left[v_{x} v_{t}\right]_{0} .
$$

Setting $u_{x}=v_{t}+X(u, v), \quad v_{X}=u_{t}+Y(u, v)$ we find

$$
\dot{\mathcal{E}}=u_{t} X-v_{t} Y
$$

This is a total time derivative provided

$$
X=-\frac{\partial D}{\partial u}, \quad Y=\frac{\partial D}{\partial v}
$$

for some D. Then

$$
\dot{\mathcal{E}}=-\frac{d D}{d t} .
$$

This argument suggests sewing conditions of the form

$$
u_{x}=v_{t}-\frac{\partial D}{\partial u}, \quad v_{x}=u_{t}+\frac{\partial D}{\partial v},
$$

where D depends on both fields evaluated at $x=0$, leading to

$$
\dot{\mathcal{P}}=v_{t} \frac{\partial D}{\partial u}+u_{t} \frac{\partial D}{\partial v}-\frac{1}{2}\left(\frac{\partial D}{\partial u}\right)^{2}+\frac{1}{2}\left(\frac{\partial D}{\partial v}\right)^{2}+(U-V) .
$$

> This is a total time derivative provided the first piece is a perfect differential and the second piece vanishes.

This argument suggests sewing conditions of the form

$$
u_{x}=v_{t}-\frac{\partial D}{\partial u}, \quad v_{x}=u_{t}+\frac{\partial D}{\partial v}
$$

where D depends on both fields evaluated at $x=0$, leading to

$$
\dot{\mathcal{P}}=v_{t} \frac{\partial D}{\partial u}+u_{t} \frac{\partial D}{\partial v}-\frac{1}{2}\left(\frac{\partial D}{\partial u}\right)^{2}+\frac{1}{2}\left(\frac{\partial D}{\partial v}\right)^{2}+(U-V) .
$$

This is a total time derivative provided the first piece is a perfect differential and the second piece vanishes.

This argument suggests sewing conditions of the form

$$
u_{x}=v_{t}-\frac{\partial D}{\partial u}, \quad v_{x}=u_{t}+\frac{\partial D}{\partial v}
$$

where D depends on both fields evaluated at $x=0$, leading to

$$
\dot{\mathcal{P}}=v_{t} \frac{\partial D}{\partial u}+u_{t} \frac{\partial D}{\partial v}-\frac{1}{2}\left(\frac{\partial D}{\partial u}\right)^{2}+\frac{1}{2}\left(\frac{\partial D}{\partial v}\right)^{2}+(U-V) .
$$

This is a total time derivative provided the first piece is a perfect differential and the second piece vanishes. Thus....

$$
\frac{\partial D}{\partial u}=-\frac{\partial \Omega}{\partial v}, \quad \frac{\partial D}{\partial v}=-\frac{\partial \Omega}{\partial u}
$$

In other words....

$$
\frac{\partial^{2} D}{\partial v^{2}}=\frac{\partial^{2} D}{\partial u^{2}}, \quad \frac{1}{2}\left(\frac{\partial D}{\partial u}\right)^{2}-\frac{1}{2}\left(\frac{\partial D}{\partial v}\right)^{2}=(U-V)
$$

Exercise Investigate the possible combinations U, V, D.

In other words....

$$
\frac{\partial^{2} D}{\partial v^{2}}=\frac{\partial^{2} D}{\partial u^{2}}, \quad \frac{1}{2}\left(\frac{\partial D}{\partial u}\right)^{2}-\frac{1}{2}\left(\frac{\partial D}{\partial v}\right)^{2}=(U-V)
$$

Exercise Investigate the possible combinations U, V, D.

should find those allowed are: sine-Gordon, Liouville,

 massless free, or, massive free.In other words....

$$
\frac{\partial^{2} D}{\partial v^{2}}=\frac{\partial^{2} D}{\partial u^{2}}, \quad \frac{1}{2}\left(\frac{\partial D}{\partial u}\right)^{2}-\frac{1}{2}\left(\frac{\partial D}{\partial v}\right)^{2}=(U-V)
$$

Exercise Investigate the possible combinations U, V, D.

should find those allowed are: sine-Gordon, Liouville,

 massless free, or, massive free.In other words....

$$
\frac{\partial^{2} D}{\partial v^{2}}=\frac{\partial^{2} D}{\partial u^{2}}, \quad \frac{1}{2}\left(\frac{\partial D}{\partial u}\right)^{2}-\frac{1}{2}\left(\frac{\partial D}{\partial v}\right)^{2}=(U-V)
$$

Exercise Investigate the possible combinations U, V, D.
... should find those allowed are: sine-Gordon, Liouville, massless free, or, massive free.

For example, $U(u)=m^{2} u^{2} / 2, V(v)=m^{2} v^{2} / 2, D$ turns out to

and σ is a free parameter.

In other words....

$$
\frac{\partial^{2} D}{\partial v^{2}}=\frac{\partial^{2} D}{\partial u^{2}}, \quad \frac{1}{2}\left(\frac{\partial D}{\partial u}\right)^{2}-\frac{1}{2}\left(\frac{\partial D}{\partial v}\right)^{2}=(U-V)
$$

Exercise Investigate the possible combinations U, V, D.
... should find those allowed are: sine-Gordon, Liouville, massless free, or, massive free.

For example, $U(u)=m^{2} u^{2} / 2, V(v)=m^{2} v^{2} / 2, D$ turns out to be

$$
D(u, v)=\frac{m \sigma}{4}(u+v)^{2}+\frac{m}{4 \sigma}(u-v)^{2}
$$

and σ is a free parameter.
Note: the Tzitzéica (aka Bullough-Dodd, M-ZS, $a_{2}^{(2)}$) potential

In other words....

$$
\frac{\partial^{2} D}{\partial v^{2}}=\frac{\partial^{2} D}{\partial u^{2}}, \quad \frac{1}{2}\left(\frac{\partial D}{\partial u}\right)^{2}-\frac{1}{2}\left(\frac{\partial D}{\partial v}\right)^{2}=(U-V)
$$

Exercise Investigate the possible combinations U, V, D.
... should find those allowed are: sine-Gordon, Liouville, massless free, or, massive free.

For example, $U(u)=m^{2} u^{2} / 2, V(v)=m^{2} v^{2} / 2, D$ turns out to be

$$
D(u, v)=\frac{m \sigma}{4}(u+v)^{2}+\frac{m}{4 \sigma}(u-v)^{2},
$$

and σ is a free parameter.
Note: the Tzitzéica (aka Bullough-Dodd, M-ZS, $a_{2}^{(2)}$) potential

$$
U(u)=e^{u}+2 e^{-u / 2}
$$

is not in the list.

It is also worth noting there is a Lagrangian description of this type of 'shock':

The usual E-L equations provide both the field equations for u, v in their respective domains and the 'sewing' conditions.

It is also worth noting there is a Lagrangian description of this type of 'shock':
$\mathcal{L}=\theta(-x) \mathcal{L}(u)+\delta(x)\left(\frac{u v_{t}-u_{t} v}{2}-D(u, v)\right)+\theta(x) \mathcal{L}(v)$
The usual E-L equations provide both the field equations for u, v in their respective domains and the 'sewing' conditions.

It is also worth noting there is a Lagrangian description of this type of 'shock':

$$
\mathcal{L}=\theta(-x) \mathcal{L}(u)+\delta(x)\left(\frac{u v_{t}-u_{t} v}{2}-D(u, v)\right)+\theta(x) \mathcal{L}(v)
$$

The usual E-L equations provide both the field equations for u, v in their respective domains and the 'sewing' conditions.

It is also worth noting there is a Lagrangian description of this type of 'shock':

$$
\mathcal{L}=\theta(-x) \mathcal{L}(u)+\delta(x)\left(\frac{u v_{t}-u_{t} v}{2}-D(u, v)\right)+\theta(x) \mathcal{L}(v)
$$

The usual E-L equations provide both the field equations for u, v in their respective domains and the 'sewing' conditions.

Exercise in the free case, what happens to a wave incident from (say) the left half-line?

Show that if

It is also worth noting there is a Lagrangian description of this type of 'shock':

$$
\mathcal{L}=\theta(-x) \mathcal{L}(u)+\delta(x)\left(\frac{u v_{t}-u_{t} v}{2}-D(u, v)\right)+\theta(x) \mathcal{L}(v)
$$

The usual E-L equations provide both the field equations for u, v in their respective domains and the 'sewing' conditions.

Exercise in the free case, what happens to a wave incident from (say) the left half-line?

Show that if
then $R=0$ and find T. (At first sight this seems surprising.)

It is also worth noting there is a Lagrangian description of this type of 'shock':

$$
\mathcal{L}=\theta(-x) \mathcal{L}(u)+\delta(x)\left(\frac{u v_{t}-u_{t} v}{2}-D(u, v)\right)+\theta(x) \mathcal{L}(v)
$$

The usual E-L equations provide both the field equations for u, v in their respective domains and the 'sewing' conditions.

Exercise in the free case, what happens to a wave incident from (say) the left half-line?

Show that if

$$
u=\left(e^{i k x}+R e^{-i k x}\right) e^{-i \omega t}, \quad v=T e^{i k x} e^{-i \omega t}, \quad \omega^{2}=k^{2}+m^{2}
$$

then $R=0$ and find T. (At first sight this seems surprising.)

sine-Gordon

Choosing u, v to be sine-Gordon fields (and scaling the coupling and mass parameters to unity), we take:

$$
D(u, v)=2\left(\sigma \cos \frac{u+v}{2}+\sigma^{-1} \cos \frac{u-v}{2}\right)
$$

to find

The last two expressions are a Bäcklund transformation frozen

sine-Gordon

Choosing u, v to be sine-Gordon fields (and scaling the coupling and mass parameters to unity), we take:

$$
D(u, v)=2\left(\sigma \cos \frac{u+v}{2}+\sigma^{-1} \cos \frac{u-v}{2}\right)
$$

to find

$$
\begin{array}{ll}
x<x_{0}: & \partial^{2} u=-\sin u \\
x>x_{0}: & \partial^{2} v=-\sin v, \\
x=x_{0}: & u_{x}=v_{t}-\sigma \sin \frac{u+v}{2}-\sigma^{-1} \sin \frac{u-v}{2}, \\
x=x_{0}: & v_{x}=u_{t}+\sigma \sin \frac{u+v}{2}-\sigma^{-1} \sin \frac{u-v}{2} .
\end{array}
$$

The last two expressions are a Bäcklund transformation frozen at $x=x_{0}$.

sine-Gordon

Choosing u, v to be sine-Gordon fields (and scaling the coupling and mass parameters to unity), we take:

$$
D(u, v)=2\left(\sigma \cos \frac{u+v}{2}+\sigma^{-1} \cos \frac{u-v}{2}\right)
$$

to find

$$
\begin{array}{ll}
x<x_{0}: & \partial^{2} u=-\sin u \\
x>x_{0}: & \partial^{2} v=-\sin v \\
x=x_{0}: & u_{x}=v_{t}-\sigma \sin \frac{u+v}{2}-\sigma^{-1} \sin \frac{u-v}{2}, \\
x=x_{0}: & v_{x}=u_{t}+\sigma \sin \frac{u+v}{2}-\sigma^{-1} \sin \frac{u-v}{2} .
\end{array}
$$

The last two expressions are a Bäcklund transformation frozen at $x=x_{0}$.

Solitons and defects

Consider a soliton incident from $x<0$.
It will not be nossible to satisfy the sewing conditions (in general) unless a similar soliton emerges into the region $x>0$:

Solitons and defects

Consider a soliton incident from $x<0$.
It will not be possible to satisfy the sewing conditions (in general) unless a similar soliton emerges into the region $x>0$:

Solitons and defects

Consider a soliton incident from $x<0$.
It will not be possible to satisfy the sewing conditions (in general) unless a similar soliton emerges into the region $x>0$:

Solitons and defects

Consider a soliton incident from $x<0$.
It will not be possible to satisfy the sewing conditions (in general) unless a similar soliton emerges into the region $x>0$:

$$
\begin{aligned}
& e^{i u / 2}=\frac{1+i E}{1-i E}, \quad e^{i v / 2}=\frac{1+i z E}{1-i z E}, \quad E=e^{a x+b t+c}, \\
& a=\cosh \theta, \quad b=-\sinh \theta
\end{aligned}
$$

where z is to be determined. It is also useful to set $\lambda=e^{-\eta}$.

- We find

This result has some intriguing consequences.

Solitons and defects

Consider a soliton incident from $x<0$.
It will not be possible to satisfy the sewing conditions (in general) unless a similar soliton emerges into the region $x>0$:

$$
\begin{aligned}
& e^{i u / 2}=\frac{1+i E}{1-i E}, \quad e^{i v / 2}=\frac{1+i z E}{1-i z E}, \quad E=e^{a x+b t+c}, \\
& a=\cosh \theta, \quad b=-\sinh \theta
\end{aligned}
$$

where z is to be determined. It is also useful to set $\lambda=e^{-\eta}$.

- We find

$$
z=\operatorname{coth}\left(\frac{\eta-\theta}{2}\right)
$$

This result has some intriguing consequences....

Solitons and defects

Consider a soliton incident from $x<0$.
It will not be possible to satisfy the sewing conditions (in general) unless a similar soliton emerges into the region $x>0$:

$$
\begin{aligned}
& e^{i u / 2}=\frac{1+i E}{1-i E}, \quad e^{i v / 2}=\frac{1+i z E}{1-i z E}, \quad E=e^{a x+b t+c}, \\
& a=\cosh \theta, \quad b=-\sinh \theta
\end{aligned}
$$

where z is to be determined. It is also useful to set $\lambda=e^{-\eta}$.

- We find

$$
z=\operatorname{coth}\left(\frac{\eta-\theta}{2}\right)
$$

This result has some intriguing consequences....

Suppose $\theta>0$.

- $\eta<\theta$ implies $z<0$; ie the soliton emerges as an anti-soliton. -The final state will contain a discontinuity of magnitude 4π at

Suppose $\theta>0$.

- $\eta<\theta$ implies $z<0$; ie the soliton emerges as an anti-soliton. -The final state will contain a discontinuity of magnitude 4π at $x=0$.

Suppose $\theta>0$.

- $\eta<\theta$ implies $z<0$; ie the soliton emerges as an anti-soliton.
-The final state will contain a discontinuity of magnitude 4π at $x=0$.
- $\eta=\theta$ implies $z=\infty$ and there is no emerging soliton.
-The energy-momentum of the soliton is captured by the

Suppose $\theta>0$.

- $\eta<\theta$ implies $z<0$; ie the soliton emerges as an anti-soliton.
-The final state will contain a discontinuity of magnitude 4π at $x=0$.
- $\eta=\theta$ implies $\boldsymbol{z}=\infty$ and there is no emerging soliton.
- The energy-momentum of the soliton is captured by the 'defect'.

Suppose $\theta>0$.

- $\eta<\theta$ implies $z<0$; ie the soliton emerges as an anti-soliton.
-The final state will contain a discontinuity of magnitude 4π at $x=0$.
- $\eta=\theta$ implies $\boldsymbol{z}=\infty$ and there is no emerging soliton.
- The energy-momentum of the soliton is captured by the 'defect'.
- The eventual configuration will have a discontinuity of magnitude 2π at $x=0$.

Suppose $\theta>0$.

- $\eta<\theta$ implies $z<0$; ie the soliton emerges as an anti-soliton.
-The final state will contain a discontinuity of magnitude 4π at $x=0$.
- $\eta=\theta$ implies $\boldsymbol{z}=\infty$ and there is no emerging soliton.
- The energy-momentum of the soliton is captured by the 'defect'.
- The eventual configuration will have a discontinuity of magnitude 2π at $x=0$.
- $\eta>\theta$ implies $z>0$; ie the soliton retains its character.

Thus, the 'defect' or 'shock' can be seen as a new feature
within the sine-Gordon model.

Suppose $\theta>0$.

- $\eta<\theta$ implies $z<0$; ie the soliton emerges as an anti-soliton.
-The final state will contain a discontinuity of magnitude 4π at $x=0$.
- $\eta=\theta$ implies $\boldsymbol{z}=\infty$ and there is no emerging soliton.
- The energy-momentum of the soliton is captured by the 'defect'.
- The eventual configuration will have a discontinuity of magnitude 2π at $x=0$.
- $\eta>\theta$ implies $z>0$; ie the soliton retains its character.

Thus, the 'defect' or 'shock' can be seen as a new feature within the sine-Gordon model.

Suppose $\theta>0$.

- $\eta<\theta$ implies $z<0$; ie the soliton emerges as an anti-soliton.
-The final state will contain a discontinuity of magnitude 4π at $x=0$.
- $\eta=\theta$ implies $\boldsymbol{z}=\infty$ and there is no emerging soliton.
- The energy-momentum of the soliton is captured by the 'defect'.
- The eventual configuration will have a discontinuity of magnitude 2π at $x=0$.
- $\eta>\theta$ implies $z>0$; ie the soliton retains its character.

Thus, the 'defect' or 'shock' can be seen as a new feature within the sine-Gordon model.

Comments and questions....

- The shock is local so there could be several shocks located at $x=x_{1}<x_{2}<x_{3}<\cdots<x_{n}$; these behave independently as far as a soliton is concerned, each contributing a factor z_{i} for a total 'delay' of $z=z_{1} z_{2} \ldots z_{n}$.
- When several solitons pass a defect each component is affected separately.

Comments and questions....

- The shock is local so there could be several shocks located at $x=x_{1}<x_{2}<x_{3}<\cdots<x_{n}$; these behave independently as far as a soliton is concerned, each contributing a factor z_{i} for a total 'delay' of $z=z_{1} z_{2} \ldots z_{n}$.
- When several solitons pass a defect each component is affected separately.

Comments and questions....

- The shock is local so there could be several shocks located at $x=x_{1}<x_{2}<x_{3}<\cdots<x_{n}$; these behave independently as far as a soliton is concerned, each contributing a factor z_{i} for a total 'delay' of $z=z_{1} z_{2} \ldots z_{n}$.
- When several solitons pass a defect each component is affected separately.
- This means that at most one of them can be 'filtered out' (since the components of a multisoliton in the sine-Gordon model must have different rapidities)

Comments and questions....

- The shock is local so there could be several shocks located at $x=x_{1}<x_{2}<x_{3}<\cdots<x_{n}$; these behave independently as far as a soliton is concerned, each contributing a factor z_{i} for a total 'delay' of $z=z_{1} z_{2} \ldots z_{n}$.
- When several solitons pass a defect each component is affected separately.
- This means that at most one of them can be 'filtered out' (since the components of a multisoliton in the sine-Gordon model must have different rapidities).
- Since a soliton can be absorbed, can a starting configuration with $u=0, v=2 \pi$ decay into a soliton?

Comments and questions....

- The shock is local so there could be several shocks located at $x=x_{1}<x_{2}<x_{3}<\cdots<x_{n}$; these behave independently as far as a soliton is concerned, each contributing a factor z_{i} for a total 'delay' of $z=z_{1} z_{2} \ldots z_{n}$.
- When several solitons pass a defect each component is affected separately.
- This means that at most one of them can be 'filtered out' (since the components of a multisoliton in the sine-Gordon model must have different rapidities).
- Since a soliton can be absorbed, can a starting configuration with $u=0, v=2 \pi$ decay into a soliton?
- No, there is no way to tell the time at which the decay would
occur (and quantum mechanics would be needed to provide the probability of decay as a function of time)

Comments and questions....

- The shock is local so there could be several shocks located at $x=x_{1}<x_{2}<x_{3}<\cdots<x_{n}$; these behave independently as far as a soliton is concerned, each contributing a factor z_{i} for a total 'delay' of $z=z_{1} z_{2} \ldots z_{n}$.
- When several solitons pass a defect each component is affected separately.
- This means that at most one of them can be 'filtered out' (since the components of a multisoliton in the sine-Gordon model must have different rapidities).
- Since a soliton can be absorbed, can a starting configuration with $u=0, v=2 \pi$ decay into a soliton?
- No, there is no way to tell the time at which the decay would occur (and quantum mechanics would be needed to provide the probability of decay as a function of time).
- The $a_{r}^{(1)}$ Toda models have Bäcklund transformations, do they support defects?
- The $a_{r}^{(1)}$ Toda models have Bäcklund transformations, do they support defects?
- Yes.
- What about the other Toda field theories?
- They all have solitons, but they are not known to have

Bäcklund transformations of the above type; can they
nevertheless support defects?

- The $a_{r}^{(1)}$ Toda models have Bäcklund transformations, do they support defects?
- Yes.
- What about the other Toda field theories?
- They all have solitons, but they are not known to have Bäcklund transformations of the above type; can they nevertheless support defects?
- The $a_{r}^{(1)}$ Toda models have Bäcklund transformations, do they support defects?
- Yes.
- What about the other Toda field theories?
- They all have solitons, but they are not known to have Bäcklund transformations of the above type; can they nevertheless support defects?
- Not known.
- The $a_{r}^{(1)}$ Toda models have Bäcklund transformations, do they support defects?
- Yes.
- What about the other Toda field theories?
- They all have solitons, but they are not known to have Bäcklund transformations of the above type; can they nevertheless support defects?
- Not known.
- What about the Tzitzéica equation?

Needs a different idea (EC and Zambon, 2009)

- The $a_{r}^{(1)}$ Toda models have Bäcklund transformations, do they support defects?
- Yes.
- What about the other Toda field theories?
- They all have solitons, but they are not known to have Bäcklund transformations of the above type; can they nevertheless support defects?
- Not known.
- What about the Tzitzéica equation?

Needs a different idea (EC and Zambon, 2009)

- The $a_{r}^{(1)}$ Toda models have Bäcklund transformations, do they support defects?
- Yes.
- What about the other Toda field theories?
- They all have solitons, but they are not known to have Bäcklund transformations of the above type; can they nevertheless support defects?
- Not known.
- What about the Tzitzéica equation?

Needs a different idea (EC and Zambon, 2009)

The classical type II defect

Consider two relativistic field theories with fields u and v, and add a new degree of freedom $\lambda(t)$ at the defect location:

$$
\mathcal{L}=\theta(-x) \mathcal{L}_{u}+\theta(x) \mathcal{L}_{V}+\delta(x)\left(2 q \lambda_{t}-D(\lambda, p, q)\right)
$$

where

$$
q=\left.\frac{u-v}{2}\right|_{0} \quad p=\left.\frac{u+v}{2}\right|_{0}
$$

Then the usual steps lead to

- equations of motion:

$$
\partial^{2} u=-U_{u} \quad x<0 \quad \partial^{2} v=-V_{v} \quad x>0
$$

- defect conditions at $x=0$

$$
2 q_{x}=-D_{p} \quad 2 p_{x}-2 \lambda_{t}=-D_{q} \quad 2 q_{t}=-D_{\lambda}
$$

The classical type II defect

Consider two relativistic field theories with fields u and v, and add a new degree of freedom $\lambda(t)$ at the defect location:

$$
\mathcal{L}=\theta(-x) \mathcal{L}_{u}+\theta(x) \mathcal{L}_{v}+\delta(x)\left(2 q \lambda_{t}-D(\lambda, p, q)\right)
$$

where

$$
q=\left.\frac{u-v}{2}\right|_{0} \quad p=\left.\frac{u+v}{2}\right|_{0} .
$$

Then the usual steps lead to

- equations of motion:

$$
\partial^{2} u=-U_{u} \quad x<0 \quad \partial^{2} v=-V_{v} \quad x>0
$$

- defect conditions at $x=0$

$$
2 q_{x}=-D_{p} \quad 2 p_{x}-2 \lambda_{t}=-D_{q} \quad 2 q_{t}=-D_{\lambda}
$$

As before, consider momentum

$$
P=\int_{-\infty}^{0} d x u_{t} u_{x}+\int_{0}^{\infty} d x v_{t} v_{x}
$$

and seek a functional $\Omega(u, v, \lambda)$ such that $P_{t} \equiv-\Omega_{t}$. Then
$P+\left.\Omega\right|_{x=0}$ is the total conserved momentum of the system.
Constraints on U, V, Ω :

$$
D_{p}=\Omega_{\lambda} \quad D_{\lambda}=\Omega_{p} \quad D_{p} D_{q}-\Omega_{q} D_{\lambda}=2(U-V),
$$

implying

As before, consider momentum

$$
P=\int_{-\infty}^{0} d x u_{t} u_{x}+\int_{0}^{\infty} d x v_{t} v_{x}
$$

and seek a functional $\Omega(u, v, \lambda)$ such that $P_{t} \equiv-\Omega_{t}$. Then
$P+\left.\Omega\right|_{x=0}$ is the total conserved momentum of the system.
Constraints on U, V, Ω :

$$
D_{p}=\Omega_{\lambda} \quad D_{\lambda}=\Omega_{p} \quad D_{p} D_{q}-\Omega_{q} D_{\lambda}=2(U-V)
$$

implying

$$
\begin{gathered}
D=f(p+\lambda, q)+g(p-\lambda, q) \quad \Omega=f(p+\lambda, q)-g(p-\lambda, q) \\
f_{\lambda} g_{q}-g_{\lambda} f_{q}=U(u)-V(v)
\end{gathered}
$$

- Curiousity: consider λ and its conjugate momentum $\pi_{\lambda}=2 q$. Then, the Poisson bracket of the defect contributions to energy and momentum is related to the potential difference across the defect, that is

$$
f_{\lambda} g_{q}-g_{\lambda} f_{q}=(U-V) \leftrightarrow\{\Omega, D\}=(U-V)
$$

- Curiousity: consider λ and its conjugate momentum $\pi_{\lambda}=2 q$. Then, the Poisson bracket of the defect contributions to energy and momentum is related to the potential difference across the defect, that is

$$
f_{\lambda} g_{q}-g_{\lambda} f_{q}=(U-V) \leftrightarrow\{\Omega, D\}=(U-V)
$$

- Exercise - show that it is now possible to choose f, g in such a way that the potentials U, V can be any one of sine-Gordon, Liouville, Tzitzéica, or quadratic. Are there solutions other than the integrable cases?

- Curiousity: consider λ and its conjugate momentum $\pi_{\lambda}=2 q$. Then, the Poisson bracket of the defect contributions to energy and momentum is related to the potential difference across the defect, that is

$$
f_{\lambda} g_{q}-g_{\lambda} f_{q}=(U-V) \leftrightarrow\{\Omega, D\}=(U-V)
$$

- Exercise - show that it is now possible to choose f, g in such a way that the potentials U, V can be any one of sine-Gordon, Liouville, Tzitzéica, or quadratic. Are there solutions other than the integrable cases?
- Remark In the sine-Gordon case the type-II defect is a new object - in a sense it is a 'fused' pair of type-I defects (EC, Zambon, 2010). See also Weston 2010.

Shocks in sine-Gordon quantum field theory

Assume $\sigma>0$ then...

- Expect Pure transmission compatible with the bulk

 S-matrix;
Shocks in sine-Gordon quantum field theory

Assume $\sigma>0$ then...
> - Expect Pure transmission compatible with the bulk S-matrix;
> - Expect For each type of defect two different 'transmission' matrices (since the topological charge on a defect can only change by ± 2 as a soliton/anti-soliton passes).

Shocks in sine-Gordon quantum field theory

Assume $\sigma>0$ then...

- Expect Pure transmission compatible with the bulk S-matrix;
- Expect For each type of defect two different 'transmission' matrices (since the topological charge on a defect can only change by ± 2 as a soliton/anti-soliton passes).
- Expect Transmission matrix with even shock labels ought to be unitary, the transmission matrix with odd labels might not be.

Shocks in sine-Gordon quantum field theory

Assume $\sigma>0$ then...

- Expect Pure transmission compatible with the bulk S-matrix;
- Expect For each type of defect two different 'transmission' matrices (since the topological charge on a defect can only change by ± 2 as a soliton/anti-soliton passes).
- Expect Transmission matrix with even shock labels ought to be unitary, the transmission matrix with odd labels might not be. assemblies of defects,

Shocks in sine-Gordon quantum field theory

Assume $\sigma>0$ then...

- Expect Pure transmission compatible with the bulk S-matrix;
- Expect For each type of defect two different 'transmission' matrices (since the topological charge on a defect can only change by ± 2 as a soliton/anti-soliton passes).
- Expect Transmission matrix with even shock labels ought to be unitary, the transmission matrix with odd labels might not be.
- Questions Relationship between different types of defect; assemblies of defects,

Shocks in sine-Gordon quantum field theory

Assume $\sigma>0$ then...

- Expect Pure transmission compatible with the bulk S-matrix;
- Expect For each type of defect two different 'transmission' matrices (since the topological charge on a defect can only change by ± 2 as a soliton/anti-soliton passes).
- Expect Transmission matrix with even shock labels ought to be unitary, the transmission matrix with odd labels might not be.
- Questions Relationship between different types of defect; assemblies of defects, ...
$T_{a \alpha}^{b \beta}(\theta, \eta)$

$$
a+\alpha=b+\beta, \quad|\beta-\alpha|=0,2, \quad a, b= \pm 1, \quad \alpha, \beta \in \mathbb{Z}
$$

$T_{a \alpha}^{b \beta}(\theta, \eta)$

$$
a+\alpha=b+\beta, \quad|\beta-\alpha|=0,2, \quad a, b= \pm 1, \quad \alpha, \beta \in \mathbb{Z}
$$

$T_{a \alpha}^{b \beta}(\theta, \eta)$

$$
a+\alpha=b+\beta, \quad|\beta-\alpha|=0,2, \quad a, b= \pm 1, \quad \alpha, \beta \in \mathbb{Z}
$$

Schematic triangle relation Delfino, Mussardo, Simonetti 1994

Schematic triangle relation Delfino, Mussardo, Simonetti 1994

With $\Theta=\theta_{a}-\theta_{b}$ and sums over the 'internal' indices β, c, d. - Satisfied senarately by ${ }^{\operatorname{even}} T$ and ${ }^{o d d} T$

Schematic triangle relation Delfino, Mussardo, Simonetti 1994

With $\Theta=\theta_{a}-\theta_{b}$ and sums over the 'internal' indices β, c, d.

- Satisfied separately by ${ }^{\text {even } T}$ and ${ }^{\text {odd } T} T$.
- A solution was found by Konik and LeClair, 1999.

Schematic triangle relation Delfino, Mussardo, Simonetti 1994

With $\Theta=\theta_{a}-\theta_{b}$ and sums over the 'internal' indices β, c, d.

- Satisfied separately by ${ }^{\text {even }} T$ and ${ }^{\circ d d} T$.
- A solution was found by Konik and LeClair, 1999.

Schematic triangle relation Delfino, Mussardo, Simonetti 1994

$$
S_{a b}^{c d}(\Theta) T_{d \alpha}^{f \beta}\left(\theta_{a}\right) T_{c \beta}^{e \gamma}\left(\theta_{b}\right)=T_{b \alpha}^{d \beta}\left(\theta_{b}\right) T_{a \beta}^{c \gamma}\left(\theta_{a}\right) S_{c d}^{e f}(\Theta)
$$

With $\Theta=\theta_{a}-\theta_{b}$ and sums over the 'internal' indices β, c, d.

- Satisfied separately by ${ }^{e v e n} T$ and ${ }^{\circ d d} T$.
- A solution was found by Konik and LeClair, 1999.

Zamolodchikov's sine-Gordon S-matrix - reminder

$$
S_{a b}^{c d}(\Theta)=\rho(\Theta)\left(\begin{array}{cccc}
A & 0 & 0 & 0 \\
0 & C & B & 0 \\
0 & B & C & 0 \\
0 & 0 & 0 & A
\end{array}\right)
$$

where

$$
A(\Theta)=\frac{q x_{2}}{x_{1}}-\frac{x_{1}}{q x_{2}}, B(\Theta)=\frac{x_{1}}{x_{2}}-\frac{x_{2}}{x_{1}}, C(\Theta)=q-\frac{1}{q}
$$

and

$$
\begin{aligned}
\rho(\Theta) & =\frac{\Gamma(1+z) \Gamma(1-\gamma-z)}{2 \pi i} \prod_{1}^{\infty} R_{k}(\Theta) R_{k}(i \pi-\Theta) \\
R_{k}(\Theta) & =\frac{\Gamma(2 k \gamma+z) \Gamma(1+2 k \gamma+z)}{\Gamma((2 k+1) \gamma+z) \Gamma(1+(2 k+1) \gamma+z)}, z=i \gamma / \pi .
\end{aligned}
$$

The Zamolodchikov S-matrix depends on the rapidity variables θ and the bulk coupling β via

$$
x=e^{\gamma \theta}, q=e^{i \pi \gamma}, \gamma=\frac{8 \pi}{\beta^{2}}-1
$$

and it is also useful to define the variable

$$
Q=e^{4 \pi^{2} i / \beta^{2}}=\sqrt{-q}
$$

- K-L solutions have the form

where $f(q, x)$ is not uniquely determined but, for a unitary transmission matrix should satisfy....

The Zamolodchikov S-matrix depends on the rapidity variables θ and the bulk coupling β via

$$
x=e^{\gamma \theta}, q=e^{i \pi \gamma}, \gamma=\frac{8 \pi}{\beta^{2}}-1
$$

and it is also useful to define the variable

$$
Q=e^{4 \pi^{2} i / \beta^{2}}=\sqrt{-q}
$$

- K-L solutions have the form

$$
T_{a \alpha}^{b \beta}(\theta)=f(q, x)\left(\begin{array}{cc}
Q^{\alpha} \delta_{\alpha}^{\beta} & q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta-2} \\
q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta+2} & Q^{-\alpha} \delta_{\alpha}^{\beta}
\end{array}\right)
$$

where $f(q, x)$ is not uniquely determined but, for a unitary transmission matrix should satisfy....
....namely

$$
\begin{aligned}
\bar{f}(q, x) & =f(q, q x) \\
f(q, x) f(q, q x) & =\left(1+e^{2 \gamma(\theta-\eta)}\right)^{-1}
\end{aligned}
$$

A slightly alternative discussion of these points is given in Bowcock, EC, Zambon, 2005, where most of the properties noted below are also described.

- A 'minimal' solution has the following form

where it is convenient to put $z=i \gamma(\theta-\eta) / 2 \pi$ and
....namely

$$
\begin{aligned}
\bar{f}(q, x) & =f(q, q x) \\
f(q, x) f(q, q x) & =\left(1+e^{2 \gamma(\theta-\eta)}\right)^{-1}
\end{aligned}
$$

A slightly alternative discussion of these points is given in Bowcock, EC, Zambon, 2005, where most of the properties noted below are also described.

- A 'minimal' solution has the following form

where it is convenient to put $z=i \gamma(\theta-\eta) / 2 \pi$ and

....namely

$$
\begin{aligned}
\bar{f}(q, x) & =f(q, q x) \\
f(q, x) f(q, q x) & =\left(1+e^{2 \gamma(\theta-\eta)}\right)^{-1}
\end{aligned}
$$

A slightly alternative discussion of these points is given in Bowcock, EC, Zambon, 2005, where most of the properties noted below are also described.

- A 'minimal' solution has the following form

$$
f(q, x)=\frac{e^{i \pi(1+\gamma) / 4}}{1+i e^{\gamma(\theta-\eta)}} \frac{r(x)}{\bar{r}(x)}
$$

where it is convenient to put $z=i \gamma(\theta-\eta) / 2 \pi$ and

$$
r(x)=\prod_{k=0}^{\infty} \frac{\Gamma(k \gamma+1 / 4-z) \Gamma((k+1) \gamma+3 / 4-z)}{\Gamma((k+1 / 2) \gamma+1 / 4-z) \Gamma((k+1 / 2) \gamma+3 / 4-z)}
$$

$$
T_{a \alpha}^{b \beta}(\theta)=f(q, x)\left(\begin{array}{cc}
Q^{\alpha} \delta_{\alpha}^{\beta} & q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta-2} \\
q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta+2} & Q^{-\alpha} \delta_{\alpha}^{\beta}
\end{array}\right)
$$

Remarks $(\theta>0)$: it is tempting to suppose η (possibly

renormalized) is the same parameter as in the classical model.
> - $\eta<0$ - the off-diagonal entries dominate;
> - $\theta>\eta>0$ - the off-diagonal entries dominate;
> - $\eta>\theta>0$ - the diagonal entries dominate;

$$
T_{a \alpha}^{b \beta}(\theta)=f(q, x)\left(\begin{array}{cc}
Q^{\alpha} \delta_{\alpha}^{\beta} & q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta-2} \\
q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta+2} & Q^{-\alpha} \delta_{\alpha}^{\beta}
\end{array}\right)
$$

Remarks ($\theta>0$): it is tempting to suppose η (possibly renormalized) is the same parameter as in the classical model.

- $\eta<0$ - the off-diagonal entries dominate;
- $\theta>\eta>0$ - the off-diagonal entries dominate;
- $\eta>\theta>0$ - the diagonal entries dominate;
- These are the same features we saw in the classical
soliton-shock scattering

$$
T_{a \alpha}^{b \beta}(\theta)=f(q, x)\left(\begin{array}{cc}
Q^{\alpha} \delta_{\alpha}^{\beta} & q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta-2} \\
q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta+2} & Q^{-\alpha} \delta_{\alpha}^{\beta}
\end{array}\right)
$$

Remarks ($\theta>0$): it is tempting to suppose η (possibly renormalized) is the same parameter as in the classical model.

- $\eta<0$ - the off-diagonal entries dominate;
- $\theta>\eta>0$ - the off-diagonal entries dominate;
- $\eta>\theta>0$ - the diagonal entries dominate;
- These are the same features we saw in the classical
soliton-shock scattering.

$$
T_{a \alpha}^{b \beta}(\theta)=f(q, x)\left(\begin{array}{cc}
Q^{\alpha} \delta_{\alpha}^{\beta} & q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta-2} \\
q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta+2} & Q^{-\alpha} \delta_{\alpha}^{\beta}
\end{array}\right)
$$

Remarks ($\theta>0$): it is tempting to suppose η (possibly renormalized) is the same parameter as in the classical model.

- $\eta<0$ - the off-diagonal entries dominate;
- $\theta>\eta>0$ - the off-diagonal entries dominate;
- $\eta>\theta>0$ - the diagonal entries dominate;
- These are the same features we saw in the classical soliton-shock scattering.
- $\theta=\eta$ is not special but there is a simple pole nearby at

$$
T_{a \alpha}^{b \beta}(\theta)=f(q, x)\left(\begin{array}{cc}
Q^{\alpha} \delta_{\alpha}^{\beta} & q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta-2} \\
q^{-1 / 2} e^{\gamma(\theta-\eta)} \delta_{\alpha}^{\beta+2} & Q^{-\alpha} \delta_{\alpha}^{\beta}
\end{array}\right)
$$

Remarks ($\theta>0$): it is tempting to suppose η (possibly renormalized) is the same parameter as in the classical model.

- $\eta<0$ - the off-diagonal entries dominate;
- $\theta>\eta>0$ - the off-diagonal entries dominate;
- $\eta>\theta>0$ - the diagonal entries dominate;
- These are the same features we saw in the classical soliton-shock scattering.
- $\theta=\eta$ is not special but there is a simple pole nearby at

$$
\theta=\eta-\frac{i \pi}{2 \gamma} \rightarrow \eta, \beta \rightarrow 0
$$

- This pole is like a resonance, with complex energy,

$$
E=m_{s} \cosh \theta=m_{s}(\cosh \eta \cos (\pi / 2 \gamma)-i \sinh \eta \sin (\pi / 2 \gamma))
$$ and a 'width' proportional to $\sin (\pi / 2 \gamma)$.

Using this pole and a bootstrap to define odd T leads to a non-unitary transmission matrix - interpret as the instability corresponding to the classical feature noted at $\theta=\eta$.

- This pole is like a resonance, with complex energy,

$$
E=m_{s} \cosh \theta=m_{s}(\cosh \eta \cos (\pi / 2 \gamma)-i \sinh \eta \sin (\pi / 2 \gamma))
$$

and a 'width' proportional to $\sin (\pi / 2 \gamma)$.
Using this pole and a bootstrap to define odd T leads to a non-unitary transmission matrix - interpret as the instability corresponding to the classical feature noted at $\theta=\eta$.

- The Zamolodchikov S-matrix has 'breather' poles corresponding to soliton-anti-soliton bound states at
breathers and find for the lightest breather
- This pole is like a resonance, with complex energy,

$$
E=m_{s} \cosh \theta=m_{s}(\cosh \eta \cos (\pi / 2 \gamma)-i \sinh \eta \sin (\pi / 2 \gamma))
$$

and a 'width' proportional to $\sin (\pi / 2 \gamma)$.
Using this pole and a bootstrap to define odd T leads to a non-unitary transmission matrix - interpret as the instability corresponding to the classical feature noted at $\theta=\eta$.

- The Zamolodchikov S-matrix has 'breather' poles corresponding to soliton-anti-soliton bound states at

$$
\Theta=i \pi(1-n / \gamma), n=1,2, \ldots, n_{\max }
$$

use the bootstrap to define the transmission factors for
breathers and find for the lightest breather:

- This pole is like a resonance, with complex energy,

$$
E=m_{s} \cosh \theta=m_{s}(\cosh \eta \cos (\pi / 2 \gamma)-i \sinh \eta \sin (\pi / 2 \gamma))
$$

and a 'width' proportional to $\sin (\pi / 2 \gamma)$.
Using this pole and a bootstrap to define odd T leads to a non-unitary transmission matrix - interpret as the instability corresponding to the classical feature noted at $\theta=\eta$.

- The Zamolodchikov S-matrix has 'breather' poles corresponding to soliton-anti-soliton bound states at

$$
\Theta=i \pi(1-n / \gamma), n=1,2, \ldots, n_{\max }
$$

use the bootstrap to define the transmission factors for breathers and find for the lightest breather:

$$
T(\theta)=-i \frac{\sinh \left(\frac{\theta-\eta}{2}-\frac{i \pi}{4}\right)}{\sinh \left(\frac{\theta-\eta}{2}+\frac{i \pi}{4}\right)}
$$

....This is simple and coincides with the expression we calculated previously in the linearised model.

- This is also amenable to perturbative calculation and it works out (with a renormalised η) - See Bajnok and Simon, 2007.
\square - The diaconal terms in the soliton transmiscion matrix are strange because they treat solitons (a factor Q^{α}) and anti-solitons (a factor $Q^{-\alpha}$) differently
....This is simple and coincides with the expression we calculated previously in the linearised model.
- This is also amenable to perturbative calculation and it works out (with a renormalised η) - See Bajnok and Simon, 2007.
- The diagonal terms in the soliton transmission matrix are strange because they treat solitons (a factor Q^{α}) and anti-solitons (a factor $Q^{-\alpha}$) differently
this feature is directly attributable to the Lagrangian term
....This is simple and coincides with the expression we calculated previously in the linearised model.
- This is also amenable to perturbative calculation and it works out (with a renormalised η) - See Bajnok and Simon, 2007.
- The diagonal terms in the soliton transmission matrix are strange because they treat solitons (a factor Q^{α}) and anti-solitons (a factor $Q^{-\alpha}$) differently
this feature is directly attributable to the Lagrangian term
$\delta(x)\left(u v_{t}-v u_{t}\right)$
....This is simple and coincides with the expression we calculated previously in the linearised model.
- This is also amenable to perturbative calculation and it works out (with a renormalised η) - See Bajnok and Simon, 2007.
- The diagonal terms in the soliton transmission matrix are strange because they treat solitons (a factor Q^{α}) and anti-solitons (a factor $Q^{-\alpha}$) differently
- this feature is directly attributable to the Lagrangian term

$$
\delta(x)\left(u v_{t}-v u_{t}\right)
$$

\square
....This is simple and coincides with the expression we calculated previously in the linearised model.

- This is also amenable to perturbative calculation and it works out (with a renormalised η) - See Bajnok and Simon, 2007.
- The diagonal terms in the soliton transmission matrix are strange because they treat solitons (a factor Q^{α}) and anti-solitons (a factor $Q^{-\alpha}$) differently
- this feature is directly attributable to the Lagrangian term

$$
\delta(x)\left(u v_{t}-v u_{t}\right)
$$

- All this refers to type-I but recently a new solution has been found corresponding to type-II (EC, Zambon, 2010), and a new way of regarding both has been developed (Weston, 2010).

Further questions....

- Moving shocks can be constructed in sine-Gordon theory but their quantum scattering is not yet completely analysed, though there is a candidate S-matrix compatible with the soliton transmission matrix. (Bowcock, EC, Zambon, 2005; Weston, 2010)
- Some alternative views and other aspects are discussed in several places. (For example Habibullin, Kundu, 2007)

Further questions....

- Moving shocks can be constructed in sine-Gordon theory but their quantum scattering is not yet completely analysed, though there is a candidate S-matrix compatible with the soliton transmission matrix. (Bowcock, EC, Zambon, 2005; Weston, 2010)

Further questions....

- Moving shocks can be constructed in sine-Gordon theory but their quantum scattering is not yet completely analysed, though there is a candidate S-matrix compatible with the soliton transmission matrix. (Bowcock, EC, Zambon, 2005; Weston, 2010)
- Some alternative views and other aspects are discussed in several places. (For example Habibullin, Kundu, 2007)

Further questions....

- Moving shocks can be constructed in sine-Gordon theory but their quantum scattering is not yet completely analysed, though there is a candidate S-matrix compatible with the soliton transmission matrix. (Bowcock, EC, Zambon, 2005; Weston, 2010)
- Some alternative views and other aspects are discussed in several places. (For example Habibullin, Kundu, 2007)
- Multiple fields - defects can be constructed within the $a_{r}^{(1)}$ affine Toda field theories (Bowcock, EC, Zambon, 2004) and there are several types of transmission matrices, though only partially analysed (EC, Zambon, 2007).
- NLS, KdV, mKdV (EC, Zambon, 2006; Caudrelier 2006)

Further questions....

- Moving shocks can be constructed in sine-Gordon theory but their quantum scattering is not yet completely analysed, though there is a candidate S-matrix compatible with the soliton transmission matrix. (Bowcock, EC, Zambon, 2005; Weston, 2010)
- Some alternative views and other aspects are discussed in several places. (For example Habibullin, Kundu, 2007)
- Multiple fields - defects can be constructed within the $a_{r}^{(1)}$ affine Toda field theories (Bowcock, EC, Zambon, 2004) and there are several types of transmission matrices, though only partially analysed (EC, Zambon, 2007).
- NLS, KdV, mKdV (EC, Zambon, 2006; Caudrelier 2006)
- Fermions and SUSY field theories (Gomes, Ymai, Zimerman,

Further questions....

- Moving shocks can be constructed in sine-Gordon theory but their quantum scattering is not yet completely analysed, though there is a candidate S-matrix compatible with the soliton transmission matrix. (Bowcock, EC, Zambon, 2005; Weston, 2010)
- Some alternative views and other aspects are discussed in several places. (For example Habibullin, Kundu, 2007)
- Multiple fields - defects can be constructed within the $a_{r}^{(1)}$ affine Toda field theories (Bowcock, EC, Zambon, 2004) and there are several types of transmission matrices, though only partially analysed (EC, Zambon, 2007).
- NLS, KdV, mKdV (EC, Zambon, 2006; Caudrelier 2006)
- Fermions and SUSY field theories (Gomes, Ymai, Zimerman, 2006)

Further questions....

- Moving shocks can be constructed in sine-Gordon theory but their quantum scattering is not yet completely analysed, though there is a candidate S-matrix compatible with the soliton transmission matrix. (Bowcock, EC, Zambon, 2005; Weston, 2010)
- Some alternative views and other aspects are discussed in several places. (For example Habibullin, Kundu, 2007)
- Multiple fields - defects can be constructed within the $a_{r}^{(1)}$ affine Toda field theories (Bowcock, EC, Zambon, 2004) and there are several types of transmission matrices, though only partially analysed (EC, Zambon, 2007).
- NLS, KdV, mKdV (EC, Zambon, 2006; Caudrelier 2006)
- Fermions and SUSY field theories (Gomes, Ymai, Zimerman, 2006)

