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Integrable dynamical systems and field theory have a long
history (over 100 years) - with many developments since 1968.

Integrable field theory in the presence of boundaries (one
boundary or two), or defects (shocks), is more recent.

The purpose here is to give (from a personal perspective) a
small collection of ideas and questions.

• Sine-Gordon field theory - a lightning review

• Bäcklund transformations and defects

• Solitons and defects

• Defects in sine-Gordon quantum field theory

Apology: references are not comprehensive.
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The sine-Gordon field theory

From a physicist’s perspective - began with Skyrme (1959-62).

1
c2

∂2u
∂t2 −

∂2u
∂x2 = −m2

β
sin βu.

• c is a constant with the dimensions of velocity (usually set
to unity),

• m is a constant with dimensions of inverse length (~m has
the dimensions of mass);

• β sets the scale of the field u: as β → 0, s-G → linear.

All these constants can be removed by scaling t , x and u,
though β in particular is important for quantization.
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For the following reasons the sine-Gordon nonlinear wave
equation provides a paradigm:
• it is (almost) the simplest (a single scalar field), relativistic,

integrable nonlinear wave equation in two dimensions (one
time, one space) (t , x);

• it is simple enough to allow direct computations in the
classical or quantum domains;

• it is complicated enough to display a wide range of
interesting phenomena;

• though originally studied on the range −∞ < x < ∞, or on
a circle (periodic boundary conditions), there are new
features when the model is restricted to a half-line (x < 0,
say), or to an interval (x ∈ [−L, L]), by suitable boundary
conditions, or if there are ‘impurities’ or ‘defects’.
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Expanding the right hand side of the sine-Gordon equation
reveals....

1
c2

∂2u
∂t2 −

∂2u
∂x2 = −m2u +

+
m2β2

3!
u3 − m2β4

5!
u5 + . . .

The first three (linear) terms taken alone are simply the
Klein-Gordon equation for a relativistic scalar particle with mass
parameter m.

From a perturbative quantum field theory perspective it looks
unexceptional until one starts to calculate - and finds that
particle production is disallowed.
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Energy and momentum

The sine-Gordon equation provides the stationary points of an
action given by the Lagrangian density:

L =
1
2
∂µu ∂µu − m2

β2 (1− cos βu).

The corresponding conserved energy and momentum are
given by

E =

∫ ∞

−∞
dx
(

1
2
(u2

t + u2
x ) +

m2

β2 (1− cos βu)

)
,

P = −
∫ ∞

−∞
dx utux .

Well-defined provided u is ‘smooth’ with ut , ux → 0, βu → 2nπ,
as x → ±∞, where n is an integer or zero.
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Solitons

It is easy to check that the following gives an exact (real)
solution to the sine-Gordon equation:

eiβu/2 =
1 + iE
1− iE

, E = eax+bt+c ,

where a, b are real constants satisfying

a2 − b2 = m2,

and c is a constant that need not be real, but ec is real.
Note:
• Useful to put a = m cosh θ, b = −m sinh θ; and θ is the

‘rapidity’.
• We take a > 0.
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Properties

Assume first E > 0 (ie ec > 0).

• The spatial derivative ux is given by

ux =
4a
β

E
1 + E2 ,

which implies u is monotonically increasing.

• As x → −∞, eiβu/2 → 1; thus u → 0 is a suitable choice
for x → −∞.

• As x → +∞, eiβu/2 → −1; since u is always increasing we
must have u → 2π/β for x → +∞.
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A soliton snapshot

The lower curve represents ux (and is similar in general shape
to the energy density) and the upper curve represents the
soliton itself smoothly interpolating u = 0 to u = 2π.

The solution is changing rapidly within a small region in the
neighbourhood of x = 0.
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• For θ > 0 the soliton is travelling along the x-axis in a
positive direction with velocity b/a = tanh θ.

• Its energy and momentum are calculated directly to be

(E ,P) =
8m
β2 (cosh θ, sinh θ).

This expression is the energy-momentum of a relativistic
particle (c = 1) of mass M = 8m/β2.

• Note: assigning the units of action (ML) to the action
requires [u]2 = ML and hence [β2] = 1/ML (which is why a
physicist might prefer not to put β = 1). Since [m] = 1/L,
this means that M has the same dimensions as ~m, and it
corresponds to a classically generated mass.

• A strongly localised field configuration ∼ a particle.
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An anti-soliton
Return to the expression for a soliton:

eiβu/2 =
1 + iE
1− iE

, E = eax+bt+c

and replace c by c + iπ (equivalently, replace E by −E). Note

ux = −4a
β

E
1 + E2 ,

which is always negative - this time the solution interpolates
from 0 to −2π, with identical energy-momentum.
Define a conserved (‘topological’) charge

Q =
1

2π

∫ ∞

−∞
dx ux =

1
2π

[u(t ,∞)− u(t ,−∞)].

Then Q = 1 for a soliton and Q = −1 for an anti-soliton.
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Multi-solitons
It is also possible to check directly (use Maple/Mathematica)
that the following expression is also a solution and describes
two solitons (stems from the 60s - see any soliton book):

eiβu/2 =
1 + iE1 + iE2 − Ω12E1E2

1− iE1 − iE2 − Ω12E1E2
, Ω12 = tanh2

(
θ1 − θ2

2

)
,

where

Ek = eak x+bk t+ck , ak = m cosh θk , bk = −m sinh θk , k = 1, 2

Also
(E ,P) = (E1,P1) + (E2,P2),

the sum of the individual soliton energies and momenta.

Generalises to any number of solitons (point to note, rapidities
are all different).
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are all different).



Again, ux is positive and, taking as example θ1 = 0, θ2 = 0.5,
two maxima are clearly seen in the regions where the solution
is changing rapidly:

In this snapshot the moving soliton is to the left of the stationary
one (and the red curve represents sin(u/2)). Since the
derivative is always positive, u increases from 0 → 4π.



Remarks:
• Either E1 or E2 or both can be replaced by −E1, −E2,

respectively, to give solutions with soliton-anti-soliton, or
two solitons.

• A simple time-periodic solution (known as a ‘breather’) may
be constructed by setting

θ1 = iλ, θ2 = −iλ, c1 = c2.

• The energy-momentum of this breather is given by

(E ,P) =
16m
β2 (cos λ, 0) ≡ 2M(cos λ, 0).

Evidently, the energy of a breather is less than the mass of
two solitons, indicating a bound-state - further evidence for
Skyrme that this was an interesting model to analyse.



Further remarks

• A ‘real’ version of sine-Gordon is sinh-Gordon
∂2u = − sinh u; it is at first sight less interesting because it
has no real solitons.

• It is sometimes convenient to use light-cone variables
z = t + x , z̄ = t − x . Then the sinh-Gordon equation reads
4∂∂̄u = − sinh u.

• The Liouville equation is simpler-looking: 4∂∂̄u = −eu. It is
also conformally invariant under the transformation

z → z ′(z), z̄ → z̄ ′(z̄), u′ = u + ln
(

dz̄ ′

dz̄
dz ′

dz

)

• (Zamolodchikov) It can be useful to consider
sinh/sine-Gordon as a perturbation of a conformal field
theory.
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Affine Toda field theory

The sinh/sine-Gordon model is the simplest of a large class of
field theories based on Lie algebra data (the sinh/sine-Gordon
model is based on the roots of a1 or su(2)).

In many respects the whole class may be considered together -
though the sinh/sine-Gordon model is particularly special - they
are all integrable in a sense that generalises Liouville’s theorem
for finite dynamical systems (meaning there are ‘enough’
conserved quantities in involution).

(Toda, Mikhailov-Olshanetsky-Perelomov, Segal, Wilson,
Olive-Turok, ...)

A very interesting story that we have no time for.
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Bäcklund transformations
Return for a while to the sine-Gordon equation we began with

1
c2

∂2u
∂t2 −

∂2u
∂x2 = −m2

β
sin βu,

or, alternatively, scaling away all constants, utt − uxx = − sin u.

A remarkable observation of Bäcklund (1882) concerns two
solutions to the sine-Gordon equation related by first order
differential equations:

ux = vt + λ sin
(

u + v
2

)
+ λ−1 sin

(
u − v

2

)
vx = ut − λ sin

(
u + v

2

)
+ λ−1 sin

(
u − v

2

)
.

Eliminating v gives the sine-Gordon equation for u, and
vice-versa.
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The first interesting remark concerns the choice v = 0. With
this choice u satisfies:

ux =
(
λ + λ−1

)
sin
(u

2

)
ut =

(
λ− λ−1

)
sin
(u

2

)
,

whose solution is precisely the single soliton we had at the
beginning provided we identify λ = eθ, where θ is the soliton’s
rapidity.

That is, u is given by

eiu/2 =
1 + iE
1− iE

, E = eax+bt+c ,

with a = cosh θ, b = − sinh θ.



The second point concerns energy and momentum, which are
each clearly seen to be boundary terms. For example:

P = −
∫ ∞

−∞
dx utux = −

∫ ∞

−∞
dx
(
λ− λ−1

)
sin
(u

2

)
ux .

Hence,

P =
(
λ− λ−1

) [
cos

(u
2

)]∞
−∞

= −4 sinh θ.

A similar argument yields the energy as a boundary contribtion

E = −
(
λ + λ−1

) [
cos

(u
2

)]∞
−∞

= 4 cosh θ.

It was also noted that the Bäcklund transformation can be used
to generate multiple solitons. For example, taking v be a single
soliton and solving for u leads to a double-soliton.
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An almost physical example - a defect or shock

Bowcock, EC, Zambon (2002)

Typical shock (or bore) in fluid mechanics:

- flow flips from supersonic to subsonic,

- abrupt change of depth in a channel.

• Velocity field changes rapidly over a small distance,
• Model by a discontinuity in v(x, t),
• There remain conserved quantities - mass, momentum, for

example.

• Are shocks allowed in integrable QFT?
• If yes, what are their properties?
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. . . • . . .

u(x , t) x0 v(x , t)

Start with a single selected point on the x-axis, say x = 0, and
denote the field to the left of it (x < 0) by u, and to the right
(x > 0) by v , with field equations in their respective domains:

∂2u = −∂U
∂u

, x < 0, ∂2v = −∂V
∂v

, x > 0

• How can the fields be ‘sewn’ together preserving integrability?

One natural choice (δ-impurity) would be to put

u(0, t) = v(0, t), ux(0, t)− vx(0, t) = µ u(0, t),

- but, integrability tends to be lost.

(Goodman, Holmes and Weinstein (2002)).
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• Problem: there is a distinguished point, translation symmetry
is lost and the conservation laws - at least some of them - (for
example, momentum), are violated unless the impurity has the
property of adding by itself compensating terms.

Consider the field contributions to momentum:

P = −
∫ 0

−∞
dx utux −

∫ 0

−∞
dx vtvx .

Then, using the field equations, 2Ṗ is given by

= −
∫ 0

−∞
dx
[
u2

t + u2
x − 2U(u)

]
x
−
∫ ∞

0
dx
[
v2

t + v2
x − 2V (v)

]
x

= −
[
u2

t + u2
x − 2U(u)

]
x=0

+
[
v2

t + v2
x − 2V (v)

]
x=0

= −2
dΩ

dt
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If there are ‘sewing’ conditions for which the last step is valid
then P + Ω will be conserved, with Ω a function of u, v - and
possibly derivatives - evaluated at x = 0.

Next, consider the energy density and calculate

Ė = [uxut ]0 − [vxvt ]0.

Setting ux = vt + X (u, v), vx = ut + Y (u, v) we find

Ė = utX − vtY .

This is a total time derivative provided

X = −∂D
∂u

, Y =
∂D
∂v

,

for some D. Then
Ė = −dD

dt
.
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This argument suggests sewing conditions of the form

ux = vt −
∂D
∂u

, vx = ut +
∂D
∂v

,

where D depends on both fields evaluated at x = 0, leading to

Ṗ = vt
∂D
∂u

+ ut
∂D
∂v

− 1
2

(
∂D
∂u

)2

+
1
2

(
∂D
∂v

)2

+ (U − V ).

This is a total time derivative provided the first piece is a perfect
differential and the second piece vanishes. Thus....

∂D
∂u

= −∂Ω

∂v
,

∂D
∂v

= −∂Ω

∂u
.
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In other words....

∂2D
∂v2 =

∂2D
∂u2 ,

1
2

(
∂D
∂u

)2

− 1
2

(
∂D
∂v

)2

= (U − V ).

Exercise Investigate the possible combinations U, V , D.

... should find those allowed are: sine-Gordon, Liouville,
massless free, or, massive free.

For example, U(u) = m2u2/2, V (v) = m2v2/2, D turns out to
be

D(u, v) =
mσ

4
(u + v)2 +

m
4σ

(u − v)2,

and σ is a free parameter.

Note: the Tzitzéica (aka Bullough-Dodd, M-ZS, a(2)
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It is also worth noting there is a Lagrangian description of this
type of ‘shock’:

L = θ(−x)L(u) + δ(x)

(
uvt − utv

2
− D(u, v)

)
+ θ(x)L(v)

The usual E-L equations provide both the field equations for
u, v in their respective domains and the ’sewing’ conditions.

Exercise in the free case, what happens to a wave incident
from (say) the left half-line?

Show that if

u =
(

eikx + Re−ikx
)

e−iωt , v = Teikxe−iωt , ω2 = k2 + m2,

then R = 0 and find T . (At first sight this seems surprising.)
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sine-Gordon
Choosing u, v to be sine-Gordon fields (and scaling the
coupling and mass parameters to unity), we take:

D(u, v) = 2
(

σ cos
u + v

2
+ σ−1 cos

u − v
2

)
to find

x < x0 : ∂2u = − sin u,

x > x0 : ∂2v = − sin v ,

x = x0 : ux = vt − σ sin
u + v

2
− σ−1 sin

u − v
2

,

x = x0 : vx = ut + σ sin
u + v

2
− σ−1 sin

u − v
2

.

The last two expressions are a Bäcklund transformation frozen
at x = x0.
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Solitons and defects

Consider a soliton incident from x < 0.

It will not be possible to satisfy the sewing conditions (in
general) unless a similar soliton emerges into the region x > 0:

eiu/2 =
1 + iE
1− iE

, eiv/2 =
1 + izE
1− izE

, E = eax+bt+c ,

a = cosh θ, b = − sinh θ,

where z is to be determined. It is also useful to set λ = e−η.

• We find

z = coth
(

η − θ

2

)
.

This result has some intriguing consequences....
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Suppose θ > 0.

• η < θ implies z < 0; ie the soliton emerges as an anti-soliton.

-The final state will contain a discontinuity of magnitude 4π at
x = 0.

• η = θ implies z = ∞ and there is no emerging soliton.

- The energy-momentum of the soliton is captured by the
‘defect’.

- The eventual configuration will have a discontinuity of
magnitude 2π at x = 0.

• η > θ implies z > 0; ie the soliton retains its character.

Thus, the ‘defect’ or ‘shock’ can be seen as a new feature
within the sine-Gordon model.
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Comments and questions....

• The shock is local so there could be several shocks located at
x = x1 < x2 < x3 < · · · < xn; these behave independently as far
as a soliton is concerned, each contributing a factor zi for a
total ‘delay’ of z = z1z2 . . . zn.

• When several solitons pass a defect each component is
affected separately.

- This means that at most one of them can be ‘filtered out’
(since the components of a multisoliton in the sine-Gordon
model must have different rapidities).

• Since a soliton can be absorbed, can a starting configuration
with u = 0, v = 2π decay into a soliton?

- No, there is no way to tell the time at which the decay would
occur (and quantum mechanics would be needed to provide the
probability of decay as a function of time).
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• The a(1)
r Toda models have Bäcklund transformations, do they

support defects?

- Yes.

• What about the other Toda field theories?

- They all have solitons, but they are not known to have
Bäcklund transformations of the above type; can they
nevertheless support defects?

- Not known.

• What about the Tzitzéica equation?

Needs a different idea (EC and Zambon, 2009)
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The classical type II defect

Consider two relativistic field theories with fields u and v , and
add a new degree of freedom λ(t) at the defect location:

L = θ(−x)Lu + θ(x)Lv + δ(x) (2qλt − D(λ, p, q))

where

q =
u − v

2

∣∣∣∣
0

p =
u + v

2

∣∣∣∣
0
.

Then the usual steps lead to
• equations of motion:

∂2u = −Uu x < 0 ∂2v = −Vv x > 0

• defect conditions at x = 0

2qx = −Dp 2px − 2λt = −Dq 2qt = −Dλ
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As before, consider momentum

P =

∫ 0

−∞
dx utux +

∫ ∞

0
dx vtvx ,

and seek a functional Ω(u, v , λ) such that Pt ≡ −Ωt . Then
P + Ω|x=0 is the total conserved momentum of the system.

Constraints on U, V , Ω:

Dp = Ωλ Dλ = Ωp DpDq − ΩqDλ = 2(U − V ),

implying

D = f (p + λ, q) + g(p − λ, q) Ω = f (p + λ, q)− g(p − λ, q)

fλgq − gλfq = U(u)− V (v)
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• Curiousity: consider λ and its conjugate momentum
πλ = 2 q. Then, the Poisson bracket of the defect
contributions to energy and momentum is related to the
potential difference across the defect, that is

fλgq − gλfq = (U − V ) ↔ {Ω, D} = (U − V )

• Exercise — show that it is now possible to choose f , g in
such a way that the potentials U, V can be any one of
sine-Gordon, Liouville, Tzitzéica, or quadratic. Are there
solutions other than the integrable cases?

• Remark In the sine-Gordon case the type-II defect is a new
object - in a sense it is a ‘fused’ pair of type-I defects (EC,
Zambon, 2010). See also Weston 2010.
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Shocks in sine-Gordon quantum field theory

Assume σ > 0 then...

• Expect Pure transmission compatible with the bulk
S-matrix;

• Expect For each type of defect two different ‘transmission’
matrices (since the topological charge on a defect can only
change by ±2 as a soliton/anti-soliton passes).

• Expect Transmission matrix with even shock labels ought
to be unitary, the transmission matrix with odd labels might
not be.

• Questions Relationship between different types of defect;
assemblies of defects, ...
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eγ
cβ (θb) = T dβ

bα (θb)T cγ
aβ (θa)Sef

cd(Θ)

With Θ = θa − θb and sums over the ‘internal’ indices β, c, d .

• Satisfied separately by evenT and oddT .

• A solution was found by Konik and LeClair, 1999.
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Zamolodchikov’s sine-Gordon S-matrix - reminder

Scd
ab (Θ) = ρ(Θ)


A 0 0 0
0 C B 0
0 B C 0
0 0 0 A


where

A(Θ) =
qx2

x1
− x1

qx2
, B(Θ) =

x1

x2
− x2

x1
, C(Θ) = q − 1

q

and

ρ(Θ) =
Γ(1 + z)Γ(1− γ − z)

2πi

∞∏
1

Rk (Θ)Rk (iπ −Θ)

Rk (Θ) =
Γ(2kγ + z)Γ(1 + 2kγ + z)

Γ((2k + 1)γ + z)Γ(1 + (2k + 1)γ + z)
, z = iγ/π.



The Zamolodchikov S-matrix depends on the rapidity variables
θ and the bulk coupling β via

x = eγθ, q = eiπγ , γ =
8π

β2 − 1,

and it is also useful to define the variable

Q = e4π2i/β2
=
√
−q.

• K-L solutions have the form

T bβ
aα (θ) = f (q, x)

(
Qα δβ

α q−1/2eγ(θ−η) δβ−2
α

q−1/2 eγ(θ−η) δβ+2
α Q−α δβ

α

)

where f (q, x) is not uniquely determined but, for a unitary
transmission matrix should satisfy....
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....namely

f̄ (q, x) = f (q, qx)

f (q, x)f (q, qx) =
(

1 + e2γ(θ−η)
)−1

A slightly alternative discussion of these points is given in
Bowcock, EC, Zambon, 2005, where most of the properties
noted below are also described.

• A ‘minimal’ solution has the following form

f (q, x) =
eiπ(1+γ)/4

1 + ieγ(θ−η)

r(x)

r̄(x)
,

where it is convenient to put z = iγ(θ − η)/2π and

r(x) =
∞∏

k=0

Γ(kγ + 1/4− z)Γ((k + 1)γ + 3/4− z)

Γ((k + 1/2)γ + 1/4− z)Γ((k + 1/2)γ + 3/4− z)
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T bβ
aα (θ) = f (q, x)

(
Qα δβ

α q−1/2eγ(θ−η) δβ−2
α

q−1/2 eγ(θ−η) δβ+2
α Q−α δβ

α

)

Remarks (θ > 0): it is tempting to suppose η (possibly
renormalized) is the same parameter as in the classical model.

• η < 0 - the off-diagonal entries dominate;
• θ > η > 0 - the off-diagonal entries dominate;
• η > θ > 0 - the diagonal entries dominate;

• These are the same features we saw in the classical
soliton-shock scattering.

• θ = η is not special but there is a simple pole nearby at

θ = η − iπ
2γ

→ η, β → 0
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• This pole is like a resonance, with complex energy,

E = ms cosh θ = ms(cosh η cos(π/2γ)− i sinh η sin(π/2γ))

and a ‘width’ proportional to sin(π/2γ).

Using this pole and a bootstrap to define oddT leads to a
non-unitary transmission matrix - interpret as the instability
corresponding to the classical feature noted at θ = η.

• The Zamolodchikov S-matrix has ‘breather’ poles
corresponding to soliton-anti-soliton bound states at

Θ = iπ(1− n/γ), n = 1, 2, ..., nmax;

use the bootstrap to define the transmission factors for
breathers and find for the lightest breather:

T (θ) = −i
sinh

(
θ−η

2 − iπ
4

)
sinh

(
θ−η

2 + iπ
4

)
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....This is simple and coincides with the expression we
calculated previously in the linearised model.

• This is also amenable to perturbative calculation and it works
out (with a renormalised η) - See Bajnok and Simon, 2007.

• The diagonal terms in the soliton transmission matrix are
strange because they treat solitons (a factor Qα) and
anti-solitons (a factor Q−α) differently

- this feature is directly attributable to the Lagrangian term

δ(x)(uvt − vut)

• All this refers to type-I but recently a new solution has been
found corresponding to type-II (EC, Zambon, 2010), and a new
way of regarding both has been developed (Weston, 2010).
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Further questions....

• Moving shocks can be constructed in sine-Gordon theory but
their quantum scattering is not yet completely analysed, though
there is a candidate S-matrix compatible with the soliton
transmission matrix. (Bowcock, EC, Zambon, 2005; Weston,
2010)

• Some alternative views and other aspects are discussed in
several places. (For example Habibullin, Kundu, 2007)

• Multiple fields - defects can be constructed within the a(1)
r

affine Toda field theories (Bowcock, EC, Zambon, 2004) and
there are several types of transmission matrices, though only
partially analysed (EC, Zambon, 2007).

- NLS, KdV, mKdV (EC, Zambon, 2006; Caudrelier 2006)

- Fermions and SUSY field theories (Gomes, Ymai, Zimerman,
2006)
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