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Abstract. This paper investigates a model of default in financial networks where the

decision by one agent on whether or not to default impacts the incentives of other agents

to escape default. Agents’ payoffs are determined by the clearing mechanism introduced

in the seminal contribution of Eisenberg and Noe (2001). We first show the existence of

a Nash equilibrium of this default game. Furthermore, we develop an algorithm to find

all Nash equilibria that relies on the financial network structure. The algorithm provides

a ranking for the set of Nash equilibria, which can serve as a measure of systemic risk.

Finally, we show that introducing a central clearing counterparty achieves the efficient

equilibrium at no additional cost.
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1. Introduction

Financial institutions carry out various transactions with each other, including risk–sharing

and insurance. The architecture of the network of transactions between institutions can

support financial stability because it enables them to share funding or transfer risk. But

these linkages can also facilitate the diffusion of shocks through the system, due to chains

of default and the domino effect. This is referred to as systemic risk. Systemic risk is

costly for individuals, institutions and economies, as demonstrated by the last financial

crisis. The obvious need for a stable financial system has led to a significant interest in

policies that could reduce systemic risk and mitigate contagion.

This paper introduces a model of default in financial networks. We study a two-period

economy where agents have a positive endowment in each period. The endowment rep-

resents agents’ cash flows from outside the financial system. We assume that agents hold

each other’s financial liabilities and that this constitutes the network between them. These

liabilities mature in the second period, and we assume that agents’ second-period endow-

ments are small and deterministic, so that they face a risk of default. More specifically, the

liabilities structure results in cyclical payments interdependencies that are simultaneously

computed according to the clearing mechanism described in the seminal contribution of

Eisenberg and Noe (2001). The clearing vector satisfies three criteria:

• debt absolute priority, which stipulates that liabilities are paid in full in order to

have positive equity;

• limited liability, which means that the payment made by each agent cannot exceed

its inflows;

• equal seniority of all creditors, which implies pro rata repayments.

Agents can avoid default by storing part of their first-period endowment.

Due to complementarities in the payments, the decision taken by one agent to store

part of his endowment exerts a positive externality on the other agents to whom he is

connected.1 We show that the strategic interactions in the financial system modelled

here can be investigated as a coordination game, called the default game, where agents’

decisions are simply whether to default or not. It is well known in the literature that

1The non-storage in our model can be equivalently interpreted as a bank run in the influential Diamond–
Dybvig model.
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coordination games will in general yield multiple pure–strategy Nash equilibria and that

the set of pure–strategy Nash equilibria has a lattice structure—in particular, there are

two extreme pure–strategy Nash equilibria. In our setting, the best equilibrium is the

one where the largest number of agents choose the maximal action Non-Default and the

worst equilibrium is the one where the largest number of agents choose the minimal action

Default.

In the paper, we relate the multiplicity of Nash equilibria to the presence of a cycle of

financial obligations. Then, we develop a simple algorithm for finding all Nash equilibria

of the default game. While there are easy algorithms for finding the maximal and minimal

equilibria and relatively easy algorithms to compute all Nash equilibria in coordination

games such as the default game (see Echenique (2007)), the advantage of the algorithm

developed in this paper is that it relies on the financial network structure to inform the

computation of Nash equilibria. Algorithms that exploit the network structure such as

the algorithm developed in this paper, as well as quickly computing all Nash equilibria,

provide useful information on the strategic interactions between agents. In particular, the

algorithm provides a ranking for the Nash equilibria in each strongly connected component

of the financial network. The ranking for the Nash equilibria is advantageous from a policy

perspective since it can serve as a measure of systemic risk contribution of agents, More

specifically, agents that default in all Nash equilibria will be called the first wave of default.

Then, agents that default in all Nash equilibria except the highest Nash equilibrium will

be called the second wave of default and so on.

In this paper, we show that the problem of inefficient coordination may arise in finan-

cial networks. Similar to other areas in economics, the strategic complementarities of

payments due to the cyclical financial interconnections allow for the existence of multiple

Nash equilibria. This gives rise to the question of which one of these equilibria will be

the outcome of the underlying default game. From a policy perspective, given that inef-

ficient coordination might pose a severe economic problem, there is a need for financial

institutions fostering efficient coordination of agents’ decisions. Recently, central clearing

has become the cornerstone of policy reform in financial markets since it limits the scope

of default contagion. Our analysis shows that introducing a central clearing counterparty

(henceforth, CCP) also allows agents playing different actions at different Nash equilibria
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to coordinate on the efficient equilibrium at no additional cost. As a consequence, our

result reinforces the key role CCP’s play in stabilising financial markets.

This paper is structured as follows. In Section 2, we go over the related literature.

Then we describe the model and show the existence of a Nash equilibrium in Section 3.

We develop an algorithm to find all Nash equilibria in Section 4 and Section 5 provides

some policy implications of central clearing. Section 6 concludes the paper and Section 7

is an appendix devoted to the proofs.

2. Related Literature

The impact of the financial network structure on economic stability has been a subject

of ongoing interest since the last financial crisis (of 2008). The seminal contributions of

Allen and Gale (2000) and Eisenberg and Noe (2001) were first to acknowledge that the

financial network structure determines default contagion, and would serve as a basis for

many subsequent contributions.

Allen and Gale (2000) investigate how symmetric financial networks lead to contagion,

where links represent sharing agreements. Their key finding is that incomplete financial

networks are less resilient and more vulnerable to contagion than their complete coun-

terparts. Eisenberg and Noe (2001) develop a static model of default contagion in a

financial network where agents hold each other’s financial liabilities and the activities and

operations of each agent are condensed into one value: the operational cash flow. The

repayment of liabilities will be interdependent, since whether an agent defaults or not is a

result of his operational cash flow as well as the payments he receives from other agents.

Eisenberg and Noe first prove the existence of a clearing payment vector that is unique

under mild conditions. They also provide an algorithm to compute the clearing vector,

which is important to predict chains of defaults.

Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) extend the Eisenberg–Noe model to

accommodate agent exposure to outside shocks. They establish that up to a certain

magnitude of shocks, the more connected the financial network is, the more stable it is;

beyond this threshold, the connectedness of the network makes it more prone to conta-

gion and thus more fragile. Elliott, Golub and Jackson (2014) introduce two concepts

of cross-holdings that have distinctive and non-monotonic impact on default cascades.
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Integration, which measures the dependence on counterparties, expands the extent of de-

fault contagion but reduces the probability of the first failure; while diversification, which

measures the heterogeneity of cross-holdings, increases the propagation of failure cascades

but decreases the exposure level among pairs of financial institutions. Cabrales, Gottardi

and Vega-Redondo (2017) investigate the optimal network structure that maximizes risk-

sharing benefits among interconnected firms while decreasing their risk exposure. Jackson

and Pernoud (2020) investigate how the network structure impacts agents’ investment

strategies as well as optimal regulatory intervention. Other recent contributions include

Teteryatnikova (2014) and Csóka and Herings (2016).

For a recent survey, see Jackson and Pernoud (2020). Several approaches have been

investigated to mitigate the domino effect in the financial network, such as central clearing

and identifying the most systemically relevant financial institutions and then targeting

them through cash injections. For instance, Demange (2018), following a similar approach

to Eisenberg and Noe (2001), develops a new measure, called the threat index, which

identifies the most systemically relevant agents for optimal targeted cash injection.

3. The Model

Consider a two-period (t = 1, 2) economy with N = {1, 2, ..., n} agents. Agent i’s

endowment in the first period is z1i ≥ 0 and in the second period is z2i > 0. The endowment

of agent i in each period denotes the cash flows arriving from outside the financial system.

We assume that agents hold each other’s liabilities, which mature in the second period.

More specifically, given two agents i, j ∈ N , let Lij ∈ R+ denote the liability that agent

i owes agent j. Then, agent i’s total liabilities are Li =
∑

j∈N Lij. Meanwhile,
∑

j∈N Lji

is the total assets of agent i. Let α = (αij)i,j∈N denote the matrix of relative liabilities,

with entries αij =
Lij

Li
representing the ratio of the liability agent i owes to agent j over

the total amount of agent i’s liabilities.

Each agent i can store an amount xi ∈ [0, z1i ] from his first-period endowment and

receives an interest rate r > 0 on his storage. Given the storage strategies of agents

x = (xi)i∈N , let πx = (πx
i )i∈N denote the clearing payment vector, uniquely defined as in
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Eisenberg and Noe (2001), such that for each agent i it holds that

πx
i = min

{
z2i + (1 + r)xi +

n∑
j=1

αjiπ
x
j ;Li

}
.

This means that z1i − xi denotes the equity of agent i in the first period and

z2i + (1 + r)xi +
n∑

j=1

αjiπ
x
j − πx

i

denotes the equity of agent i in the second period.

The utility function of agent i is Ui(e
1
i , e

2
i ) = e1i + e2i , where e1i is the equity of agent i

at t = 1 and e2i is the equity of agent i at t = 2. Therefore, the utility function of agent

i, given the storage strategies of agents x = (xi, x−i), is

Ui(z
1
i − xi, z2i + (1 + r)xi +

n∑
j=1

αjiπ
x
j − πx

i ) = z1i + z2i + rxi +
n∑

j=1

αjiπ
x
j − πx

i .

4. Nash Equilibria of the Default Game

First, we investigate further the economy introduced above. Observe that each agent

will choose to store a positive amount of his first-period endowment if and only if he

prefers (is better off) not to default; otherwise he will store nothing. If he prefers not

to default, since his utility is linear and the interest rate r > 0 he will store his entire

first-period endowment. Similarly, it is only the decision of an agent to default or not,

rather than the amount of storage, that affects the other agents. This is because, if he

defaults, he will pay out his total second-period equity and, if he does not default, he will

pay his total liability, neither of which is directly affected by his level of storage.

Therefore, the strategic interaction of agents in the economy can be investigated as a

binary coordination game with two actions (Default) = 0 and (Non-Default) = 1 among

which agents must choose. Now, define a threshold τi (a−i) as the minimum amount agent

i must pay in the second period to avoid default, given other agents’ actions a−i.

Proposition 1. The threshold τi (a−i) is well-defined and decreasing in a−i.

Proof. The proof of Proposition 1, together with all our other proofs, appears in the

Appendix.�
6



Proposition 1 shows that the threshold τi (a−i) is well-defined. Observe that agent i

will choose to play 1 whenever

(1 + r)z1i − τi (a−i) ≥ z1i .

Therefore, the best reply function of agent i can be written as follows:

Ψi (a−i) =

1 if rz1i − τi (a−i) ≥ 0

0 otherwise.

A profile of actions a∗ ∈ {0, 1}N is a Nash equilibrium if a∗i = Ψi

(
a∗−i
)
.

The default game introduced above corresponds to a binary game of strategic com-

plements. As defined in Topkis (1979), Milgrom and Roberts (1990), and Vives (1990)

strategic complementarities arise if an increase in one agent’s strategy increases the opti-

mal strategies of the other agents.2

Theorem 1. There exists a pure–strategy Nash equilibrium of the default game.

Theorem 1 shows the existence of a pure–strategy Nash equilibrium. Understandably,

the existence of a pure–strategy Nash equilibrium follows from the strategic complemen-

tarities between agents’ actions, since the decision of an agent not to default makes it

easier for other agents not to default too.

It is established in the literature that a binary game of strategic complements will in

general have multiple pure–strategy Nash equilibria with a lattice structure. In particular,

this class of games has two extreme equilibria: the best equilibrium is the equilibrium

where the largest number of agents choose the maximal action (Non-Default) = 1 and

the worst equilibrium is the equilibrium where the largest number of agents choose the

minimal action (Default) = 0 .

For simplicity, for the remainder of this paper, we assume that at a Nash equilibrium

of the default game, no agent is indifferent between (Non-Default) = 1 and (Default) = 0,

2See, Bulow, Geanakoplos and Klemperer (1985), Sobel (1988), Echenique and Sabarwal (2003), Amir
(2005), Echenique (2007) and Barraquer (2013) for other economic applications of games of strategic
complements.
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Figure 1. Cyclical obligations Unidirectional obligations

which is likely to be the case.3 The following result highlights the connection between the

multiplicity of equilibria and the structure of the financial network.

Proposition 2. If the default game has multiple Nash equilibria then, the financial net-

work has cyclical obligations.

Proposition 2 shows that the presence of a cycle of financial obligations is generically

necessary for the multiplicity of Nash equilibria. Eisenberg and Noe (2001) term this

phenomenon cyclical interdependence and illustrate it as follows: “A default by Firm A

on its obligations to Firm B may lead B to default on its obligations to C. A default by C

may, in turn have a feedback effect on A.”

In the following, we will show that the close relationship between the multiplicity of

Nash equilibria and the cyclical financial interconnections is useful to solve for pure–strategy

Nash equilibria of the default game. More specifically, we will provide an algorithm to

find all pure–strategy Nash equilibria of the default game.

Recall that the financial network is strongly connected if there is a path of obligations

between all pairs of agents. A strongly connected component (henceforth, SCC) of the

financial network is a maximal4 strongly connected subnetwork.

4.1. A financial network with a unique SCC. First, for simplicity, we consider the

case of a financial network with a unique strongly connected component. We will use

the following notion of ear decomposition of a network, which is useful given its close

3That is, this always holds except for a finite set of first-period endowments.
4In the sense that it is not properly contained in a larger SCC.
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relationship to network connectivity. An ear decomposition of a network is a partition of

the set of agents into an ordered collection of agent-disjoint simple paths, called ears. More

precisely, an ear decomposition of a network is a partition of the agents into E0, E1, . . . , Ep

such that

• E0 is a cycle

• for each h = 1, . . . , p, it holds that Eh = {v1h , · · · , vkh} is a directed path such

that the start agent v1h and the end agent vkh of each Eh are in E1∪ . . .∪Eh−1 but

the internal agents of Eh—that is, v2h , · · · , v(k−1)h—are not in E1 ∪ . . . ∪ Eh−1.
5

A financial network is strongly connected if and only if it has an ear decomposition. In

the following, we will rely on the ear decomposition to provide an algorithm to find all

pure–strategy Nash equilibria of the default game of a financial network with a unique

SCC.

Given an ear Eh, we define an injection agent of the ear as an agent (on Eh) with

inflows from one or more other ears. We define the activation level λi of an agent i as the

minimal inflow that will allow the agent to escape default. The activation outflow Aj(vi)

is the outflow of node j that is sufficient for agent vi to escape default.

An injection agent will essentially have more than one debtor illustrated by several

ingoing links and will comprise uncertainty at the level of the payment needed for it to

escape default. The algorithm, which we call USCCNE, builds on the above definitions

and goes as follows:

Sketch of Algorithm 1. (USCCNE) A complete description can be found in the

Appendix.

The algorithm traverses the network following the structure of the ear decomposition,

starting from the final ear Eh and working backwards to E1. At each ear Ek, the algorithm

traverses the network from vk1 outwards using breadth-first search, recursively calculating

the activation outflows from vk1 for each node in the search tree.

When arriving at an injection node, the algorithm needs to take account of feedback. If

the other incoming edges of the injection node are outgoing edges from visited ears, then

the activation outflow can be calculated recursively from the quantities already calculated.

5Each Eh (h = 1, . . . , p) is called an ear.
9



If the other incoming edges are from unvisited ears, then the breadth-first search stops

and the algorithm moves to the next ear.

The algorithm makes the search for equilibria a recursive problem. The algorithm works

backwards through the ear decomposition of the graph, but, starting from a given ear,

works forwards through the network until it reaches a node whose feedback information

hasn’t yet been calculated.

Proposition 3. (i) USCCNE identifies all equilibria.(ii) USCCNE returns only equilibria.

Proposition 4. USCCNE has a worst-case time complexity of O(n4).

USCCNE is particularly fast when there are fewer edges (liabilities) in the default game,

and as a result, fewer ears. The number of ears in the network is equal to |E| = m−n+1,

where m is the number of edges. When the network has fewer, longer ears, the algorithm

traverses the network more quickly, visiting individual agents less frequently. For example,

given a cycle network, traversal of the network and calculation of consistent strategy

profiles is completed in linear time.

The key feature of the USCCNE is that it transforms the SCC into a tree-like structure

by considering the possible payments of the start node of the second ear. It also ranks

the different agents by their order of non-default according to their activation level.

Corollary 1. The USCCNE algorithm provides as well a ranking for the set of Nash

equilibria.

Existing literature indicates that the set of pure strategy Nash equilibria of a coor-

dination game has a lattice structure. Corollary 1 shows that the USCCNE algorithm

developed in this paper based on the concept of ear decomposition provides the stronger

property of ranking Nash equilibria within the SCC.6

In interpretation, the ranking of Nash equilibria could be thought of as a measure of

systemic risk based on waves of default. That is, the agents that default in all Nash

equilibria will be called the first wave of default. Then, agents that default in all Nash

equilibria except the highest Nash equilibrium will be called the second wave of default.

6More specifically, given two Nash equilibria x and x′ of the default game, it holds that inf{x, x′} =
min{x, x′} and sup{x, x′} = max{x, x′}.
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Then, agents that default in all Nash equilibria except the two highest Nash equilibria

will be called the third wave of default. and so on.

The next example illustrates the default game.

Example 1. Consider an economy of ten agents connected through their ownership of

each other’s liabilities, among which only the first nine agents are strategically relevant.

Agents’ endowments in the first period are z1 = (25, 25, 40, 35, 40, 40, 25, 70, 20) and in the

second period are z2 = (3, 3, 3, 3, 3, 3, 3, 3, 3) and the interest rate is r = 0.1. All agents

have the same utility function Ui(e
1
i , e

2
i ) = e1i + e2i . The financial liabilities of agents to

each other are illustrated in the financial network in Figure 2.

This financial network contains a unique SCC, {1, 2, 3, 4, 5, 6, 7, 8, 9}, which has three

ears, E0 = {1, 2, 3, 4, 5, 1};E1 = {3, 6, 7, 8, 2}; and E2 = {7, 9, 1}.
In order to compute the Nash equilibria, we apply USCCNE. Figure 3 shows the trees

generated by the algorithm. Activation outflows from agents 3 and 7 are calculated

recursively. For example, the activation inflow to agent 4 is λ4 = L4 − z24 − 0.1z14 = 8.5.

Thus, agent 4 must receive a minimum of 8.5 by 3 to escape default, which corresponds

to a minimum payment by 3 of A3(v4) = 42.5. Activation outflows A3(v5), A3(v1), ... are

calculated recursively, with agent A3(v5) dependent on A3(v4) without loss of generality.

For each tree, activation levels are sorted and the algorithm cycles through the sorted

activation levels in order to identify strategy profiles that are consistent taking into ac-

count only the strategies of other agents within the tree. For tree T7, the tree-consistent

strategy profiles Γ∗(T7) are γ(v7, v8, v9) ∈ {(0, 0, 0), (1, 1, 1)}, where a strategy of 0 refers

to default, and 1 refers to non-default.7 For tree T3, the sorted activation levels yield

the following tree-consistent strategy profiles: Γ∗(T3) are γ ∈ {(0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 1, 1, 0, 0, 0, 0), (1, 1, 0, 1, 1, 0, 1, 1, 1), (1, 1, 0, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 1, 1)}.
We verify each of the above strategy profiles above, eliminating the strategy profiles

(1, 1, 0, 1, 1, 0, 1, 1, 1), and (1, 1, 0, 1, 1, 1, 1, 1, 1), where the decision of agent v3 to de-

fault is not a best response to the inflows received. Ultimately, the algorithm yields

7Where an individual tree has more than two tree-consistent strategy profiles, then the tree will have
multiple activation levels where it is a child in subsequent trees.
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Figure 2. A financial network with ten agents

the following equilibrium strategy profiles: {(0, 0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 0, 0, 0, 0),

(1, 1, 1, 1, 1, 1, 1, 1, 1)}.
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Figure 3. The tree decomposition generated by the algorithm. Edge labels
indicate the outflow from Tk that activates the destination node of the edge.

4.2. Arbitrary financial network. Now we investigate the case of an arbitrary financial

network. Recall that an arbitrary financial network can be transformed into a directed

acyclic graph (henceforth, DAG)—that is, a network with no cycles–by contracting each

SCC into a single large node (see Figures 6-7).

The algorithm described here (MSCCNE) is a generalisation of USCCNE. It consists of

applying the USCCNE to each SCC in any given arbitrary network starting by the SCCs

with no incoming link from any outside node or group of nodes, which are the SCCs that

are not impacted by the other nodes in the network, and moving along the chain of SCCs.

In the following, we will rely on transitive reduction, which is a uniquely defined op-

eration on a DAG, to compute the pure–strategy Nash equilibria of a financial network

with multiple SCCs. A transitive reduction of a DAG is the network representation with

the fewest possible links that preserves the chains of default of the original financial net-

work(see Figure 8). It is hence constructed by removing all the links that are unnecessary

for the chain of default to be realised and only the nodes which were connected by a
13
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Figure 6. The worst equilibrium

path in the original network remain connected in the transitively reduced network. For

instance, if A links to B, and B links to C, then the transitive reduction removes the link

from A to C, if it exists.

Observe that, from the minimality of links in the transitive reduction, there exists a

unique partition of the set of agents W = {W1, . . . ,Wk} such that W1 corresponds to the

SCCs with no incoming links, W2 corresponds to the SCCs with only incoming links from

W1, W3 corresponds to the SCCs with only incoming links from W1 ∪W2, and so on.

Then, the algorithm USCCNE can be easily extended to compute the Nash equilibria

with multiple SCCs. The algorithm, which we call MSCCNE, goes as follows:

(1) Apply USCCNE to find all Nash equilibria for each SCC in W1.

(2) For each product of Nash equilibria of SCCs in W1, apply USCCNE to find all

Nash equilibria for each SCC in W2.

(3) For each product of Nash equilibria of SCCs in W1 ∪W2, apply USCCNE to find

all Nash equilibria for each SCC in W3.

(4) Repeat the procedure until visiting all the elements of the partition W .
15
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Figure 9. Transitive reduction of the DAG

The MSCCNE algorithm is a simple algorithm that exploits a network decomposi-

tion technique to find all the pure–strategy Nash equilibria of a financial network. It is

worth noting that the MSCCNE algorithm can be easily adapted to compute the clearing

payment vector of Eisenberg and Noe (2001).

Corollary 2. Assume that the first-period endowment of each agent i is zero—that is,

z1i = 0. Then the MSCCNE algorithm computes the clearing payment vector in Eisenberg

and Noe (2001).
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Recall that the clearing payment vector of Eisenberg and Noe (2001) is unique under

mild conditions. Hence the existence of cyclical financial interconnections, while necessary

for multiple equilibria, is not sufficient.

At the heart of the seminal contribution of Eisenberg and Noe (2001) lies the elegant

fictitious default algorithm that computes the unique clearing payment vector. The fic-

titious default algorithm goes as follows. First, determine the set of agents who cannot

fulfill their obligation, even when we assume that all agents receive their due payments.

These agents will be called the first wave of default. Then, assume that the agents in the

first wave of default pay their liabilities pro rata and the new defaulting agents will be

called the second wave of default and so on until the algorithm terminates. In this way,

the fictitious default algorithm produces a natural measure of systemic risk, which is the

number of waves required to induce a given agent to default.

Echenique (2007) provides the most efficient algorithm for computing all pure–strategy

Nash equilibria in the class of games of strategic complements, of which the default game is

a special case. The algorithm elegantly checks whether there is another Nash equilibrium

once the smallest and largest pure–strategy Nash equilibria are computed from classical

algorithms (for example, Topkis (1979)).

While each of the above algorithms is clearly interesting in many aspects, arguably,

the advantage of the MSCCNE algorithm developed in this paper is that it relies on the

financial network architecture to compute the Nash equilibria. Generally, algorithms that

exploit the financial network structure such as the algorithm developed in this paper,

as well as having a clear computational advantage, provide valuable information on the

strategic interactions among agents, as we will show below.

Corollary 3. Let W = {W1, . . . ,Wk} denote the unique partition generated by the tran-

sitive reduction. Given two Nash equilibria x = (xW1 , . . . , xWk
) and x′ = (x′W1

, . . . , x′Wk
)

of the default game. Then it holds that

inf{x, x′} = {min{xW1 , x
′
W1
}, . . . ,min{xWk

, x′Wk
}}

and

sup{x, x′} = {max{xW1 , x
′
W1
}, . . . ,max{xWk

, x′Wk
}}
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are also Nash equilibria of the default game.

Corollary 3 shows that the MSCCNE algorithm developed in this paper based on the

concept of ear decomposition provides a further insight on the structure of the set of pure

strategy Nash equilibria. More specifically, it holds that the infimum (resp. supremum) of

two Nash equilibria is the product of the minimum of the corresponding Nash equilibria

within each SCC. since Nash equilibria within each SCC are ranked.

5. Policy Implications of central clearing

From a policy perspective, in view of the multiplicity of Nash equilibria of the default

game, there is the central policy question of equilibrium selection. In particular, it may

be desirable to implement the best equilibrium in order to achieve financial stability and

minimise the cost of default.

Given the best and the worst equilibria, agents in the network can be classified into

three types:8

(1) agents that choose 0 in the worst equilibrium and 1 in the best equilibrium;

(2) agents that choose 0 in the worst equilibrium and 0 in the best equilibrium;

(3) agents that choose 1 in the worst equilibrium and 1 in the best equilibrium.

Note that agents of type (2) and (3) are not strategically relevant since they play the

same action in the worst and the best equilibrium. Actually, we could construct a reduced

financial network containing only agents of type (1). To do so, we first eliminate all

outgoing links emanating from agents of type (3) and, since none of them defaults, add

their liabilities pro rata to the cash flow of the agents intercepting their outgoing links.

As for agents of type (2), given that they default and pay their inflows—i.e. their cash

flow and the payments they receive from their debtors—they can be eliminated from

the network by adding their cash flow to the cash flow of their creditors pro rata and by

extending their ingoing liabilities links to their creditors pro rata so that the new liabilities

directly link between their debtors and their creditors.

Recently, CCP has become increasingly the cornerstone of policy reform in financial

markets. Introducing a CCP in the financial network modifies the structure of the financial

8Obviously, it is not possible for an agent to choose 1 in the worst equilibrium and 0 in the best.
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network: each liability between a debtor and a creditor is erased and replaced by two new

liabilities—one liability between the debtor and the CCP, and another one between the

CCP and the creditor. As a consequence, one of the key benefits of central clearing is that,

by breaking down the cyclical connections of financial liabilities, it reduces the aggregate

level of default exposure, which in turn reduces default contagion.

There is a growing literature which investigates the benefits of central clearing. Duffie

and Zhu (2011) show that CCP’s reduce significantly the counterparty risk even when

clearing across multiple derivative classes. Zawadowski (2013) suggests that a CCP elim-

inates ex ante own default externalities by making banks contribute to the insurance of

counterparty risk in the form of a guarantee fund. In other respect, Tirole (2011) argues

that centralisation should be encouraged and CCP’s enhance transparency and allow for

multilateral netting. Acharya and Bisin (2014) study how the lack of transparency be-

tween agents sharing default risk produce counterparty risk externality and show that this

externality disappears when introducing a centralized clearing mechanism which ensures

transparency. They prove that the main advantage of central clearing is enhancing the

aggregation of information.

The following proposition points out another potential benefit of introducing central

clearing in financial markets.

Proposition 5. Introducing a CCP in each SCC of the reduced financial network achieves

the best equilibrium in the default game at no additional cost.

Proposition 5 shows that when a CCP intermediates the liabilities of each SCC of

the reduced financial network,9 the best equilibrium is achieved and the CCP is budget

neutral. As a consequence, in addition to reducing default contagion by eliminating the

cyclical financial interconnections, central clearing can also serve as a coordination device

that achieves the best equilibrium of the default game.

The following example illustrates this point.

Example 2 Consider an economy of six agents connected through their ownership of

each other’s liabilities, among which only the first five agents are strategically relevant.

Agents’ endowments in the first period are z1 = (22, 22, 75, 170, 100) and in the second

9That is, the financial network with only strategic relevant agents.
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Figure 10. A financial network with five agents

period are z2 = (3, 3, 3, 3, 3) and the interest rate is r = 0.1. All agents have the same

utility function Ui(e
1
i , e

2
i ) = e1i + e2i . The financial liabilities of agents to each other are

illustrated in the network in Figure 9.

This financial network contains a unique SCC {1, 2, 3, 4, 5}. To compute the Nash

equilibria, we apply the USCCNE algorithm described above. We find three Nash equi-

libria—the best equilibrium 1, 1, 1, 1, 1, the intermediate equilibrium 0, 0, 0, 1, 1, and the

worst equilibrium 0, 0, 0, 0, 0—which we illustrate in Figures 10-12.
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Figure 11. The best equilibrium
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Figure 12. The intermediate equilibrium
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Figure 13. The worst Equilibrium

Adding a CCP will result in a new financial network as shown in Figure 13, with the

following liabilities vector:

L̃ = (5, 5, 10, 10, 10,−40) .

Given that there are no feedback effects in the presence of the CCP, the minimum cash

flow for an agent i to escape default is equal to the new liability L̃i. Therefore, after the

introduction of a CCP, it is easy to check that the best equilibrium is implemented at no

additional cost since the inflows and outflows of CCP are equal.

6. Conclusion

This paper shows that the introduction of a CCP allows agents playing different actions

at different Nash equilibria to achieve the best equilibrium at no additional cost. As a
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Figure 14. Adding a CCP

consequence, central clearing can serve as a coordination device in financial markets.

While our result reinforces the key role CCP plays in financial markets, as highlighted

in several important contributions by Duffie and Zhu (2011), Tirole (2011), Zawadowski

(2013) and Acharya and Bisin (2014), it remains to be seen whether other policies can be

designed to minimise the number of defaults, such as identifying key agents and targeting

them through either cash injection or minimum endowment requirement.

7. Appendix

Proof of Proposition 1. Recall that the default game corresponds to a binary coordi-

nation game with two actions (Default) = 0 and (Non-Default) = 1 among which agents

must choose.

First, for each agent i we will show that τi (a−i) is well-defined given other agents’

actions a−i ∈ {0, 1}N−1. To do so, for each agent i we consider an auxiliary economy with a

modified network of liabilities, where we eliminate all outgoing links emanating from agent

i and add his liabilities pro rata to the cash flow of the agents intercepting his outgoing

links. Hence, the matrix of relative liabilities in the auxiliary economy is α̂ = (α̂kj)k,j∈N ,

where α̂kj = αkj if k 6= i and α̂kj = 0 otherwise. Moreover, the (augmented) second-period

endowment of agent j in the auxiliary economy is ẑ2j = z2j + αijLi.

Now, given other agents’ actions a−i, let xa−i = (x
a−i

j )j∈N denote the agents’ storage

strategies, where x
a−i

j = z1j for each agent j 6= i such that aj = 1, and x
a−i

j = 0 otherwise.

Let also πxa−i
= (πxa−i

j )j∈N denote the clearing payment vector, uniquely defined as in
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Eisenberg and Noe (2001), such that for each agent j it holds that

πxa−i

j = min

{
ẑ2j + (1 + r)x

a−i

j +
n∑

k=1

α̂kjπ
xa−i

k ;Lj

}
.

Therefore, since x
a−i

i = 0 it holds that

τi (a−i) = max

{
Li − z2i −

n∑
j=1

α̂jiπ
xa−i

j ; 0

}
. (7.1)

Hence, the threshold τi (a−i) is well-defined.

Moreover, it follows from Lemma 5 in Eisenberg and Noe (2001) (see, also, Theorem

6 in Milgrom and Roberts (1990)) that πxa−i
is increasing in xa−i , which, in turn, is

increasing in a−i. Hence, it follows from (7.1) that the threshold τi (a−i) is decreasing in

a−i.�

Proof of Theorem 1. Since the threshold τi (a−i) is decreasing in a−i it follows that

the best reply function of agent i

Ψi (a−i) =

1 if rz1i − τi (a−i) ≥ 0

0 otherwise

is increasing in a−i. By the Knaster–Tarski Theorem, there exists a fixed point of the

following map:

Ψ : {0, 1}N −→ {0, 1}N

Ψ (a) = (Ψ1 (a−1) , ...,Ψn (a−n)) ,

which will be a Nash equilibrium of the default game.�

Algorithm 1. (USCCNE) Denote the ith agent of ear j as vji. BFS refers to Breadth-

First-Search.

(1) Compute an ear decomposition of the network.

(2) For each ear Ej in (Ep, Ep−1, ..., E1)

(a) Begin a BFS from vj1: For each visited agent u, if all of the agent’s in-

neighbours are in {Vvisited ∪ vj1}, then
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(i) Add u to Tj and to Vvisited.

(ii) Calculate the activation outflow from vj1 that is sufficient for u not to

default, conditional upon the previous activation levels of agents in Tj.

If u is the parent node of an existing tree Tk, then calculate the acti-

vation outflows from vj1 that activate any interior strategy profiles in

Γ∗(Tk).

Add calculated activation outflows to list Aj = {(u, aj(u)), ...}.
When all remaining out-neighbours of Tj have in-neighbours outside of {Vvisited ∪
vj1}, terminate the BFS.

(b) Sort the agents and strategy profiles in Tj1 by their activation outflows from

vj1.

(c) For each activation outflow in Aj, calculate tree-consistent strategy profiles

for Tj, Γ∗(Tj1).

(d) For each strategy profile γ ∈ Γ∗(Tj), calculate the activation inflow into vj1

that activates the strategy profile.

When all agents in the network are in Vvisited, terminate the algorithm.

(3) For each strategy profiles in Γ∗(Tj), calculate repayments and verify that the profile

is an equilibrium. Drop any profiles that are not equilibria, leaving Γ∗.10

Proof of Proposition 3. Part (i): Let γ be an equilibrium strategy profile. If γ is not in

Γ∗(Tv11), then it must be the case that there is a subset of nodes V ′ such that γ(V ′) is not

tree-consistent for some tree Tvk1 . This would be a contradiction, as tree-inconsistency

implies that there is no inflow into vk1 that would yield γ(V ′) as a best response strategy

profile.

Part (ii): Part (ii) is ensured by Step (2) of USCCNE. If step 1 generates any tree-

consistent strategy profiles that are not equilibria of the default game, these will be

identified upon the calculation of equilibrium repayments.�

10Repayments are calculated as follows:

π = (I−Dα′)−1((I−D)L + Dz2)

where D is a diagonal matrix with entry Djj = 1 if and only if j is a defaulting agent. A strategy profile
γ is removed if the calculated repayments are not consistent with the default decisions specified in γ.
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Proof of Proposition 4. The breadth-first-searches conducted in (A.1.a) visit each

edge in the network once. They may visit an individual node more than once, if that

node has multiple in-neighbors, but each visit occurs via a different in-neighbor. There

are a maximum of n2 edges in a network, or alternatively, |E| + n − 1 where |E| is the

total number of ears. Steps (A.1.a.i-ii) are time complexity O(0), due to the recursive

calculation of activation levels.

Step (A.1.b) requires a sorting of a list of a maximum of n agents, which incurrs

worst-case time complexity n2. Note that the sort will be faster when individual trees are

smaller, as the time to sort an individual tree Tk and merge with sorted trees Tk+1, Tk+2, ...

is O(|Tk|2) +O(|Tk+1|+ |Tk+2|+ ...), where |Tk| denotes the number of agents in tree Tk.

Steps (A.1.c-d) are time complexity O(|Tk|).
The strategy profiles Γ∗(T1) generated in (A) form a total order over the space {0, 1}n.

It follows that |Γ∗(T1)| ≤ n. Step B can be performed in O(n3) for each strategy profile,

for example by solving a system of linear equations.�

Proof of Proposition 2. Suppose not—that is, the default game has multiple equilibria

and the financial network does not have cyclical obligations. Let R denote the set of agents

who play 0 in the worst Nash equilibrium and 1 in the best Nash equilibrium. Then the

subnetwork induced by R contains an agent i that does not have any ingoing link. As a

consequence, the inflow of agent i does not change between the worst equilibrium and the

best equilibrium, and as a result agent i will not change his choice in the worst equilibrium

and the best equilibrium. This is a contradiction.�

Proof of Proposition 5. Adding a CCP in the middle of the financial network will net

out the liabilities and will sort agents into two types: debtors and creditors to the CCP.

Let node 0 represent the CCP, and L̃i0 the liabilities to/from the CCP such that

L̃i0 =
∑
j∈N

Lij −
∑
j∈N

Lji.

Hence, if L̃i0 is positive (resp. negative), agent i is a debtor (resp. creditor) to the CCP.
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Since the best equilibrium can be reached, it follows that whenever agent i receives all

the liabilities from his debtors, he will choose not default. Therefore, it holds that

z2i + (1 + r) z1i +
∑
j∈N

Lji ≥
∑
j∈N

Lij,

which implies

z2i + (1 + r) z1i ≥ L̃i0.

Hence, the non-default condition is satisfied for each agent in the network with liabilities

intermediated by the CCP and the best equilibrium is reached.�
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