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Abstract

In this paper, we develop a new game theoretic network centrality measure

based on the Shapley value. To do so, we consider a coalitional game, where

the worth of each coalition is the total play in the game introduced in Ballester

et al. (2006). We first establish that the game is convex. As a consequence, the

Shapley value belongs to the core, which enhances the attractive features of

our new centrality measure. Then, we compute the Shapley value for various

examples and illustrate some of its properties.
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1 Introduction

The large size and complexity of social networks has focused attention on search-

ing methods to understand and extract valuable information from these network

structures. Centrality analysis, is one of the important methods for analysing the

structure of social networks. The objective of a centrality measure is to assign a

ranking to the nodes that captures the structural properties as well as the underlying

interactions. In the literature, a multitude of centrality measures have been proposed

to provide insights into potential importance, power, and influence of nodes in so-

cial interactions. Perhaps, the most intuitive centrality measure is degree centrality,

defined as the number of direct neighbours in the network, which gives importance

to individuals with more connections.

In a key contribution Ballester et al. (2006) show that the Nash equilibrium

efforts in a non-cooperative network game corresponds the Bonacich centrality. Un-

like degree centrality, which overlooks indirect influences, Bonacich centrality is a

global network measure since it accounts for influences from distant neighbours.

Furthermore, Ballester et al. (2006) provide a characterisation of the key player,

whose removal yields the highest reduction in the overall Nash equilibrium efforts,

as the one with the highest intercentrality measure introduced in their paper. The

intercentrality takes into account both direct and indirect effects of the removal of

a player on the overall Nash equilibrium efforts.

In this paper, we pursue the novel approach of Ballester et al. (2006) to generate

centrality measures from network games. More specifically, we show that solution

concepts in cooperative game theory describing fair and stable outcomes of coop-

eration, can provide a rich framework for social network analysis. Chief among

them, the Shapley value (Shapley, 1953), which assigns to each player his expected

marginal contribution to all coalitions. It measures how important is each player

to the overall cooperation, and what value can it reasonably expect. An equally

important concept is the core (Shapley, 1955; Zhao, 2018), which represent feasible

outcomes that cannot be improved upon by a group of players. While the Shapley

value always exists and is unique, the core may consist of several outcomes or be
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empty, both Shapley value and core are used in numerous applications.

We consider a coalitional game, called the Bonacich Coalitional game, where the

worth of each coalition is the overall Nash equilibrium efforts of the game introduced

in Ballester et al. (2006) played on the network induced by the coalition. The

uniqueness of the Nash equilibrium of the network game for each coalition implies

that the BC game is well-defined. In addition, armed with our insight that the

intercentrality measure corresponds to the marginal contribution of a player to a

coalition, we show that the BC game is convex. For convex games the Shapley value

is the barycenter of the core. The Shapley value of a game does not generally have

to be in the core of the game, nor even be individually rational. However, there is a

set-valued extension of the Shapley value, the Weber set, which always contains the

core. Convex games are exactly those games for which the core and the Weber set

coincide. Hence, for such games the Shapley value is an attractive core selection.

This paper contributes to game theoretic network centrality literature by devel-

oping a new network centrality measure based on the Shapley value of the associated

BC game. Due to the correspondence between the intercentrality measure and the

marginal contribution of a player to a coalition, and the convexity of the BC game,

this measure turns out to be the average of all the intercentralities in the network

with respect to all possible orders of the players. Consequently, it is called the

Bonacich Shapley centrality.

The paper is organised as follows. In the next section we review the literature

related to the Shapley value. In Section 3, we define the Bonacich Coalitional game

and prove that the marginal contribution of a player increases as the coalition grows

(e.g., it is convex). In Section 4 we present the Bonacich Shapley centrality measure

and compute it for various examples and illustrate some of its properties. Section 5

concludes the paper.
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2 Related literature

The Shapley value is a "Crown Jewel" of cooperative game theory (Thomson, 2019).

It has many desirable properties and it is also the unique allocation rule satisfying

some subset of these properties (see Moulin, 2014). For example, it is the unique

allocation rule satisfying the properties of Equal treatment of equals (Symmetry),

Additivity and Dummy player (Shapley, 1953). In this sense, we can say that it is

a "fair" allocation.

One of the first economic aplications of the Shapley value can be found in the

cost allocation literature. There are two classical cost allocation problems which

applies the Shapley value as the best way to allocate the total cost. The first one

is the Airport Problem (Littlechild and Owen, 1973). In that problem, an airport

needs to built in order to accommodate a range of aircrafs which require differents

lengths of runway. The Shapley value spreads the marginal cost of each required

length of runway among all the airlines needing a runway of at least that long. In

the end, airlines requiring a shorter runway pay less, and those needing a longer

runway pay more. However, none of the airlines pay as much as they would have if

they had chosen not to cooperate. The second example is the procedure to deter-

mine the rates of the telephone calls at Cornell University developed by Billera et al.

(1978). The authors construct a game, where each calling instant is a player, that

measures the minimal cost of servicing the demands given by a coalition. To solve

the rates problem, they applied the Aumann and Shapley (1974) method to this

game. The Shapley value has also been applied to other fields such as Management

Accounting (Meca and Varela-Pena (2018) and Meca et al. (2019)), Telecommunica-

tions or Multi-agent Systems in Engineering (Sánchez-Soriano, 2019). Moretti and

Patrone (2008) provides a survey about several applications of the Shapley value to

very diverse fields showing the pertinence of the Shapley value to address real-life

problems.

Closely related to this paper is the use of the Shapley value in networks. Lindelauf

et al. (2013) use the Shapley value to identify key players in terrorist networks. They

illustrate their game theoretic model through two case studies: Jemaah Islamiyah’s
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Bali bombing and Al Qaeda’s 9/11 attack. Cesari et al. (2017) applies the Shapley

value to quantify the potential of a gene in preserving the regulatory activity across

all possible subsets of genes in a co-expression network. Subsequently, Cesari et al.

(2018) show that the ability of the Shapley value to single out relevant genes in a co-

expression network from the literature, is comparable to the one of other classical

centrality measures. Gómez et al. (2003) introduces a new family of centrality

measures for social networks by using coalitional games. The authors aim to measure

centrality as variation in the power due to the social structure, using the Shapley

value. Flores et al. (2019) proposes to use the Generalized Shapley value, introduced

by Marichal et al. (2007), as a priori evaluation of the prospects of a group of

players when acting as a group without imposing on the other players any concrete

coalition structure. They considered two scenarios: (1) the analysis of criminal or

terrorist organizations, where the police want to identify a small group of criminals

or terrorists to neutralize in order to break up the criminal organization, (2) the

analysis of formal and informal social networks in an organization, as well as the

employee participation in virtual communities of practice for seeking knowledge.

As far as we know, none of the afore mentioned papers has considered the cen-

trality of Bonacich for social networks by using coalitional games. The novelty of our

model lies in analizing the noncooperative effort game from Ballester et al. (2006) as

a cooperative game played on the network induced by the coalitions. Then, through

this coalitional game, we construct a new centrality measure based on the Shapley

value that is called the Bonacich Shapley centrality. It is the average of all the

intercentralities in the network with respect to all possible orders of the players.

3 Bonacich Coalitional game

We consider a network g of N = {1, 2, ..., n} players represented by an adjacency

matrix G(N), where gij = 1 indicates a link between players i and j, and gij = 0

otherwise. Since the adjacency matrix G(N) is symmetric and non-negative it

follows that its eigenvalues are real and the maximum eigenvalue λmax(N) is positive
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and dominates in magnitude all other eigenvalues.

For any coalition of players S ⊆ N, let g(S) denote the subnetwork induced by

S, with adjacency matrix G(S). Given a scalar δ ∈
[
0, 1

λmax(N)

[
we define the matrix

M(g(S), δ) = [IS − δG(S)]−1 =
∞∑
k=0

δkGk(S). (1)

The matrixM(g(S), δ) is well-defined since from the interlacing eigenvalue Theo-

rem it holds that λmax(N) = maxS⊂N λmax (S). Note that each entry mij(g(S), δ) =∑∞
k=0 δ

kgkij(S) of M(g(S), δ) counts the number of walks in g(S) that start in i and

end at j weighted by δk. In interpretation, the parameter δ is a damping/attenuation

factor that scales down the relative weight of longer walks.

Define the vector of Bonacich centrality as

b(g(S), δ) = [IS − δG(S)]−1 · 1S, (2)

where 1S is the |S|-dimensional vector of ones. The Bonacich centrality was put

forth by Bonacich (1987) as a measure of prestige and importance. For player i, the

Bonacich centrality is given by bi(g(S), δ) =
∑

j∈Smij(g(S), δ) and counts the total

numbers of walks in g(S) that starts at i.1

We consider now a Bonacich Coalitional game, henceforth BC game, (N, δ, vB),

where N is the set of players, δ ∈
[
0, 1

λmax(N)

[
is a decay/damping/attenuation

factor, and vB : P (N) → R is the so-called characteristic function of the game,

which assigns to each coalition S ⊆ N the sum of Bonacich centralities of the players

in the coalition. That is,

vB(S) := b(g(S), δ) =
∑
i∈S

bi(g(S), δ). (3)

Note that for any coalition S ⊆ N, vB(S) > 0.

1Note that, by definition, mii(g(S), δ) ≥ 1 and thus bi(g(S), δ) ≥ 1, with bi(g(S), 0) = 1.
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Example 3.1. Consider a network g with N = {1, 2, 3} and G (N) given by

G (N) =


0 1 1

1 0 0

1 0 0



We may notice that it is a star network with player 1 connected to all others.

That is,

12 3

For any 0 ≤ δ < 0.7 = 1/
√

2, the BC game (N, δ, vB) is given in the following

table:

S M(g(S), δ) vB (S)

{i} 1 1

{2, 3} I2 2

{1, 2}
{1, 3}

(
1

1−δ2
δ

1−δ2
δ

1−δ2
1

1−δ2

)
2

1−δ

{1, 2, 3}


1

1−2δ2
δ

1−2δ2
δ

1−2δ2

δ
1−2δ2

1−δ2
1−2δ2

δ2

1−2δ2

δ
1−2δ2

δ2

1−2δ2
1−δ2
1−2δ2

 3+4δ
1−2δ2

An allocation rule for BC games is a vector ψ(vB) ∈ Rn
+ to such that,

∑
i∈N

ψi(vB) = vB(N).

Each component ψi indicates the value allocated to i ∈ N , so an allocation rule for

BC games is a procedure to allocate the maximum Bonacich centrality among the

players.
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An important set of allocations for BC games is the core. It is formed by all

those allocations that are coalitionally stable. That is, allocations with the property

that the sum of the values allocated to the members of each coalition S is at least

v(S). For a BC game (N, δ, vB), the core will be denoted by C(vB), and its elements

will be called core allocations.

We say the BC game is convex if for all S, T ⊆ N such that S ⊆ T with i ∈ S,

vB(S)− vB(S\{i}) ≤ vB(T )− vB(T\{i}).

The convexity property provides additional information about the game: the marginal

contribution of a player increases as the coalition grows. It is well-known as the

snowball effect.

Ballester et al. (2006) show that the marginal contribution of a player i to

coalition S ⊆ N is equal the intercentrality of player in the network g induced by

S. That is,

vB(S)− vB(S\{i}) = ci(g(S), δ) :=
bi(g(S), δ)2

mii(g(S), δ)
. (4)

This makes the marginal contribution of a player to a coalition a readily inter-

preted network measure. Note that the intercentrality, unlike Bonacich centrality,

accounts also for the loops through player i. For instance, holding bi(g(S), δ) fixed

(as in regular networks) ci(g(S), δ) decreases with player i’s loops mii(g(S), δ).

The main theorem in this paper states that BC games are always convex. Thus

BC games are monotonic.2

Theorem 3.2. Every BC game is convex.

Proof. The proof of Theorem 3.2, together with all of our other proofs, appears in

the Appendix.�

It is a well-known result in cooperative game theory that the core of a convex

game is non-empty. That means that we can always find coalitional stable and

consistent allocation rules for BC games. In addition, convex games are the only
2It is well-known that every non negative convex game is always monotonic
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ones whose core coincides with the Weber set; that is, it is the convex hull of the

marginal contributions vectors for the different orders/permutations of the players

in N. The core of convex games also coincides with the bargaining set of Maschler et

al. (1971). Based on the relationship between the intercentrality and the marginal

contributions of its corresponding BC game (see (4)), we show here that the extreme

points of the core of a BC game are vectors of intercentralities.

We denote by Π(N) the set of all possible orders inN . Take σ = (i1, i2, i3, ..., in) ∈
Π(N). The vector of marginal contributions with respect to the order σ, is mσ(vB) ∈
Rn, with

mσ
i1

(vB) := vB({i1}),
mσ
i2

(vB) := vB({i1, i2})− vB({i1}),
mσ
i3

(vB) := vB({i1, i2, i3})− vB({i1, i2}),
.................

mσ
in−1

(vB) := vB({i1, i2, i3, ..., in−1})− vB({i1, i2, i3, ..., in−2}),
mσ
in(vB) := vB({i1, i2, i3, ..., in})− vB({i1, i2, i3, ..., in−1}).

Notice that there are at most n! marginal contribution vectors mσ(vB). The

Weber set, W (vB), is the convex hull of the marginal contributions vectors for the

different orders of the players in N, that is

W (vB) = conv{mσ(vB)/σ ∈ Π(N)}.

Next proposition states that the core of BC games is the convex hull of inter-

centralities vectors for all orders in N .

Given an order σ ∈ Π(N), we denote by P σ
i ⊆ N the set of the predecessors

of player i, including itself, in σ. Notice that P σ
i 6= ∅ and P σ

i = {i}, if player i is
first in order σ. The vector of inter-centralities in network is cσ(g(N), δ) ∈ Rn, with

cσi (g(N), δ) := ci(g(P σ
i ), δ).
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Proposition 3.3. The core of every BC game is the convex hull of vectors of inte-

centralities in the network, for the different orders of the players in N. That is,

C(vB) = conv{cσ(g(N), δ) | σ ∈ Π(N)}. (5)

A very natural allocation rule for BC games is the vector of Bonacich centralities

in the grand coalition, b(g(N), δ). It is a core allocation. Indeed, for every S ⊆ N,

by (9) it holds that,

∑
i∈S

bi(g(N), δ) ≥
∑
i∈S

bi(g(S), δ) = vB(S).

Hence, b(g(N), δ) ∈ C(vB). But the core of BC games is large enough to find other

core allocations, for instance, in terms of marginal contributions/inter-centralities,

as shown in the next Section.

4 Bonacich Shapley centrality

Since BC games are convex, cooperative game theory provides well know allocation

rules for them with good properties, as coalitional stability (core allocations) and

acceptability. We highlight the Shapley value, which assigns a unique allocation,

among the players, of a total surplus generated by the grand coalition. As we

already mentioned, the Shapley value measures how important is each player to the

overall cooperation, and what value can it reasonably expect.

Formally, the Shapley value, φ(vB) ∈ Rn
+ is given by

φi(vB) :=
∑
i∈S⊆N

(s− 1)!(n− s)!
n!

(vB(S)− vB(S\{i})) . (6)

Next example compares both allocation rules, the vector of Bonacich centralities

in the grand coalition and the Shapley value, for a star network with three players.

Example 4.1. Consider again the star network with N = {1, 2, 3} and G (N) given

in example 3.1. It follows from convexity that the core of (N, δ, vB) is the convex
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hull of the following extreme points:

(1,
1 + δ

1− δ
,

1 + δ − 4δ2

(1− δ)(1− 2δ2)
), (1,

1 + δ − 4δ2

(1− δ)(1− 2δ2)
,

1 + δ

1− δ
), (

1 + 4δ + 4δ2

1− 2δ2
, 1,

1 + δ − 4δ2

(1− δ)(1− 2δ2)
)

(
1 + δ

1− δ
, 1, 1), (

1 + δ

1− δ
,

1 + δ − 4δ2

(1− δ)(1− 2δ2
), 1), (

1 + 4δ + 4δ2

1− 2δ2
, 1, 1).

The vector of Bonacich centralities in the grand coalition is

b(g(N), δ) = (
1 + 2δ

1− 2δ2
,

1 + δ

1− 2δ2
,

1 + δ

1− 2δ2
).

We obtain from (6) the Shapley value for each player. Note that players 2 and 3

are symmetric. Then,

φ(vB) =
1

6

(
6 + 6δ − 8δ2 − 4δ3

(1− δ)(1− 2δ2)
,

6− 9δ2 + 4δ3

(1− δ)(1− 2δ2)
,

6− 9δ2 + 4δ3

(1− δ)(1− 2δ2)

)
,

Note that neither b(g(N), δ) nor φ(vB) are extreme points for the core. Actually,

the Shapley value is the average of the above extreme points for the core, i.e. it is

the barycenter of the core.

It is well-known that the Shapley value of any cooperative game can be obtained

as the average of all vector of marginal contributions with respect to any possible

order of the players. It is the barycenter of the core. That is,

φ(vB) =
1

n!

∑
σ∈Π(N)

mσ(vB). (7)

Next proposition shows that the Shapley value of a player in a BC game is the

average of all the inter-centralities in the network with respect to all possible orders

of the players.

Proposition 4.2. The Shapley value for each player i ∈ N is given by
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φi(vB) =
1

n!

∑
σ∈Π(N)

cσi (g(N), δ). (8)

Proof. It is obtained directly by applying Proposition 3.3, that is,mσ(vB) = cσ(g(N), δ),

for all σ ∈ Π(N), in (7).

The next two examples show that for some networks the Shapley value, for

the corresponding BC game, coincides with the Bonacich centrality in the grand

coalition and they are equal to the egalitarian allocation.

Example 4.3. Consider a regular network g with N = {1, 2, 3, 4} and G (N) given

by

G (N) =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 .

Notice that the players who are directly connected on this network are {1,2}, {1,4},

{2,3} and {3,4}. That is,

1

2 3

4

The BC game (N, δ, vB), for any δ ∈ [0, 1/2[ , is given in the following table:
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S M(g(S), δ) vB (S)

{i} 1 1

{1, 3}
{2, 4}

I2 2

{1, 2}
{1, 4}
{2, 3}
{3, 4}

(
1

1−δ2
δ

1−δ2
δ

1−δ2
1

1−δ2

)
2

1−δ

{1, 2, 4}
{1, 3, 4}


1

1−2δ2
δ

1−2δ2
δ

1−2δ2

δ
1−2δ2

1−δ2
1−2δ2

δ2

1−2δ2

δ
1−2δ2

δ2

1−2δ2
1−δ2
1−2δ2

 3+4δ
1−2δ2

{1, 2, 3}
{2, 3, 4}


1−δ2
1−2δ2

δ
1−2δ2

δ2

1−2δ2

δ
1−2δ2

1
1−2δ2

δ
1−2δ2

δ2

1−2δ2
δ

1−2δ2
1−δ2
1−2δ2

 3+4δ
1−2δ2

N


1−2δ2

1−4δ2
δ

1−4δ2
2δ2

1−4δ2
δ

1−4δ2

δ
1−4δ2

1−2δ2

1−4δ2
δ

1−4δ2
2δ2

1−4δ2

2δ2

1−4δ2
δ

1−4δ2
1−2δ2

1−4δ2
δ

1−4δ2

δ
1−4δ2

2δ2

1−4δ2
δ

1−4δ2
1−2δ2

1−4δ2

 4
1−2δ

It’s easy to check that the Bonacich centrality measure matches the egalitarian allo-

cation. That is, for all i ∈ N,

bi(g(N), δ) =
1

1− 2δ
.

On the other hand, we can prove (just playing with the orders σ ∈ Π({1, 2, 3, 4})
that the Shapley value for any player i ∈ N is

φi(vB) =
1

4
·ci(g({i}), δ)+1

4
·ci(g(N), δ)+

1

12
·

 ∑
j∈N\{i}

ci(g({i, j}), δ) +
∑

j,k∈N\{i}

ci(g({i, j, k}), δ)

 .
13



Considering ci(g({i}), δ) = 1, for all i ∈ N, and generalizing the last term, we obtain

φi(vB) =
1

4
+

1

4
· ci(g(N), δ) +

1

12

∑
S⊂N\{i};1≤|S|≤2

ci(g(S ∪ {i}), δ).

Doing some algebra, we obtain that for all i ∈ N,

φi(g(N), δ) =
1

1− 2δ
.

Thus, the Shapley value for the BC game associated to this regular network matches

the Bonacich centrality and coincides with the egalitarian allocation3.

Example 4.4. Consider a network g with N = {1, 2, ..., n} and G (N) given by

gij(N) = 1, for all i, j ∈ N. It is a complete network with n players.

We know that,

I− δG =



1 −δ . . . −δ
−δ 1 . . . −δ
... . . . . . .

...
... . . . . . .

...

−δ −δ . . . 1


= (1 + δ)(I− δ

1 + δ
1T1).

From the Sherman-Morrison formula (see Sherman and Morrison, 1950), it follows

that

(I−δG)−1 = ((1+δ)(I− δ

1 + δ
1T1))−1 =

1

(1 + δ)(1− (n− 1)δ)
((1−(n−2)δ)I+δG).

Hence,

mii(g(N), δ) =
1− (n− 2)δ

(1 + δ)(1− (n− 1)δ)
,

bi(g(N), δ) =
1

1− (n− 1)δ
,

3Note that player 1 and 3 are symmetric as well as player 2 and 4. However, neither players 1
and 2 nor players 3 and 4 are symmetric. However, the Shapley value here is equal for all of them.
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and

ci(g(N), δ) =
bi(g(N), δ)2

mii(g(N), δ)
=

1 + δ

(1− (n− 1)δ)(1− (n− 2)δ)

It is easy to check that for any coalition S ⊆ N , and any player i ∈ S,

bi(g(S), δ) =
1

1− (|S| − 1)δ
,

and

ci(g(S), δ) =
1 + δ

(1− (|S| − 1)δ)(1− (|S| − 2)δ)
.

The associated BC game is given by

vB(S) =
|S|

1− (|S| − 1)δ

for any S ⊆ N and 0 ≤ δ < min1<|S|≤n

(
1
|S|−1

)
= 1

n−1
. It is a symetric game. The

Shapley value matches the vector of Bonacich centralities for the grand coalition and

they are equal to the egalitarian allocation, e.g. for all i ∈ N

φi(vB) = bi(g(N), δ) =
1

1− (n− 1)δ
.

In this paper we propose a new game theoretic centrality measure, the Bonacich

Shapley centrality. It is the Shapley value of BC games.

Definition 4.5. Let g be a network of N = {1, 2, ..., n} players and (N, δ, vB) the

associated BC game with δ ∈
[
0, 1

λmax(N)

[
. For any player i ∈ N , the Bonacich

Shapley centrality is given by

BSi(g, δ) =: φi(vB) =
1

n
+

1

n
ci(g(N), δ) +

∑
i∈S⊂N ;|S|=s≥2

γ(s) · ci(g(S), δ),

with γ(s) = (s−1)!(n−s)!
n!

.

The last example compares the Bonacich centrality and the Bonacich Shapley
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centrality in the example given by Ballester et al. (2006).

Example 4.6. Consider the network g in Figure 1 with n = 11 players.

2

1

5

6

3

4

11

9

10

7

8

Figure 1. 11-players network

The next two tables list the Bonacich centrality, the interecentrality, and the

Bonacich Shapley centrality for two values of δ. Note that λmax(N) = 4.7, and so

δ ∈ [0, 0.212[ . There are three type of players. The only player of type 1 is node 1.

Players of type 2 correspond to nodes 2, 6, 7, and 11; and type 3 players correspond

to nodes 3, 4, 5, 8, 9, and 10. An asterisk identifies the highest column value.

Player type bi(g(N), 0.1) BSi(g, 0.1) ci(g(N), 0.1)

1 1.75 1.74 2.92

2 1.88∗ 1.90∗ 3.28∗

3 1.72 1.71 2.79

Table 1. Centrality measures for δ = 0.1

Player type bi(g(N), 0.2) BSi(g, 0.2) ci(g(N), 0.2)

1 8.33 8.87 41.67∗

2 9.17∗ 9.25∗ 40.33

3 7.78 7.63 32.67

Table 2. Centrality measures for δ = 0.2
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Player 2 has the highest Bonacich centrality for both low and high δ. However,

when δ is high, player 1 has the highest intercentrality due to direct and indirect

effects in the grand coalition. Our computation shows that player 2 has also the

highest Bonacich Shapley centrality for both low and high δ, which is in line with

Bonacich centrality. In interpretation, player 2 has the highest average direct and

indirect effects on aggregate outcome of all possible coalitions.

5 Conclusions

Our paper provides a new method to construct network centrality measure based on

Shapley value to analyze peer-effects and team production in networks a la Ballester

et al (2006). The Shapley value enjoys several attractive properties and various

axiomatisations. Our analysis shows that the properties of Shapley value could

be further complemented as its key ingredient of marginal contribution is readily

interpreted from network analysis. It remains to be seen whether our setting could

accommodate more general externalities than network team production (see, for

example Hellmann (2020)). Equally, it remains to be seen whether other key solution

concepts in game theory with different emphasis than the Shapley value (e.g., the

Nucleoulus or a proportional rule) could be amenable (or meaningful) to network

analysis.

6 Appendix

Proof of Theorem 3.2 Let’s consider i ∈ S ⊆ T ⊆ N . Recall that

b(g(S), δ) = [IS − δG(S)]−11S =

[
1 −δ Gi,S\{i}

−δ GT
i,S\{i} IS\{i} − δG(S\{i})

]−1 [
1

1S\{i}

]
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Using block matrix inversion formula:

[
A B

C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1

]

we obtain that

mii(g(S), δ) = (1− δGT
i,S\{i}(IS\{i} − δG(S\{i}))−1δGi,S\{i})

−1

=
1

1− δ2
∑

j,k∈S\{i}mjk(g(S\{i}), δ)

and

bi(g(S), δ) = mii(g(S), δ)(1 + δGT
i,S\{i}(IS\{i} − δG(S\{i}))−11S\{i})

= mii(g(S), δ)(1 + δ
∑

j∈S\{i}

bj(g(S\{i}), δ)).

= mii(g(S), δ)(1 + δ
∑

j,k∈S\{i}

mjk(g(S\{i}), δ)).

Therefore,

bi(g(S), δ)2

mii(g(S), δ)
= mii(g(S), δ)(1 + δ

∑
j,k∈S\{i}

mjk(g(S\{i}), δ))2

Hence, it is enough to prove that for all i, j ∈ S ⊆ T ⊆ N ,

mij(g(S), δ) ≤ mij(g(T ), δ) (9)

to obtain
bi(g(S), δ)2

mii(g(S), δ)
≤ bi(g(T ), δ)2

mii(g(T ), δ)
,
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which proves convexity. Indeed, recall that

mij(g(S), δ) =
∞∑
k=0

δkgkij(S),

where gkij(S) denotes the number of walks in S starting from i terminating at j of

length k. For i, j ∈ S ⊆ T ⊆ N , let gkij(S
out) denote the number of walks in T

starting from i terminating at j of length k and not fully contained in S. Observe

that

gkij(T ) = gkij(S) + gkij(S
out),

which implies

gkij(S) ≤ gkij(T ),

and so (9) holds.�

Proof of Proposition 3.3 Consider a BC game (N, δ, vB), with δ ∈
[
0, 1

λmax(N)

[
.

We know by Theorem 3.2 that (N, δ, vB) is convex. Then, the core coincides with

the Weber set (see Shapley, 1971), that is C(vB) = conv{mσ(vB)/σ ∈ Π(N)}.

Take an order σ = (i1, i2, i3, ..., in) ∈ Π(N). Then, we know that

mσ
i1

(vB) = ci1(g({i1}), δ) = 1,

mσ
i2

(vB) = ci2(g({i1, i2}), δ),
mσ
i3

(vB) = ci3(g({i1, i2, i3}), δ),
.................

mσ
in−1

(vB) = cin−1(g({i1, i2, i3, ..., in−1}), δ),
mσ
in(vB) = cin(g({i1, i2, i3, ..., in}), δ).

Hence, for all player i ∈ N , cσi (g(N), δ) = ci(g(P σ
i ), δ) = mσ

i (vB). We can conclude

then that, for all σ ∈ Π(N),mσ(vB) = cσ(g(N), δ).�
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