Are Kaldor and Kuznets facts theoretically compatible? *

Jaime Alonso-Carrera
Departamento de Fundamentos del Análisis Económico and RGEA
Universidade de Vigo

Xavier Raurich
Departament de Teoria Econòmica and CREB
Universitat de Barcelona

October 17, 2013

Abstract

We analyze the equilibrium of a multi-sector growth model where the introduction of minimum consumption requirements makes preferences be non-homothetic. These preferences drive sectoral change. We show that the transitional dynamics depends on the initial intensity of the minimum consumption requirements. This variable is inversely related with the level of economic development. Initially rich economies benefit from an initially low intensity of the minimum consumption requirements and, as a consequence, these economies exhibit balanced growth of aggregate variables, while there is sectoral change. In contrast, initially poor economies suffer from an initially large intensity of the minimum consumption requirements, which makes the growth of the aggregate variables unbalanced during a large period. These economies do not exhibit simultaneously balanced growth of aggregate variables and sectoral change.

JEL classification codes: O41, O47.

Keywords: sectoral change, non-homothetic preferences, balanced growth, speed of convergence.

*Financial support from the Spanish Ministry of Education and Science and FEDER through grants ECO2012-34046 and ECO2011-23059; the Xunta de Galicia through grant 10PXIB300177PR; the Generalitat of Catalonia through grant SGR2009-1051. The paper has benefit from comments by participants in Asset conference in Cyprus, LAGV conference in Aix-Marseille, PET conference in Lisbon, and seminars in University of Barcelona, Tor Vergata (Rome) and University of Groningen. We thank Antonio Manresa and Petros Milionis for his useful comments.
1. Introduction

The Kuznets facts are defined by the change in the sectoral shares of labor, which is a pattern observed in most economies. Figure 1 shows evidence of this long run trend in the US and it shows that during the period 1869 to 2005 labor moved from agriculture to manufactures and services. The Kaldor facts are observed in some developed economies during the last decades and are defined by the balanced growth of the aggregate variables. This balanced growth is identified by an almost constant interest rate and an almost constant value of the ratio of capital to GDP. Figure 2 shows that the time path of the ratio of capital to GDP in the US does not exhibit clear trends in the last decades. Therefore, during the last decades, some developed economies exhibit both balanced growth of aggregate variables and sectoral change. These facts are known as the Kaldor and Kuznets (K-K) facts. In this paper, we study if multisector growth models can explain these two sets of facts.

Multisector-growth models cannot explain K-K facts when sectoral change is driven only by the accumulation of production factors. In these models, the equilibrium exhibits sectoral change and unbalanced growth during the transition, whereas it exhibits a constant sectoral composition and balanced growth in the long run. Therefore, these models cannot explain a transition along which aggregate variables exhibit an almost balanced growth path, while there is sectoral change. Recently, the growth literature has introduced additional factors driving sectoral change in order to explain both sets of facts. This literature has distinguished between models where sectoral change is driven by supply factors and models where it is driven by demand factors. On the one hand, supply factors are changes in relative prices that through a substitution effect cause sectoral change. These factors have been studied by Ngai and Pissarides (2007), Acemoglu and Guerrierie (2008), Melck (2002), among many others. On the other hand, demand factors are related to income effects due to non-homothetic preferences that cause sectoral change in a growing economy. These factors have been studied by Kongsamunt, Rebelo and Xie (2001) (KRX), Foellmi and Zweimüller (2008), among others. Buera and Kaboski (2009), and Boppart (2011) combine both supply and demand factors to explain sectoral change.

KRX introduce sector specific minimum consumption requirements in a multisector growth model. This model can explain the K-K facts when the intertemporal decision on consumption expenditures is driven by homothetic preferences, whereas the intratemporal decision on the allocation of expenditures among the different consumption goods is driven by non-homothetic preferences. The homotheticity of preferences governing the intertemporal decision implies that aggregate variables converge to a BGP and the non-homotheticity of preferences governing the intratemporal decision causes sectoral change in a growing economy. As shown by KRX, these two conditions can only be simultaneously satisfied when the sum of the value at market prices of the sector specific minimum consumption requirements is

1 Echevarria (1997) is an important seminal paper analysing sectoral change driven by non-homothetic preferences in a growing economy. However, the purpose of this paper is to explain the Kuznets facts and it does not discuss the Kaldor facts.

2 Dennis and Iscan (2008) and Herrendorf, Rogerson and Valentinyi (2013) compare the performance of demand and supply to explain sectoral change.
zero. Obviously, this is a knife-edge condition that requires strong assumptions on both preference parameters and technology. We contribute to this literature by showing that it is a sufficient not necessary condition.

We study a multisector growth model where sectoral change is driven by preferences that are non-homothetic due to the introduction of sector specific minimum consumption requirements. We show that the equilibrium of this model is characterized by a two-dimensional manifold that converges to a unique steady state. We show that, given initial conditions on capital intensity, there is a continuum of equilibrium paths indexed by the initial intensity of the minimum consumption requirements. This intensity is measured by the ratio between the sum of the value of the sector specific minimum consumption requirements and gross domestic product (GDP). Obviously, in a growing economy, this intensity decreases and converges to zero. As a consequence, in the long run, preferences are homothetic and the economy converges to a BGP regardless of the initial intensity.

KRX, by assuming that the sum of the value of the minimum consumption requirements is zero, select one particular equilibrium of the two-dimensional manifold. This equilibrium is obtained when the initial intensity of the minimum consumption requirements is equal to zero. Along this equilibrium, convergence in the aggregate variables is faster than convergence in the sectoral composition. This implies that eventually aggregate variables exhibit an almost balanced growth path, while there is sectoral change. Therefore, this implies that this equilibrium explains the K-K facts. By using a continuity argument, we conjecture that these facts can also be explained by other equilibrium paths that are close enough to this equilibrium. These other equilibrium paths can be selected by assuming sufficiently small initial intensities of the minimum consumption requirements. Therefore, we conjecture that the necessary condition to explain the K-K facts is to assume a sufficiently small initial intensity of the minimum consumption requirements. We prove this conjecture numerically. We numerically simulate the transitional dynamics during 140 years of economies that are differentiated only by the initial intensity of the minimum consumption requirement and we use two different criteria to show that there is a continuum of equilibrium paths satisfying the K-K facts. First, we show that if initially the minimum consumption requirement is less than 25% of GDP, then the speed of convergence of variables characterizing the aggregate economy (interest rate, capital to GDP ratio) is larger than the speed of convergence of those variables characterizing the sectoral composition (labor shares). This result implies that in these economies with a sufficiently small initial intensity of the minimum consumption requirements aggregate variables converge before to the BGP than those other variables characterizing the sectoral composition. The second criteria is based on the value of the average annual growth rate of the variables in the last 65 years of the numerical simulations. We show that in economies with an initial value of the minimum consumption requirement smaller than 25% of the GDP, the annual growth rate of aggregate variables during this period is almost null, whereas the growth rate of the labor shares is clearly different from zero. Note that both criteria are consistent and suggest that those economies with a sufficiently small initial intensity of the minimum consumption requirements satisfy the K-K facts. In contrast, when the initially intensity is large, the growth of the aggregate variables is unbalanced and these equilibria do not satisfy the K-K facts.
We also study the performance of the numerical simulations in explaining sectoral change in the US in the period 1869-2005. We show that the equilibrium that provides the best fit is obtained when we assume that the initial intensity of the minimum consumption requirements is very large. This result is an obvious consequence of the fact that in the model sectoral change is explained only by demand factors and, thus, in order to explain the patterns of sectoral change we need to assume that the US economy was suffering from a strong intensity of the minimum consumption requirements in the nineteen century. We also show that the initial intensity that provides the best fit decreases if we increase the initial year of the period that we want to explain. Interestingly, this empirical finding is consistent with the definition of the intensity of the minimum consumption requirement that implies a reduction in the intensity as the economy develops.

In a last numerical exercise, we show that the convergence of the growth rate crucially depends on the initial intensity of the minimum consumption requirements. When this intensity is sufficiently small, the growth rate decreases as capital accumulates, as in the neoclassical growth model. In contrast, when the initial intensity is large, the time path of the growth rate is hump-shaped. Interestingly, this pattern of convergence has been observed in some fast growing economies that were initially poor in the beginning of the period (South Korea, Taiwan, Japan).

This paper outlines the relevance of the initial intensity of the minimum consumption requirements in explaining the transitional dynamics. This variable is inversely related to the level of development. In initially rich economies, the intensity is low and hence these economies exhibit the K-K facts and neoclassical convergence of the growth rate. In contrast, in initially poor economies, the intensity of the minimum consumption requirements is large and growth is unbalanced during a longer period of time, implying that these economies do not exhibit the K-K facts. Moreover, the growth rate exhibits a hump-shaped transition in these economies.

2. The Model

2.1. Firms

We assume that there are \(m \) sectors characterized by the following Cobb-Douglas technology:

\[
Y_i = (s_iK)^{1-\alpha} = A_iu_iL (z_i)^{\alpha},
\]

(2.1)

where \(s_i \) is the share of total capital, \(K \), employed in sector \(i \), \(u_i \) is the share of total labor, \(L \), in sector \(i \), \(A_i \) measures the efficiency units of labor in sector \(i \), \(\alpha \) is the capital output elasticity and \(z_i = s_iK/A_iu_iL \) measures capital intensity in sector \(i \). We assume that \(A_i \) grows at the exogenous growth rate \(\gamma \), which is identical across sectors. This assumption implies that technological progress is unbiased and that the long run growth rate of GDP is equal to \(\gamma \). Finally, we assume perfect competition and perfect factors mobility across sectors, implying that each production factor is paid according to its marginal productivity and that wages, \(w \), and the interest rate, \(r \), are equal across

\footnote{For the sake of simplicity, time subindexes are not introduced.}
sectors. This last assumption implies that
\[w = A_i p_i (1 - \alpha) (z_i)^\alpha, \quad (2.2) \]
and
\[r = p_i \alpha (z_i)^{\alpha - 1} - \delta, \quad (2.3) \]
where \(p_i \) is the relative price of the good produced in sector \(i \) in units of the good produced in sector \(m \). Thus, the good produced in sector \(m \) is the numeraire and hence \(p_m = 1 \).

From using (2.2) and (2.3), we obtain that
\[z_i = \left(\frac{A_m}{A_i} \right) z_m, \quad (2.4) \]
and
\[p_i = \left(\frac{A_m}{A_i} \right)^{1 - \alpha}. \quad (2.5) \]
Note that prices are constant as technological change is unbiased and capital intensity is the same across the different sectors. As a consequence, sectoral change is driven only by demand factors.\(^4\)

\section*{2.2. Consumers}

Let us consider an economy populated by an unique infinitely lived representative consumer. This consumer obtains income from capital and labor. This income is devoted to either consumption or investment. Therefore, the budget constraint is
\[rK + wL = \sum_{i=1}^{m} p_i c_i + \dot{K} + \delta K, \]
where \(c_i \) is the amount consumed of good \(i \) and \(\delta \in (0,1) \) is the depreciation rate of capital. As follows from the budget constraint, the relative price of the investment good is one. This is a consequence of assuming that this good is produced in sector \(m \) and, as mentioned, the output of this sector is the numeraire. This sector will be identified with the manufacturing sector. The representative consumer’s utility function is
\[U = \Pi_{i=1}^{m} (c_i - \hat{c}_i)^{\theta_i(1 - \sigma)} / (1 - \sigma), \quad (2.6) \]
where \(\hat{c}_i \) is a preference parameter that can be interpreted as the minimum consumption requirement of good \(i \), \(\sigma > 0 \) is directly related with the inverse of the intertemporal elasticity of substitution, and \(\theta_i \in (0,1) \) provides the weights of the different consumption goods in the utility function.\(^5\) We assume that \(\sum_{i=1}^{m} \theta_i = 1 \). Note that this utility function is non-homothetic when \(\hat{c}_i \neq 0 \) for some \(i \).

\(^4\)Alonso-Carrera, Caballé and Raurich (2011) study the transitional dynamics effects of changes in prices.
\(^5\)\(\sigma \) is the inverse of the intertemporal elasticity of substitution when \(\hat{c}_i = 0 \) for all \(i \).
The representative consumer maximizes the discounted sum of utilities subject to the budget constraint. The first order conditions are
\[U_i = p_i U_m, \]
(2.7)
and
\[\frac{U_m}{U_i} = \rho - r, \]
(2.8)
where \(\rho > 0 \) is the subjective discount rate. Using (2.6) and (2.7) we obtain
\[p_i (c_i - \bar{c_i}) = \left(\frac{\theta_i}{\theta_m} \right) (c_m - \bar{c}_m). \]
(2.9)
Equation (2.9) characterizes the intratemporal decision on the allocation of consumption expenditures among the different consumption goods. Let \(E = \sum_{i=1}^m p_i c_i \) be the value of consumption expenditures and let \(\tilde{E} = \sum_{i=1}^m p_i \tilde{c}_i \) be the value of the sum of the minimum consumption requirements. From using the definitions of \(E \) and \(\tilde{E} \), equation (2.9) can be rewritten to obtain the expenditure shares in every sector
\[\frac{p_i c_i}{E} = \theta_i \left(\frac{E - \tilde{E}}{E} \right) + \frac{p_i \tilde{c}_i}{E}. \]
(2.10)
Log-differentiating with respect to time equation (2.9) and taking into account that prices are constant, we obtain
\[\frac{\dot{c}_i}{c_i - \bar{c}_i} = \frac{\dot{c}_m}{c_m - \bar{c}_m}. \]
(2.11)
We use (2.7) and (2.8) to obtain
\[\rho - r = \sum_{i=1}^m U_{mi} \dot{c}_i. \]
(2.12)
We use (2.6) and (2.11) to rewrite (2.12) as the following Euler equation:
\[\frac{\dot{E}}{E} = \Omega (r - \rho), \]
(2.13)
where \(\Omega = \left(E - \tilde{E} \right) / \sigma E \) is the intertemporal elasticity of substitution (IES).

From (2.10), it follows that income effects drive sectoral change in expenditure shares when \(\tilde{c}_i \neq 0 \) for some \(i \). As follows from (2.13), balanced growth of aggregate variables requires a constant intertemporal elasticity of substitution. This elasticity is constant when \(\dot{E}/E = 0 \), which is satisfied asymptotically in a growing economy as \(E \) diverges to infinite. Obviously, in finite time this condition can only be satisfied if \(\dot{E} = 0 \). Following these arguments, KRX show that if \(\dot{E} = 0 \) and \(\tilde{c}_i \neq 0 \) for some \(i \) then the equilibrium exhibits balanced growth of aggregate variables and sectoral change and, therefore, the model can explain the K-K facts. However, this condition is a strong knife-edge condition as it requires both a strict relationship between preference and
technological parameters and constant relative prices. In contrast, we follow Acemoglu and Guerrierie (2008) and argue that K-K facts are satisfied when aggregate variables exhibit an almost balanced growth path, while there is sectoral change. An almost BGP is an equilibrium path along which the change in aggregate variables is almost null. We follow this approach and we show that $\tilde{E} = 0$ is a sufficient not necessary condition to explain the K-K facts.

2.3. Market clearing

Sector m produces a commodity that can be used either as a consumption good or as an investment good

$$Y_m = c_m + \dot{K} + \delta K.$$

The other sectors only produce consumption goods and thus the market clearing condition in these sectors is $c_i = Y_i$, for all $i \neq m$, which can be rewritten as

$$u_i = \frac{c_i}{A_i L(z_i)^{\alpha}}. \quad (2.14)$$

Market clearing in the labor market implies that

$$\sum_{i=1}^{m} u_i = 1, \quad (2.15)$$

and in the capital market implies that $\sum_{i=1}^{m} s_i = 1$.

Let $z = K/A_m L$ be the stock of aggregate capital per efficiency unit of labor. Using the definition of z, we obtain that $z_i = s_i A_m z / u_i A_i$. From the last equation and (2.4), we obtain that $z_m u_m = z s_i$. From using the equilibrium conditions in the labor and capital markets, it follows that $z_i = A_m z / A_i$.

Finally, from the budget constraint we obtain that

$$Q = E + \dot{K} + \delta K, \quad (2.16)$$

where $Q = \sum_{i=1}^{m} p_i Y_i$ measures GDP. Using (2.1) and (2.5), GDP can be rewritten as

$$Q = A_m L z^{\alpha}. \quad (2.17)$$

3. The equilibrium

In order to characterize the equilibrium, we define the following transformed variables:

$z = K/A_m L$, $e = E/Q$ and $\tilde{e} = \tilde{E}/Q$. Note that z is a measure of capital intensity and \tilde{e} measures the intensity of the minimum consumption requirements. Note also that \tilde{e} is inversely related to the level of income.

The knife-edge condition introduced by KRX implies that $\tilde{E} = 0$ and thus $\tilde{e} = 0$. Therefore, by assuming this knife-edge condition from the beginning, they reduce the dimensionality of the equilibrium.
3.1. Static equilibrium: sectoral composition

We proceed to obtain the labor shares as functions of the transformed variables: \(e, \tilde{e} \) and \(z \). To this end, we first use (2.4), (2.5), (2.10), (2.14) and (2.17) to obtain the labor share in the consumption sectors

\[
 u_i = \theta_i (e - \tilde{e}) + p_i \tilde{v}_i, \quad \text{for all } i \neq m, \tag{3.1}
\]

where \(\tilde{v}_i = \tilde{c}_i / Q = \tilde{c}_i \tilde{e} / \tilde{E} \). From using the equilibrium condition in the labor market,

\[
 u_m = 1 - \sum_{i=1}^{m-1} u_i, \quad \text{we obtain the labor share in the manufacturing sector}
\]

\[
 u_m = 1 - (e - \tilde{e}) (1 - \theta_m) - \tilde{e} + v_m. \tag{3.2}
\]

3.2. Dynamic equilibrium: aggregate variables

From combining (2.16) and (2.17), we obtain the following differential equation governing the time path of \(z \):

\[
 \dot{z} = \kappa (e, z) = (1 - e) z^{\alpha - 1} - \delta - \gamma. \tag{3.3}
\]

Next, the differential equation governing the time path of \(\tilde{e} \) is obtained from log-differentiating the definition of this variable and it is

\[
 \dot{\tilde{e}} = \frac{e - \tilde{e}}{\tilde{e}} - \gamma - \alpha \kappa (e, z). \tag{3.4}
\]

Finally, we log-differentiate the definition of the transformed variable \(e \), we use (2.13) and the first order conditions from the firms’ problem to obtain the following differential equation governing the time path of \(e \):

\[
 \dot{e} = \left(\frac{\alpha z^{\alpha - 1} - \delta - \rho}{\sigma} \right) \left(\frac{e - \tilde{e}}{e} \right) - \gamma - \alpha \kappa (e, z). \tag{3.5}
\]

Definition 3.1. Given initial conditions on both \(z \) and \(\tilde{e} \), the dynamic equilibrium is a path of \(\{e, z, \tilde{e}\}_{t=0}^{\infty} \) such that solves the system of differential equations (3.3), (3.4) and (3.5) and satisfies the transversality condition

\[
 \lim_{t \to \infty} U_m e^{-\rho t} K = 0.
\]

Remark 1. The control variable is \(e \) and \(z \) and \(\tilde{e} \) are state variables. Note that \(\tilde{e}_0 = \tilde{E} / A_{m,0} L z_0^\alpha \) and thus the initial values \(z_0 \) and \(\tilde{e}_0 \) can be chosen independently because of the initial value of \(A_m \). Obviously, given the initial value of \(z_0 \), the initial intensity of the minimum consumption requirements decreases as \(A_{m,0} \) increases.

Proposition 3.2. There is an unique steady state and the value of the variables is \(\tilde{e}^* = 0, \)

\[
 z^* = \left(\frac{\sigma \gamma + \delta + \rho}{\alpha} \right)^{\frac{1}{\alpha - 1}},
\]

and

\[
 e^* = 1 - \frac{\alpha (\delta + \gamma)}{\sigma \gamma + \delta + \rho}.
\]

8
Proposition 3.3. The unique steady state is saddle path stable.

Given that there are two state variables, saddle path stability implies that the dynamic equilibrium is a two-dimensional stable manifold. Therefore, given initial conditions on both state variables, there is an unique equilibrium path converging towards the steady state. However, given initial conditions on relative capital intensity, \(z_0 \), there is a continuum of equilibrium paths indexed by the initial value of the intensity of the minimum consumption requirements, \(\tilde{e}_0 \). Taking this into account, we can reinterpret the knife-edge condition in KRX. This condition implies that \(\tilde{e}_0 = 0 \). Therefore, this knife-edge condition is equivalent to select a particular equilibrium path of the two dimensional manifold. We know that the transitional dynamics of this equilibrium path eventually satisfies the K-K facts, implying that variables characterizing the aggregate economy converge faster than variables characterizing the sectoral composition. By a continuity argument, we conjecture that other equilibrium paths close enough will exhibit similar transitional dynamics and, therefore, they will also satisfy these two sets of facts. These equilibrium paths can be selected by assuming that the initial intensity of the minimum consumption requirements is sufficiently small, but different from zero. Note that this conjecture implies that the dynamic equilibrium exhibits K-K facts even though the knife-edge condition is not assumed. In the following section, we numerically prove this conjecture and, moreover, we also show that there are no qualitative differences between the equilibrium path when \(\tilde{e}_0 = 0 \) and when \(\tilde{e}_0 \neq 0 \).

4. Kuznets and Kaldor facts

We assume that there are three sectors: manufactures, agriculture and services. The value of the parameters is set as follows. We assume that \(\alpha = 0.35 \), which implies that the labor income share equals 65%. The long run growth rate of GDP is \(\gamma = 2\% \). We set \(\delta = 5.6\% \) to obtain a ratio of investment to capital equal 7.6% in the long run. We set \(\sigma = 2 \) implying a long run IES equal to 0.5 and \(\rho = 0.014 \) implying a long run interest rate equal to 5.4%. We normalize the level of GDP by assuming that \(A_{m,0} = 1 \) and \(L = 1 \). We assume that \(z_0 = 0.75z^* \), whereas we consider the following values of \(\tilde{e}_0 : \{ -0.5, -0.25, 0, 0.25, 0.5, 0.75, 0.9 \} \). Note that we simulate seven economies that are differentiated only by the initial intensity of the minimum consumption requirement. Note also that the initial condition on the capital intensity implies that these economies must accumulate capital along the transition in order to converge. Using these parameters, we simulate the equilibrium and we obtain the time path of the aggregate variables. Finally, these time path are used to estimate the rest of parameters by ordinary least squares to fit the labor shares to actual US data in the years 1869 and 2005. More precisely, we use (2.5), (2.17) and (3.1) to rewrite the labor shares in the consumption sectors as

\[
\begin{align*}
u_i &= \theta_i (e - \tilde{e}) + \left(\frac{A_{m}}{A_i} \right)^{1-\alpha} \left(\frac{\tilde{e}_i}{A_{m}Lz^{\alpha}} \right), \text{ for all } i \neq m.
\end{align*}
\]

\textit{The conclusions obtained in the numerical analysis also hold if we had assumed that } \(z_0 = 0.5z^* \) \textit{or } \(z_0 = 0.25z^* \).

\[9\]
Without loss of generality, we assume that $A_{i0} = 1$ for $i = 1, 2$ and the labor share can be rewritten as
\[u_i = \theta_i (e - \tilde{e}) + \phi_i e^{-\gamma_1} z^{-\alpha}. \]

Table 1 shows the estimates of $\{\theta_i\}_{i=1}^2$ and $\{\tilde{c}_i\}_{i=1}^2$ obtained in the seven economies. Using these estimates, the value of θ_m is obtained from $\theta_m = 1 - \theta_1 - \theta_2$ and the value of \tilde{c}_m is obtained from $\tilde{c}_m = \tilde{e}_0 z_0^\alpha - \tilde{c}_1 - \tilde{c}_2$.

Table 1 shows that in order to explain the patterns of sectoral change in employment in the US the minimum consumption requirements must satisfy the following ranking: $\tilde{c}_1 > \tilde{c}_m > \tilde{c}_2$. In the simulated example, this ranking implies that the income elasticity of the demand of service goods is larger than one, whereas the income elasticity of the demand of agriculture goods is smaller than one. These elasticities explain the increase in the share of labor devoted to services and the reduction in the share of labor devoted to agriculture that we observe in the data. The table also shows that the patterns of sectoral change in the US are compatible with positive values of \tilde{c}_2 when \tilde{e}_0 is positive and large. However, when $\tilde{e}_0 < 0$, the estimated value of \tilde{c}_2 is negative. As explained by KRX, a negative value of \tilde{c}_2 can be interpreted as home production of services, whereas a positive value of \tilde{c}_2 can be interpreted as a minimum consumption requirement.

Figures 3, 4 and 5 illustrate the numerical simulations of the seven economies that are differentiated only by the initial intensity of the minimum consumption requirements. Figure 3 shows the time path of four aggregate variables: the ratio of capital to efficiency units of labor, the ratio of capital to GDP, the interest rate and the ratio of consumption expenditures to GDP. Note that the equilibrium obtained by assuming $\tilde{e}_0 = 0$ coincides with the equilibrium obtained when the knife-edge condition is assumed. As follows from Figure 3, the transitional dynamics of this economy are qualitatively similar to those of economies obtained when the knife-edge condition is not assumed ($\tilde{e}_0 \neq 0$). In particular, the different economies converge to the same long run BGP. This is a consequence of the fact that in a growing economy the intensity of the minimum consumption converges to zero, regardless of the initial condition, as shown in Figure 4. This implies that preferences are homothetic in the long run, which explains that these different economies converge to the same BGP. Therefore, the relevant differences among these economies occur during the transition.

Panel 4 in Figure 3 shows that economies with an initially large intensity of the consumption requirement devote a large fraction of GDP to consumption expenditures. As a consequence, investment in these economies is small in the initial periods, implying that both capital per unit of efficiency labor and the ratio of capital to GDP initially decrease (see Panels 1 and 2 in Figure 1). Obviously, in a growing economy that accumulates capital, this smaller capital accumulation causes a reduction in the speed of convergence of aggregate variables, implying that convergence to a BGP occurs later. This suggests that these economies with a large initial intensity of the minimum consumption requirement may not explain the K-K facts, as these facts require that variables characterizing the aggregate economy should converge before than those other variables characterizing the sectoral composition. Based on this argument, Tables 2 and 3 provide two different criteria in order to disentangle between simulated economies that

\[^7\text{If we had assumed that } A_{i0} \neq 1 \text{ for } i = 1, 2 \text{ then the labor shares would have been } u_i = \theta_i (e - \tilde{e}) + \phi_i e^{-\gamma_1} z^{-\alpha}, \text{ where } \phi_i = A_{i0}^{-\gamma_1} \tilde{c}_i. \text{ Thus, in this case, we would estimate } \phi_i \text{ instead of } \tilde{c}_i.\]
satisfy the K-K facts and those other economies that do not satisfy these facts.

Table 2 uses as a criteria the comparison between the half life of aggregate variables (interest rate, ratio of capital to GDP and ratio of capital to efficiency units of labor) and the half life of those other variables characterizing the sectoral composition (labor shares). Half life is the number of years a variable takes to fill half of the initial distance to the steady state. Therefore, half life is a measure of the non-asymtotic speed of convergence. Obviously, K-K facts are satisfied when half life is smaller for aggregate variables that for those variables characterizing the sectoral composition. As follows from this table, when the initial intensity of the minimum consumption requirements is zero, half life is smaller for aggregate variables than for the labor shares. This implies that in this economy, obtained by assuming the knife-edge condition, aggregate variables will exhibit an almost BGP, while there is sectoral change and, thus, this economy satisfies the K-K facts. Table 2 also shows that the half life of aggregate variables increases as the initial intensity of the minimum consumption requirements increases. However, if \(\tilde{e}_0 \leq 0.25 \) half life of aggregate variables is still smaller than half life of the labor shares, implying that equilibria obtained by assumnig a value of \(\tilde{e}_0 \) smaller than 0.25 satisfy the two sets of facts. In contrast, when \(\tilde{e}_0 \geq 0.5 \), half life is larger for aggregate variables, implying that equilibria obtained by assuming a value of \(\tilde{e}_0 \) larger than 0.5 do not explain the two sets of facts. Note that the results in this table provide numerical support to our conjecture that the equilibria obtained by assuming an initial value of the intensity of the minimum consumption requirement below a threshold eventually exhibit the K-K facts. We then conclude that these facts can be explained in a model of sectoral change driven by demand factors, even though the knife-edge condition is not introduced.

Following Acemoglu and Guerrierie (2008), in Table 3 we use the average annual growth rate in the last 65 years as a criteria. The table compares the growth rates of aggregate variables with the growth rates of the labor shares. Satisfying the K-K facts implies that the growth of aggregate variables should be almost null, whereas the growth of those variables characterizing sectoral composition should be clearly different from zero. As follows from the table, the growth rates of the labor shares are clearly different from zero in all the simulated economies. Obviously, this implies that in all these economies there is sectoral change during the last 65 years. In contrast, the growth rates of aggregate variables are almost null when \(\tilde{e}_0 \leq 0.25 \), whereas they are larger than 0.1% when \(\tilde{e}_0 \geq 0.5 \). These findings imply that K-K facts are explained when we assume a sufficiently small initial intensity of the minimum consumption. Note that this conclusion is consistent with the findings obtained in Table 2. We can then safely conclude that the necessary condition to explain the K-K facts is a sufficiently small initial intensity of the minimum consumption requirements.

5. Performance of the numerical simulations

Figure 5 compares the labor shares in the three sectors with actual US data. As follows from this comparison, the numerical simulations provide a very good fit when explaining the labor shares in agriculture and services. Moreover, there are interesting differences in the performance of the different simulated economies. Table 4 shows the coefficient of determination of the different simulated economies for the three labor shares. The
best fit is obtained when the initial intensity of the minimum consumption requirements is extremely large (90% to explain the labor share in agriculture and 95% to explain the labor shares in the other two sectors). This result is obtained because we assume that sectoral change is driven only by demand factors. This finding then implies that in order to explain the process of sectoral change in the US in the last 140 years it is necessary to assume that in the mid of the nineteen century the US suffered from a large intensity of the minimum consumption requirements.

Table 5 shows the value of the initial intensity of the minimum consumption requirement that provides the best fit to explain the labor shares when the period is reduced. We have studied the periods: 1885-2005, 1903-2005, 1927-2005 and 1950-2005. Note that the periods are reduced by increasing the initial year. The table shows that the initial intensity of the minimum consumption requirements that provides the best fit decreases as the initial year is increased. For instance, the values of \tilde{c}_0 that provide the best fit in services are 0.95, 0.9, 0.75, 0.7, and 0.4 when the initial year are, respectively, 1869, 1885, 1903, 1927, and 1950. It is important to outline that this empirical finding is consistent with the definition of the intensity of the minimum consumption requirement. According to this definition, in a growing economy the intensity of the minimum consumption requirements decreases, implying a reduction in the initial intensity as the initial period increases.

Figure 6 shows the time path of the growth rate of the GDP. Economies with an initially small intensity of the minimum consumption requirement exhibit the standard neoclassical convergence, explained by the diminishing returns to capital. In contrast, the time path of the growth rate of those economies with an initially positive and large intensity of the minimum consumption requirement exhibit a hump-shaped pattern. In these economies, the large initial intensity of the minimum consumption requirement prevents capital accumulation, which explains the initially low growth rates. As capital becomes scarce, the interest rate rises which explains the increasing path of the growth rate and of capital accumulation. Once capital becomes abundant, the diminishing returns to capital explain the reduction in the growth rates until convergence. This growth pattern is consistent with the observed growth patterns in some emerging economies (Japan, South Korea and Taiwan). In fact, this hump-shaped pattern has already been explained in the framework of a one sector growth model with non-homothetic preferences by Steger (2000). Therefore, the contribution of our paper to this literature studying the growth patterns is to show that the equilibrium dynamics of a multisector growth model with non-homothetic preferences imply transitional dynamics that are consistent with both the growth patterns and the observed process of sectoral change.

6. Concluding remarks

We have analyzed the transitional dynamics of the equilibrium of a multi-sector growth model, where the introduction of minimum consumption requirements makes preferences be non-homothetic. The equilibrium is characterized by a two dimensional manifold and we show that there is a continuum of equilibrium paths indexed by the initial intensity of the minimum consumption requirements. The knife-edge condition in KRX is equivalent to select a particular equilibrium path within this continuum. We
show numerically that this equilibrium path satisfies the K-K facts and we also show that other equilibrium paths selected by assuming sufficiently low values of the initial intensity of the minimum consumption requirements also satisfy these two sets of facts. We then conclude that the knife-edge condition is not a necessary condition to explain K-K facts.

The initial intensity of the minimum consumption requirements is inversely related with the level of economic development. We show that it plays a crucial role driving the transitional dynamics. Initially rich economies benefit from an initially low intensity of the minimum consumption requirements and, as a consequence, aggregate variables exhibit balanced growth, whereas there is sectoral change. These economies exhibit K-K facts during a long period and the growth rate decreases as capital accumulates, as in the neoclassical one-sector growth model. In contrast, initially poor economies suffer from an initially large intensity of the minimum consumption requirements and thus the growth of the aggregate variables is unbalanced during a long period of time. In these economies, K-K facts are either satisfied during a small number of years or they are never satisfied. Moreover, the convergence of aggregate variables is different from the convergence obtained in the neoclassical one sector growth model. In particular, the time path of the growth rate exhibits a hump-shaped transition.
References

A. Proof of Proposition 3.3

From equation (3.3), we obtain $\frac{\partial \dot{z}}{\partial e} = \alpha \kappa_e = 0$, $\frac{\partial \dot{z}}{\partial e} = \beta \kappa_e = -z_0 < 0$ and $\frac{\partial \dot{z}}{\partial z} = \gamma \kappa_z = (\alpha - 1)(\delta + \gamma_m) < 0$.

From equation (3.5), we obtain $\frac{\partial \dot{e}}{\partial e} = \gamma \beta \alpha \kappa_e = -\epsilon \alpha \kappa_z = e \alpha^2 \kappa_e = > 0$, and

$\frac{\partial \dot{e}}{\partial z} = \epsilon \left(\frac{(\alpha - 1)z^{\alpha - 2}}{\sigma} - \alpha \kappa_z \right)$.

From equation (3.4), we obtain $\frac{\partial \dot{e}}{\partial z} = 0$, $\frac{\partial \dot{e}}{\partial e} = 0$, and $\frac{\partial \dot{e}}{\partial e} = -\gamma < 0$. The Jacobian matrix is

$$J = \begin{pmatrix}
\frac{\partial \dot{e}}{\partial z} - \lambda & \frac{\partial \dot{e}}{\partial e} & 0 \\
\frac{\partial \dot{e}}{\partial e} - \lambda & 0 & \frac{\partial \dot{e}}{\partial e} - \lambda \\
0 & 0 & 0
\end{pmatrix},$$

and the characteristic polynomial is

$$P(J) = \left(\frac{\partial \dot{e}}{\partial e} - \lambda \right) \left[\left(\frac{\partial \dot{e}}{\partial e} - \lambda \right) \left(\frac{\partial \dot{e}}{\partial z} - \lambda \right) - \frac{\partial \dot{e}}{\partial e} \frac{\partial \dot{e}}{\partial z} \right].$$

The roots are $\lambda_1 = \frac{\partial \dot{e}}{\partial e} = -\gamma < 0$, and the solutions of

$$\lambda^2 - \lambda \left(\frac{\partial \dot{e}}{\partial z} + \frac{\partial \dot{e}}{\partial e} \right) + \frac{\partial \dot{e}}{\partial e} \frac{\partial \dot{e}}{\partial e} - \frac{\partial \dot{e}}{\partial z} \frac{\partial \dot{e}}{\partial e} = 0,$$

where

$$\frac{\partial \dot{e}}{\partial z} \frac{\partial \dot{e}}{\partial e} - \frac{\partial \dot{e}}{\partial e} \frac{\partial \dot{e}}{\partial z} = -e \alpha \kappa_e \gamma \kappa_z = -z \kappa_e \left(\frac{\alpha (\alpha - 1)z^{\alpha - 2}}{\sigma} - \alpha \kappa_z \right) = \frac{e \alpha (\alpha - 1)z^{(\alpha - 1)2}}{\sigma} < 0.$$

This term being negative implies that $\lambda_2 > 0$ and $\lambda_3 < 0$.

*We use the following notation for partial derivatives $\kappa_e = \frac{\partial \alpha}{\partial e}$, $\kappa_e = \frac{\partial \alpha}{\partial e}$ and $\kappa_z = \frac{\partial \alpha}{\partial z}$.
B. Tables and Figures

Table 1. Parameters estimated by OLS

<table>
<thead>
<tr>
<th>\hat{c}_0</th>
<th>-0.5</th>
<th>-0.25</th>
<th>0</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_1</td>
<td>0.073</td>
<td>0.069</td>
<td>0.065</td>
<td>0.065</td>
<td>0.052</td>
<td>0.042</td>
<td>0.031</td>
</tr>
<tr>
<td>θ_2</td>
<td>0.844</td>
<td>0.854</td>
<td>0.865</td>
<td>0.878</td>
<td>0.895</td>
<td>0.919</td>
<td>0.944</td>
</tr>
<tr>
<td>θ_m</td>
<td>0.088</td>
<td>0.075</td>
<td>0.069</td>
<td>0.061</td>
<td>0.051</td>
<td>0.037</td>
<td>0.024</td>
</tr>
<tr>
<td>\bar{c}_1</td>
<td>0.838</td>
<td>0.860</td>
<td>0.877</td>
<td>0.887</td>
<td>0.887</td>
<td>0.866</td>
<td>0.823</td>
</tr>
<tr>
<td>\bar{c}_2</td>
<td>-1.502</td>
<td>-1.195</td>
<td>-0.886</td>
<td>-0.574</td>
<td>-0.258</td>
<td>0.064</td>
<td>0.273</td>
</tr>
<tr>
<td>\bar{c}_m</td>
<td>-0.178</td>
<td>-0.086</td>
<td>-0.087</td>
<td>0.108</td>
<td>0.214</td>
<td>0.333</td>
<td>0.420</td>
</tr>
</tbody>
</table>

Table 2. Half life

<table>
<thead>
<tr>
<th>\hat{c}_0</th>
<th>r</th>
<th>$\frac{K}{Q}$</th>
<th>z</th>
<th>u_1</th>
<th>u_2</th>
<th>u_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>29</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>-0.25</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>29</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>31</td>
<td>29</td>
<td>10</td>
</tr>
<tr>
<td>0.15</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>31</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>0.25</td>
<td>26</td>
<td>31</td>
<td>31</td>
<td>34</td>
<td>34</td>
<td>41</td>
</tr>
<tr>
<td>0.5</td>
<td>61</td>
<td>69</td>
<td>69</td>
<td>34</td>
<td>37</td>
<td>69</td>
</tr>
<tr>
<td>0.75</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>41</td>
<td>45</td>
<td>88</td>
</tr>
<tr>
<td>0.9</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>45</td>
<td>50</td>
<td>88</td>
</tr>
</tbody>
</table>

Table 3. Average annual growth rate in the last 65 years

<table>
<thead>
<tr>
<th>\bar{c}_0</th>
<th>r</th>
<th>$\frac{K}{Q}$</th>
<th>z</th>
<th>u_1</th>
<th>u_2</th>
<th>u_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0012%</td>
<td>0.0006%</td>
<td>0.0009%</td>
<td>1.0105%</td>
<td>0.1880%</td>
<td>0.0040%</td>
</tr>
<tr>
<td>0.15</td>
<td>0.0387%</td>
<td>0.0192%</td>
<td>0.0296%</td>
<td>1.0398%</td>
<td>0.1905%</td>
<td>0.0140%</td>
</tr>
<tr>
<td>0.25</td>
<td>0.0605%</td>
<td>0.0305%</td>
<td>0.0505%</td>
<td>1.0605%</td>
<td>0.1964%</td>
<td>0.0229%</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1476%</td>
<td>0.0754%</td>
<td>0.1160%</td>
<td>1.1205%</td>
<td>0.2050%</td>
<td>0.0490%</td>
</tr>
<tr>
<td>0.75</td>
<td>0.2605%</td>
<td>0.1305%</td>
<td>0.2105%</td>
<td>1.2400%</td>
<td>0.2200%</td>
<td>0.0920%</td>
</tr>
<tr>
<td>0.9</td>
<td>0.3761%</td>
<td>0.2020%</td>
<td>0.3109%</td>
<td>1.3874%</td>
<td>0.2550%</td>
<td>0.1406%</td>
</tr>
<tr>
<td>0.95</td>
<td>0.4834%</td>
<td>0.2640%</td>
<td>0.4071%</td>
<td>1.5078%</td>
<td>0.2466%</td>
<td>0.1858%</td>
</tr>
</tbody>
</table>

Table 4. Performance of the simulations

<table>
<thead>
<tr>
<th>\bar{c}_0</th>
<th>-0.5</th>
<th>-0.25</th>
<th>0</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>0.9</th>
<th>0.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2_{y1}</td>
<td>0.92</td>
<td>0.93</td>
<td>0.94</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
<td>0.98</td>
<td>0.97</td>
</tr>
<tr>
<td>R^2_{y2}</td>
<td>0.75</td>
<td>0.77</td>
<td>0.79</td>
<td>0.82</td>
<td>0.85</td>
<td>0.89</td>
<td>0.92</td>
<td>0.94</td>
</tr>
<tr>
<td>R^2_{um}</td>
<td>-0.22</td>
<td>-0.14</td>
<td>-0.05</td>
<td>0.04</td>
<td>0.15</td>
<td>0.30</td>
<td>0.43</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Table 5. Performance of the simulations

<table>
<thead>
<tr>
<th></th>
<th>1885-2005</th>
<th></th>
<th></th>
<th></th>
<th>1903-2005</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\hat{e}_0)</td>
<td>(R^2_{u1})</td>
<td>(R^2_{u2})</td>
<td>(R^2_{um})</td>
<td>(\hat{e}_0)</td>
<td>(R^2_{u1})</td>
<td>(R^2_{u2})</td>
<td>(R^2_{um})</td>
</tr>
<tr>
<td>1885-2005</td>
<td>0.75</td>
<td>0.98</td>
<td>0.91</td>
<td>0.25</td>
<td>0.4</td>
<td>0.98</td>
<td>0.92</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.93</td>
<td>0.95</td>
<td>0.27</td>
<td>0.75</td>
<td>0.96</td>
<td>0.96</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.91</td>
<td>0.94</td>
<td>0.49</td>
<td>0.95</td>
<td>0.9</td>
<td>0.95</td>
<td>0.64</td>
</tr>
<tr>
<td>1903-2005</td>
<td>0.3</td>
<td>0.97</td>
<td>0.95</td>
<td>0.55</td>
<td>-0.8</td>
<td>0.97</td>
<td>0.90</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.93</td>
<td>0.98</td>
<td>0.7</td>
<td>0.4</td>
<td>0.91</td>
<td>0.98</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.85</td>
<td>0.97</td>
<td>0.79</td>
<td>0.7</td>
<td>0.83</td>
<td>0.96</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Figure 1. Labor shares in the US. *Source: Historical statistics of the U.S.*
Figure 2. Ratio of capital to GDP in the US. Source: U.S. Bureau of Economic Analysis.
Figure 3. Time path of aggregate variables.
Figure 4. Ratio between the value of the minimum consumption and GDP.
Figure 5. Time path of the labor shares.
Figure 6. Time path of the GDP growth rate.