Mathematics - MMath

Summer Open Days

Join our open days at the Canterbury and Medway campuses this summer. Visit us in-person or online to discover more about our courses, explore our facilities and discover why you belong at Kent.

Mathematics is important to the modern world. All quantitative science, including both physical and social sciences, is based on it. It provides the theoretical framework for physical science, statistics and data analysis as well as computer science. Our programmes reflect this diversity and the excitement generated by new discoveries within mathematics.

Overview

The MMath offers a fantastic alternative to the traditional BSc to MSc pathway, offering you the opportunity to take your learning further and explore topics in greater detail to masters-level study.

Our Mathematics programmes combine the in-house expertise of our internationally-renowned mathematicians and statisticians to ensure you are fully prepared for your future career.

You will be encouraged to fulfil your potential whilst studying in our friendly and dynamic school based in the multi-award-winning Sibson Building.

Our degree programme

To help bridge the gap between school and university, you’ll attend small group tutorials in Stage 1, where you can practice the new mathematics you’ll be learning, ask questions and work with other students to find solutions. You’ll study a mixture of pure and applied mathematics, and statistics, providing you with a solid foundation for your later studies.

In Stage 2, you study some core modules which build upon the material learnt at Stage 1. You also start to tailor your degree to your interests through our range of optional modules, continuing to explore the areas you enjoy into Stage 3.

A year of Master's-level study in Stage 4 gives you the opportunity to explore more advanced topics, which draw on the highly rated research expertise of the School of Mathematics, Statistics and Actuarial Science.

You can also choose to study Mathematics as a three-year programme with options to take an incorporated Foundation Year or Year in Industry.

Study resources

You have access to a range of professional mathematical and statistical software such as:

  • Maple
  • MATLAB
  • Minitab.

Our staff use these packages in their teaching and research.

Extra activities

The School of Mathematics and Actuarial Science Student Society is run by students. It aims to improve the student experience for its members, socially and academically. In previous years the Society has organised:

  • talks and workshops
  • extra revision sessions
  • socials and networking events.
  • seminars and workshops employability events.

The School of Mathematics, Statistics and Actuarial Science also puts on regular events that you are welcome to attend. In the past, these have included:

  • seminars and workshops
  • employability events.

Featured video

Watch to find out why you should study at Kent.

Maths student chatting in a lecture theatre

Accreditation

This degree will meet the educational requirements of the Chartered Mathematician designation, awarded by the Institute of Mathematics and its Applications (IMA).

Flexible tariff

Make Kent your firm choice – The Kent Guarantee

We understand that applying for university can be stressful, especially when you are also studying for exams. Choose Kent as your firm choice on UCAS and we will guarantee you a place, even if you narrowly miss your offer (for example, by 1 A Level grade)*.

*exceptions apply. Please note that we are unable to offer The Kent Guarantee to those who have already been given a reduced or contextual offer.

Entry requirements

The University will consider applications from students offering a wide range of qualifications. Typical requirements are listed below; students offering alternative qualifications should contact the Admissions Office for further advice. It is not possible to offer places to all students who meet this typical offer/minimum requirement.

Students can also enter the MMath programme by transfer from the standard three-year degree programmes at the end of Stage 2, provided they have passed the core modules and met the average mark threshold of Stage 2 of the MMath programme.

  • medal-empty

    A level

    AAB including Maths at A but excluding Use of Maths.

    If taking both A level Mathematics and A level Further Mathematics:

    ABB including Maths at A and Further Maths at B but excluding Use of Maths.

  • medal-empty Access to HE Diploma

    The University welcomes applications from Access to Higher Education Diploma candidates for consideration. A typical offer may require you to obtain a proportion of Level 3 credits in relevant subjects at merit grade or above.

  • medal-empty BTEC Nationals

    The University will consider applicants holding BTEC National Diploma and Extended National Diploma Qualifications (QCF; NQF; OCR) on a case-by-case basis. Please contact us for further advice on your individual circumstances.

  • medal-empty International Baccalaureate

    30 points overall or 15 points at HL including Mathematics or Mathematics: Analysis and Approaches 6 at HL

  • medal-empty International Foundation Programme

    N/A

  • medal-empty T level

    The University will consider applicants holding T level qualifications in subjects closely aligned to the course.

If you are an international student, visit our International Student website for further information about entry requirements for your country, including details of the International Foundation Programmes. Please note that international fee-paying students who require a Student visa cannot undertake a part-time programme due to visa restrictions.

Please note that meeting the typical offer/minimum requirement does not guarantee that you will receive an offer.

English Language Requirements

International students will need to demonstrate their proficiency in English: average 6.5 in IELTS test with minimum 6.0 in reading and writing or equivalent.

Please see our English language entry requirements web page. 

Please note that if you are required to meet an English language condition, we offer a number of pre-sessional courses in English for Academic Purposes through Kent International Programmes.

Form

Priority Clearing

Register for Priority Clearing at Kent to give yourself a head start this results day.

Register for Priority Clearing

This field is required
This field is required
This field is required
Please enter a valid email address
This field is required
This field is required
Please contact me by email, telephone, text message or via social media with information about the courses available at the University of Kent, including information about relevant events, scholarships and other general information.
This field is required

If you would like further information about how the University of Kent will process your data, then please read our Privacy Notice.

Course structure

Duration: 4 years full-time

Modules

The following modules are indicative of those offered on this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.  

On most programmes, you study a combination of compulsory and optional modules. You may also be able to take ‘elective’ modules from other programmes so you can customise your programme and explore other subjects that interest you.

Stage 1

Compulsory modules currently include

This module serves as an introduction to algebraic methods. These methods are central in modern mathematics and have found applications in many other sciences, but also in our everyday life. In this module, students will also gain an appreciation of the concept of proof in mathematics.

Find out more about MAST4001

This module introduces mathematical modelling and Newtonian mechanics. Tutorials and Maple worksheets will be used to support taught material.

The modelling cycle: General description with examples; Newton's law of cooling; population growth (Malthusian and logistic models); simple reaction kinetics (unimolecular and bimolecular reactions); dimensional consistency

Motion of a body: frames of reference; a particle's position vector and its time derivatives (velocity and acceleration) in Cartesian coordinates; mass, momentum and centre of mass; Newton's laws of motion; linear springs; gravitational acceleration and the pendulum; projectile motion

Orbital motion: Newton's law of gravitation; position, velocity and acceleration in plane polar coordinates; planetary motion and Kepler's laws.

Find out more about MAST4002

This module is a sequel to Algebraic Methods. It considers the abstract theory of linear spaces together with applications to matrix algebra and other areas of Mathematics (and its applications). Since linear spaces are of fundamental importance in almost every area of mathematics, the ideas and techniques discussed in this module lie at the heart of mathematics. Topics covered will include vector spaces, linear transformations, eigenvalues and eigenvectors, diagonalisation, orthogonality and applications including conics.

Find out more about MAST4004

This module introduces widely-used mathematical methods for functions of a single variable. The emphasis is on the practical use of these methods; key theorems are stated but not proved at this stage. Tutorials and Maple worksheets will be used to support taught material.

Complex numbers: Complex arithmetic, the complex conjugate, the Argand diagram, de Moivre's Theorem, modulus-argument form; elementary functions

Polynomials: Fundamental Theorem of Algebra (statement only), roots, factorization, rational functions, partial fractions

Single variable calculus: Differentiation, including product and chain rules; Fundamental Theorem of Calculus (statement only), elementary integrals, change of variables, integration by parts, differentiation of integrals with variable limits

Scalar ordinary differential equations (ODEs): definition; methods for first-order ODEs; principle of superposition for linear ODEs; particular integrals; second-order linear ODEs with constant coefficients; initial-value problems

Curve sketching: graphs of elementary functions, maxima, minima and points of inflection, asymptotes

Find out more about MAST4006

This module introduces widely-used mathematical methods for vectors and functions of two or more variables. The emphasis is on the practical use of these methods; key theorems are stated but not proved at this stage. Tutorials and Maple worksheets will be used to support taught material.

Vectors: Cartesian coordinates; vector algebra; scalar, vector and triple products (and geometric interpretation); straight lines and planes expressed as vector equations; parametrized curves; differentiation of vector-valued functions of a scalar variable; tangent vectors; vector fields (with everyday examples)

Partial differentiation: Functions of two variables; partial differentiation (including the chain rule and change of variables); maxima, minima and saddle points; Lagrange multipliers

Integration in two dimensions: Double integrals in Cartesian coordinates; plane polar coordinates; change of variables for double integrals; line integrals; Green's theorem (statement – justification on rectangular domains only)

Find out more about MAST4007

Introduction to Probability. Concepts of events and sample space. Set theoretic description of probability, axioms of probability, interpretations of probability (objective and subjective probability).

Theory for unstructured sample spaces. Addition law for mutually exclusive events. Conditional probability. Independence. Law of total probability. Bayes' theorem. Permutations and combinations. Inclusion-Exclusion formula.

Discrete random variables. Concept of random variable (r.v.) and their distribution. Discrete r.v.: Probability function (p.f.). (Cumulative) distribution function (c.d.f.). Mean and variance of a discrete r.v. Examples: Binomial, Poisson, Geometric.

Continuous random variables. Probability density function; mean and variance; exponential, uniform and normal distributions; normal approximations: standardisation of the normal and use of tables. Transformation of a single r.v.

Joint distributions. Discrete r.v.'s; independent random variables; expectation and its application.

Generating functions. Idea of generating functions. Probability generating functions (pgfs) and moment generating functions (mgfs). Finding moments from pgfs and mgfs. Sums of independent random variables.

Laws of Large Numbers. Weak law of large numbers. Central Limit Theorem.

Find out more about MAST4009

Real Numbers: Rational and real numbers, absolute value and metric structure on the real numbers, induction, infimum and supremum.

Limits of Sequences: Sequences, definition of convergence, epsilon terminology, uniqueness, algebra of limits, comparison principles, standard limits, subsequences and non-existence of limits, convergence to infinity.

Completeness Properties: Cantor's Intersection Theorem, limit points, Bolzano-Weierstrass theorem, Cauchy sequences.

Continuity of Functions: Functions and basic definitions, limits of functions, continuity and epsilon terminology, sequential continuity, Intermediate Value Theorem.

Differentiation: Definition of the derivative, product rule, quotient rule and chain rule, derivatives and local properties, Mean Value Theorem, L'Hospital's Rule.

Taylor Approximation: Taylor's Theorem, remainder term, Taylor series, standard examples, limits using Taylor series.

Find out more about MAST4010

Introduction to R and investigating data sets. Basic use of R (Input and manipulation of data). Graphical representations of data. Numerical summaries of data.

Sampling and sampling distributions. ?² distribution. t-distribution. F-distribution. Definition of sampling distribution. Standard error. Sampling distribution of sample mean (for arbitrary distributions) and sample variance (for normal distribution) .

Point estimation. Principles. Unbiased estimators. Bias, Likelihood estimation for samples of discrete r.v.s

Interval estimation. Concept. One-sided/two-sided confidence intervals. Examples for population mean, population variance (with normal data) and proportion.

Hypothesis testing. Concept. Type I and II errors, size, p-values and power function. One-sample test, two sample test and paired sample test. Examples for population mean and population variance for normal data. Testing hypotheses for a proportion with large n. Link between hypothesis test and confidence interval. Goodness-of-fit testing.

Association between variables. Product moment and rank correlation coefficients. Two-way contingency tables. ?² test of independence.

Find out more about MAST4011

Stage 2

Compulsory modules currently include

The concept of symmetry is one of the most fruitful ideas through which mankind has tried to understand order and beauty in nature and art. This module first develops the concept of symmetry in geometry. It subsequently discusses links with the fundamental notion of a group in algebra. Outline syllabus includes: Groups from geometry; Permutations; Basic group theory; Action of groups and applications to (i) isometries of regular polyhedra; (ii) counting colouring problems; Matrix groups.

Find out more about MAST5003

In this module we will study linear partial differential equations, we will explore their properties and discuss the physical interpretation of certain equations and their solutions. We will learn how to solve first order equations using the method of characteristics and second order equations using the method of separation of variables.

Introduction to linear PDEs: Review of partial differentiation; first-order linear PDEs, the heat equation, Laplace's equation and the wave equation, with simple models that lead to these equations; the superposition principle; initial and boundary conditions

Separation of variables and series solutions: The method of separation of variables; simple separable solutions of the heat equation and Laplace’s equation; Fourier series; orthogonality of the Fourier basis; examples and interpretation of solutions

Solution by characteristics: the method of characteristics for first-order linear PDEs; examples and interpretation of solutions; characteristics of the wave equation; d’Alembert’s solution, with examples; domains of influence and dependence; causality.

Find out more about MAST5005

This module builds on the Stage 1 Real Analysis 1 module. We will extend our knowledge of functions of one real variable, look at series, and study functions of several real variables and their derivatives.

The outline syllabus includes: Continuity and uniform continuity of functions of one variable, series and power series, the Riemann integral, limits and continuity for functions of several variables, differentiation of functions of several variables, extrema, the Inverse and Implicit Function Theorems.

Find out more about MAST5013

Optional modules may include

Constructing suitable models for data is a key part of statistics. For example, we might want to model the yield of a chemical process in terms of the temperature and pressure of the process. Even if the temperature and pressure are fixed, there will be variation in the yield which motivates the use of a statistical model which includes a random component. In this module, students study linear regression models (including estimation from data and drawing of conclusions), the use of likelihood to estimate models and its application in simple stochastic models. Both theoretical and practical aspects are covered, including the use of R.

Find out more about MAST5001

The main aim of this module is to give an introduction to the basics of differential geometry, keeping in mind the recent applications in mathematical physics and the analysis of pattern recognition. Outline syllabus includes: Curves and parameterization; Curvature of curves; Surfaces in Euclidean space; The first fundamental form; Curvature of surfaces; Geodesics.

Find out more about MAST5002

This module will present a new perspective on Newton's familiar laws of motion. First we introduce variational calculus with applications such as finding the paths of shortest distance. This will lead us to the principle of least action from which we can derive Newton's law for conservative forces. We will also learn how symmetries lead to constants of motion. We then derive Hamilton's equations and discuss their underlying structures. The formalisms we introduce in this module form the basis for all of fundamental modern physics, from electromagnetism and general relativity, to the standard model of particle physics and string theory.

Indicative syllabus:

Review of Newton mechanics: Newton's law; harmonic and anharmonic oscillators (closed and unbound orbits, turning points); Kepler problem: energy and angular momentum conservation

Lagrangian Mechanics: Introdution to variational calculus with simple applications (shortest path - geodesic, soap film, brachistochrone problem); principle of least action: Euler-Lagrange equations (Newtonian mechanics with conservative forces); constraints and generalised coordinates (particle on a hoop, double pendulum, normal modes); Noether's theorem (energy and angular momentum conservation)

Hamiltonian Dynamics: Hamilton's equations; Legendre transform; Hamiltonian phase space (harmonic oscillator, anharmonic oscillators and the mathematical pendulum); Liouville's theorem; Poisson brackets.

Find out more about MAST5004

Probability: Joint distributions of two or more discrete or continuous random variables. Marginal and conditional distributions. Independence. Properties of expectation, variance, covariance and correlation. Poisson process and its application. Sums of random variables with a random number of terms.

Transformations of random variables: Various methods for obtaining the distribution of a function of a random variable —method of distribution functions, method of transformations, method of generating functions. Method of transformations for several variables. Convolutions. Approximate method for transformations.

Sampling distributions: Sampling distributions related to the Normal distribution — distribution of sample mean and sample variance; independence of sample mean and variance; the t distribution in one- and two-sample problems.

Statistical inference: Basic ideas of inference — point and interval estimation, hypothesis testing.

Point estimation: Methods of comparing estimators — bias, variance, mean square error, consistency, efficiency. Method of moments estimation. The likelihood and log-likelihood functions. Maximum likelihood estimation.

Hypothesis testing: Basic ideas of hypothesis testing — null and alternative hypotheses; simple and composite hypotheses; one and two-sided alternatives; critical regions; types of error; size and power. Neyman-Pearson lemma. Simple null hypothesis versus composite alternative. Power functions. Locally and uniformly most powerful tests.

Composite null hypotheses. The maximum likelihood ratio test.

Interval estimation: Confidence limits and intervals. Intervals related to sampling from the Normal distribution. The method of pivotal functions. Confidence intervals based on the large sample distribution of the maximum likelihood estimator – Fisher information, Cramer-Rao lower bound. Relationship with hypothesis tests. Likelihood-based intervals.

Find out more about MAST5007

This module is an introduction to the methods, tools and ideas of numerical computation. In mathematics, one often encounters standard problems for which there are no easily obtainable explicit solutions, given by a closed formula. Examples might be the task of determining the value of a particular integral, finding the roots of a certain non-linear equation or approximating the solution of a given differential equation. Different methods are presented for solving such problems on a modern computer, together with their applicability and error analysis. A significant part of the module is devoted to programming these methods and running them in MATLAB.

Introduction: Importance of numerical methods; short description of flops, round-off error, conditioning

Solution of linear and non-linear equations: bisection, Newton-Raphson, fixed point iteration

Interpolation and polynomial approximation: Taylor polynomials, Lagrange interpolation, divided differences, splines

Numerical integration: Newton-Cotes rules, Gaussian rules

Numerical differentiation: finite differences

Introduction to initial value problems for ODEs: Euler methods, trapezoidal method, Runge-Kutta methods.

Find out more about MAST5009

This module introduces the basic ideas to solve certain ordinary differential equations, like first order scalar equations, second order linear equations and systems of linear equations. It mainly considers their qualitative and analytical aspects. Outline syllabus includes: First-order scalar ODEs; Second-order scalar linear ODEs; Existence and Uniqueness of Solutions; Autonomous systems of two linear first-order ODEs.

Find out more about MAST5012

Can we square a circle? Can we trisect an angle? These two questions were studied by the Ancient Greeks and were only solved in the 19th century using algebraic structures such as rings, fields and polynomials. In this module, we introduce these ideas and concepts and show how they generalise well-known objects such as integers, rational numbers, prime numbers, etc. The theory is then applied to solve problems in Geometry and Number Theory. This part of algebra has many applications in electronic communication, in particular in coding theory and cryptography.

Find out more about MAST5014

The security of our phone calls, bank transfers, etc. all rely on one area of Mathematics: Number Theory. This module is an elementary introduction to this wide area and focuses on solving Diophantine equations. In particular, we discuss (without proof) Fermat's Last Theorem, arguably one of the most spectacular mathematical achievements of the twentieth century. Outline syllabus includes: Modular Arithmetic; Prime Numbers; Introduction to Cryptography; Quadratic Residues; Diophantine Equations.

Find out more about MAST5660

Stage 3

Optional modules may include

Discrete mathematics has found new applications in the encoding of information. Online banking requires the encoding of information to protect it from eavesdroppers. Digital television signals are subject to distortion by noise, so information must be encoded in a way that allows for the correction of this noise contamination. Different methods are used to encode information in these scenarios, but they are each based on results in abstract algebra. This module will provide a self-contained introduction to this general area of mathematics.

Syllabus: Modular arithmetic, polynomials and finite fields. Applications to

• orthogonal Latin squares,

• cryptography, including introduction to classical ciphers and public key ciphers such as RSA,

• "coin-tossing over a telephone",

• linear feedback shift registers and m-sequences,

• cyclic codes including Hamming,

Find out more about MAST5490

This module is an introduction to point-set topology, a topic that is relevant to many other areas of mathematics. In it, we will be looking at the concept of topological spaces and related constructions. In an Euclidean space, an "open set" is defined as a (possibly infinite) union of open "epsilon-balls". A topological space generalises the notion of "open set" axiomatically, leading to some interesting and sometimes surprising geometric consequences. For example, we will encounter spaces where every sequence of points converges to every point in the space, see why for topologists a doughnut is the same as a coffee cup, and have a look at famous objects such as the Moebius strip or the Klein bottle. 

Find out more about MAST5670

This module provides a rigorous foundation for the solution of systems of polynomial equations in many variables. In the 1890s, David Hilbert proved four ground-breaking theorems that prepared the way for Emmy Nöther's famous foundational work in the 1920s on ring theory and ideals in abstract algebra. This module will echo that historical progress, developing Hilbert's theorems and the essential canon of ring theory in the context of polynomial rings. It will take a modern perspective on the subject, using the Gröbner bases developed in the 1960s together with ideas of computer algebra pioneered in the 1980s. The syllabus will include

• Multivariate polynomials, monomial orders, division algorithm, Gröbner bases;

• Hilbert's Nullstellensatz and its meaning and consequences for solving polynomials in several variables;

• Elimination theory and applications;

• Linear equations over systems of polynomials, syzygies.

Find out more about MAST5740

Most differential equations which arise from physical systems cannot be solved explicitly in closed form, and thus numerical solutions are an invaluable way to obtain information about the underlying physical system. The first half of the module is concerned with ordinary differential equations. Several different numerical methods are introduced and error growth is studied. Both initial value and boundary value problems are investigated. The second half of the module deals with the numerical solution of partial differential equations. The syllabus includes: initial value problems for ordinary differential equations; Taylor methods; Runge-Kutta methods; multistep methods; error bounds and stability; boundary value problems for ordinary differential equations; finite difference schemes; difference schemes for partial differential equations; iterative methods; stability analysis.

Find out more about MAST5870

Linear PDEs. Dispersion relations. Review of d'Alembert’s solutions of the wave equation. Review of Fourier transforms for solving linear diffusion equations.

Quasi-linear first-order PDEs. Total differential equations. Integral curves and integrability conditions. The method of characteristics.

Shock waves. Discontinuous solutions. Breaking time. Rankine-Hugoniot jump condition. Shock waves. Rarefaction waves. Applications of shock waves, including traffic flow.

General first-order nonlinear PDEs. Charpit's method, Monge Cone, the complete integral.

Nonlinear PDEs. Burgers' equation; the Cole-Hopf transformation and exact solutions. Travelling wave and scaling solutions of nonlinear PDEs. Applications of travelling wave and scaling solutions to reaction-diffusion equations. Exact solutions of nonlinear PDEs. Applications of nonlinear waves, including to ocean waves (e.g. rogue waves, tsunamis).

Find out more about MAST6002

Quantum mechanics provides an accurate description of nature on a subatomic scale, where the standard rules of classical mechanics fail. It is an essential component of modern technology and has a wide range of fascinating applications. This module introduces some of the key concepts of quantum mechanics from a mathematical point of view.

The joint level 6/level 7 curriculum will consist of the following:

• The necessity for quantum mechanics. The wavefunction and Born's probabilistic interpretation.

• Solutions of the time-dependent and time-independent Schrödinger equation for a selection of simple potentials in one dimension.

• Reflection and transmission of particles incident onto a potential barrier. Probability flux. Tunnelling of particles.

• Wavefunctions and states, Hermitian operators, outcomes and collapse of the wavefunction.

• Heisenberg's uncertainty principle.

Additional topics may include applications of quantum theory to physical systems, quantum computing or recent developments in the quantum world.

Find out more about MAST6004

Bayes Theorem for density functions; Conjugate models; Predictive distribution; Bayes estimates; Sampling density functions; Gibbs and Metropolis-Hastings samplers; Stan and Python; Bayesian hierarchical models; Bayesian model choice; Objective priors; Exchangeability; Choice of priors; Applications of hierarchical models.

Find out more about MAST6011

This is a practical module to develop the skills required by a professional statistician (report writing, consultancy, presentation, wider appreciation of assumptions underlying methods, selection and application of analysis method, researching methods).

Software: R, SPSS and Excel (where appropriate/possible). Report writing in Word. PowerPoint for presentations.

• Presentation of data

• Report writing and presentation skills

• Hypothesis testing: formulating questions, converting to hypotheses, parametric and non-parametric methods and their assumptions, selection of appropriate method,

application and reporting. Use of resources to explore and apply additional tests. Parametric and non-parametric tests include, but are not limited to, t-tests, likelihood

ratio tests, score tests, Wald test, chi-squared tests, Mann Whitney U-test, Wilcoxon signed rank test, McNemar's test.

• Linear and Generalised Linear Models: simple linear and multiple regression, ANOVA and ANCOVA, understanding the limitations of linear regression, generalised linear

models, selecting the appropriate distribution for the data set, understanding the difference between fixed and random effects, fitting models with random effects, model

selection.

• Consultancy skills: group work exercise(s)

Find out more about MAST6012

This module is designed to cover: Ethics and compliance of data science. Impact of international regulations. Appropriate handling of data. Simple random sampling. Sampling for proportions and percentages. Estimation of sample size. Stratified sampling. Systematic sampling. Cluster sampling. Data streams. Finding frequentist items. Estimating the number of distinct elements. Sparse recovery. Weight-based sampling. Real time analytics. Network data: Density, clustering coefficient, centrality and degree distribution.

Find out more about MAST6015

Revision of complex numbers, the complex plane, de Moivre's and Euler's theorems, roots of unity, triangle inequality

Sequences and limits: Convergence of a sequence in the complex plane. Absolute convergence of complex series. Criteria for convergence. Power series, radius of convergence

Complex functions: Domains, continuity, complex differentiation. Differentiation of power series. Complex exponential and logarithm, trigonometric, hyperbolic functions. Cauchy-Riemann equations

Complex Integration: Jordan curves, winding numbers. Cauchy's Theorem. Analytic functions. Liouville's Theorem, Maximum Modulus Theorem

Singularities of functions: poles, classification of singularities. Residues. Laurent expansions. Applications of Cauchy's theorem. The residue theorem. Evaluation of real integrals.

Possible additional topics may include Rouche’s Theorem, other proofs of the Fundamental Theorem of Algebra, conformal mappings, Mobius mappings, elementary Riemann surfaces, and harmonic functions.

Find out more about MAST6017

In this module we study the fundamental concepts and results in game theory. We start by analysing combinatorial games, and discuss game trees, winning strategies, and the classification of positions in so called impartial combinatorial games. We then move on to discuss two-player zero-sum games and introduce security levels, pure and mixed strategies, and prove the famous von Neumann Minimax Theorem. We will see how to solve zero-sum two player games using domination and discuss a general method based on linear programming. Subsequently we analyse arbitrary sum two-player games and discuss utility, best responses, Nash equilibria, and the Nash Equilibrium Theorem. The final part of the module is devoted to multi-player games and cooperation; we analyse coalitions, the core of the game, and the Shapley value.

Find out more about MAST6018

• Scalar autonomous nonlinear first-order ODEs. Review of steady states and their stability; the slope fields and phase lines.

• Autonomous systems of two nonlinear first-order ODEs. The phase plane; Equilibra and nullclines; Linearisation about equilibra; Stability analysis; Constructing phase portraits; Applications. Nondimensionalisation.

• Stability, instability and limit cycles. Liapunov functions and Liapunov's theorem; periodic solutions and limit cycles; Bendixson's Negative Criterion; The Dulac criterion; the Poincare-Bendixson theorem; Examples.

• Dynamics of first order difference equations. Linear first order difference equations; Simple models and cobwebbing: a graphical procedure of solution; Equilibrium points and their stability; Periodic solutions and cycles. The discrete logistic model and bifurcations.

Find out more about MAST6044

Background material: multivariate normal distribution, inference from multivariate normal samples

Indicative module content:

• Principal component and factor analysis, latent variable model, clustering and classification methods

• Likelihood-based analysis such as maximum likelihood, EM algorithm, optimisation, confidence interval construction

• Simulation and sampling methods, bootstrap, permutation tests

• Model building including tests such as the Wald test

• R programming including real-world applications in areas such as biology, ecology, sociology and economics to data that does not always follow standard statistical models.

Find out more about MAST6053

This module provides an overview of analytical careers in finance and explores the mathematical techniques used by actuaries, accountants and financial analysts. Students will learn about different types of financials assets, such as shares, bonds and derivatives and how to work out how much they are worth. They will also look at different types of debt and learn how mortgages and other loans are calculated. Developing these themes, the module will explain how to use maths to make financial decisions, such as how much an investor should pay for a financial asset or how a company can decide which projects to invest in or how much money to borrow. Risk management is a vital part of most mathematical careers in finance so the module will also cover different mathematical techniques for measuring and mitigating financial risk. Extension topics may include complex derivatives, economic theories of finance and the dangers of misusing mathematics. The module provides an opportunity to apply complex mathematical techniques to important real-world questions and is excellent preparation for those considering a financial career.

Introduction to financial mathematics: Key uses of mathematics in finance; key practitioners of financial mathematics.

Financial valuation and cash flow analysis: Discounting, Interest rates and time requirements, Future and Present value. Project Evaluation.

Characteristics and valuation of different financial securities: Debt capital, bonds and stocks, valuation of bonds and stocks.

Loans and interest rates: term structure of interest rates, spot and forward rates, types of loan, APR, loan schedules.

Capital structure and the cost of capital: Gearing, WACC, understanding betas.

Additional topics that may be covered: arbitrage and forward contracts, efficient markets hypothesis, pricing and valuing forward contracts, option pricing and the Black Scholes model, credit derivatives and systemic risks, limitations of mathematical modelling.

Find out more about MAST6091

Introduction: Principles and examples of stochastic modelling, types of stochastic process, Markov property and Markov processes, short-term and long-run properties. Applications in various research areas.

Random walks: The simple random walk. Walk with two absorbing barriers. First–step decomposition technique. Probabilities of absorption. Duration of walk. Application of results to other simple random walks. General random walks. Applications.

Discrete time Markov chains: n–step transition probabilities. Chapman-Kolmogorov equations. Classification of states. Equilibrium and stationary distribution. Mean recurrence times. Simple estimation of transition probabilities. Time inhomogeneous chains. Elementary renewal theory. Simulations. Applications.

Continuous time Markov chains: Transition probability functions. Generator matrix. Kolmogorov forward and backward equations. Poisson process. Birth and death processes. Time inhomogeneous chains. Renewal processes. Applications.

Queues and branching processes: Properties of queues - arrivals, service time, length of the queue, waiting times, busy periods. The single-server queue and its stationary behaviour. Queues with several servers. Branching processes. Applications.

Find out more about MAST6360

Stationary Time Series: Stationarity, autocovariance and autocorrelation functions, partial autocorrelation functions, ARMA processes.

ARIMA Model Building and Testing: estimation, Box-Jenkins, criteria for choosing between models, diagnostic tests for residuals of a time series after estimation.

Forecasting: Holt-Winters, Box-Jenkins, prediction bounds.

Testing for Trends and Unit Roots: Dickey-Fuller, ADF, structural change, trend-stationarity vs difference stationarity.

Seasonality and Volatility: ARCH, GARCH, ML estimation.

Multiequation Time Series Models: transfer function models, vector autoregressive moving average (VARM(p,q)) models, impulse responses.

Spectral Analysis: spectral distribution and density functions, linear filters, estimation in the frequency domain, periodogram.

Simulation: generation of pseudo-random numbers, random variate generation by the inverse transform, acceptance rejection. Normal random variate generation: design issues and sensitivity analysis.

Find out more about MAST6390

There is no specific mathematical syllabus for this module; students will chose a topic in mathematics, statistics or financial mathematics from a published list on which to base their coursework assessments (different topics for levels 6 and 7). The coursework is supported by a series of workshops covering various forms of written and oral communication. These may include critically evaluating the following: a research article in mathematics, statistics or finance; a survey or magazine article aimed at a scientifically-literate but non-specialist audience; a mathematical biography; a poster presentation of a mathematical topic; a curriculum vitae; an oral presentation with slides or board; a video or podcast on a mathematical topic. Guidance will be given on typesetting mathematics using LaTeX.

Find out more about MAST6703

There is no specific mathematical syllabus for this module. Students will study a topic in mathematics or statistics, either individually or within a small group, and produce an individual or group project on the topic as well as individual coursework assignments. Projects will be chosen from published lists of individual and of group projects. The coursework and project-work are supported by a series of workshops covering various forms of written and oral communication and by supervision from an academic member of staff.

The workshops may include critically evaluating the following: a research article in mathematics or statistics; a survey or magazine article aimed at a scientifically-literate but non-specialist audience; a mathematical biography; a poster presentation of a mathematical topic; a curriculum vitae; an oral presentation with slides or board; a video or podcast on a mathematical topic. Guidance will be given on typesetting mathematics using LaTeX.

Find out more about MAST6704

Stage 4

Compulsory modules currently include

The module offers students the opportunity to work independently, under limited supervision, on an area of mathematics of their choice. There is no specific mathematical syllabus for this module. The topic of the dissertation will depend on the mutual interests of the student and the student's chosen supervisor. The coursework will consist of writing a dissertation plan, an oral presentation of material from the dissertation to examiners and an interview of the student by the examiners.

Find out more about MAST7020

Optional modules may include

Linear PDEs. Dispersion relations. Review of d'Alembert's solutions of the wave equation.

Quasi-linear first-order PDEs. Total differential equations. Integral curves and integrability conditions. The method of characteristics.

Shock waves. Discontinuous solutions. Breaking time. Rankine-Hugoniot jump condition. Shock waves. Rarefaction waves. Applications of shock waves, including traffic flow.

General first-order nonlinear PDEs. Charpit's method, Monge Cone, the complete integral.

Nonlinear PDEs. Burgers' equation; the Cole-Hopf transformation and exact solutions. Travelling wave and scaling solutions of nonlinear PDEs. Applications of travelling wave and scaling solutions to reaction-diffusion equations. Exact solutions of nonlinear PDEs. Applications of nonlinear waves, including to ocean waves (e.g. rogue waves, tsunamis).

Level 7 Students only. Further applications of shock waves and nonlinear waves.

Find out more about MAST7002

Quantum mechanics provides an accurate description of nature on a subatomic scale, where the standard rules of classical mechanics fail. It is an essential component of modern technology and has a wide range of fascinating applications. This module introduces some of the key concepts of quantum mechanics from a mathematical point of view.

Indicative syllabus for the joint level 6/level 7 curriculum::

• The necessity for quantum mechanics. The wavefunction and Born's probabilistic interpretation.

• Solutions of the time-dependent and time-independent Schrödinger equation for a selection of simple potentials in one dimension.

• Reflection and transmission of particles incident onto a potential barrier. Probability flux. Tunnelling of particles.

• Wavefunctions and states, Hermitian operators, outcomes and collapse of the wavefunction.

• Heisenberg's uncertainty principle.

Additional topics may include applications of quantum theory to physical systems, quantum computing or recent developments in the quantum world.

At level 7, topics will be studied and assessed to greater depth.

Find out more about MAST7004

Bayes Theorem for density functions; Conjugate models; Predictive distribution; Bayes estimates; Sampling density functions; Gibbs and Metropolis-Hastings samplers; Stan and Python; Bayesian hierarchical models; Bayesian model choice; Objective priors; Exchangeability; Choice of priors; Applications of hierarchical models.

Find out more about MAST7011

This is a practical module to develop the skills required by a professional statistician (report writing, consultancy, presentation, wider appreciation of assumptions underlying methods, selection and application of analysis method, researching methods).

Software: R, SPSS and Excel (where appropriate/possible). Report writing in Word. PowerPoint for presentations.

• Presentation of data

• Report writing and presentation skills

• Hypothesis testing: formulating questions, converting to hypotheses, parametric and non-parametric methods and their assumptions, selection of appropriate method, application and reporting. Use of resources to explore and apply additional tests. Parametric and non-parametric tests include, but are not limited to, t-tests, likelihood ratio tests, chi-squared tests, Mann Whitney U-test, Wilcoxon signed rank test, McNemar's test.

• Linear and Generalised Linear Models: simple linear and multiple regression, ANOVA and ANCOVA, understanding the limitations of linear regression, generalised linear models, selecting the appropriate distribution for the data set, understanding the difference between fixed and random effects, fitting models with random effects, model selection.

• Consultancy skills: group work exercise(s)

In addition, for level 7 students:

• Advanced presentation of data, such as visualisation of data points on a map

• Further extensions to Linear and Generalised Linear Models, such as hierarchical generalised linear models

Find out more about MAST7012

Discrete mathematics has found new applications in the encoding of information. Online banking requires the encoding of information to protect it from eavesdroppers. Digital television signals are subject to distortion by noise, so information must be encoded in a way that allows for the correction of this noise contamination. Different methods are used to encode information in these scenarios, but they are each based on results in abstract algebra. This module will provide a self-contained introduction to this general area of mathematics.

Syllabus: Modular arithmetic, polynomials and finite fields. Applications to

• orthogonal Latin squares,

• cryptography, including introduction to classical ciphers and public key ciphers such as RSA,

• "coin-tossing over a telephone",

• linear feedback shift registers and m-sequences,

• cyclic codes including Hamming,

At level 7, topics will be studied and assessed to greater depth.

Find out more about MAST7015

This module provides a rigorous foundation for the solution of systems of polynomial equations in many variables. In the 1890s, David Hilbert proved four ground-breaking theorems that prepared the way for Emmy Nöther's famous foundational work in the 1920s on ring theory and ideals in abstract algebra. This module will echo that historical progress, developing Hilbert's theorems and the essential canon of ring theory in the context of polynomial rings. It will take a modern perspective on the subject, using the Gröbner bases developed in the 1960s together with ideas of computer algebra pioneered in the 1980s.

Indicative syllabus:

• Multivariate polynomials, monomial orders, division algorithm, Gröbner bases;

• Hilbert's Nullstellensatz and its meaning and consequences for solving polynomials in several variables;

• Elimination theory and applications;

• Linear equations over systems of polynomials, syzygies.

Level 7 students will cover additional topics such as polynomial maps between varieties.

Find out more about MAST7027

This module is an introduction to point-set topology, a topic that is relevant to many other areas of mathematics. In it, we will be looking at the concept of topological spaces and related constructions. In an Euclidean space, an "open set" is defined as a (possibly infinite) union of open "epsilon-balls". A topological space generalises the notion of "open set" axiomatically, leading to some interesting and sometimes surprising geometric consequences. For example, we will encounter spaces where every sequence of points converges to every point in the space, see why for topologists a doughnut is the same as a coffee cup, and have a look at famous objects such as the Moebius strip or the Klein bottle. At level 7, topics will be studied and assessed to greater depth.

Find out more about MAST7032

• Scalar autonomous nonlinear first-order ODEs. Review of steady states and their stability; the slope fields and phase lines.

• Autonomous systems of two nonlinear first-order ODEs. The phase plane; Equilibra and nullclines; Linearisation about equilibra; Stability analysis; Constructing phase portraits; Applications. Nondimensionalisation.

• Stability, instability and limit cycles. Liapunov functions and Liapunov's theorem; periodic solutions and limit cycles; Bendixson's Negative Criterion; The Dulac criterion; the Poincare-Bendixson theorem; Examples.

• Dynamics of first order difference equations. Linear first order difference equations; Simple models and cobwebbing: a graphical procedure of solution; Equilibrium points and their stability; Periodic solutions and cycles. The discrete logistic model and bifurcations.

At level 7, topics will be studied and assessed to greater depth.

Find out more about MAST7044

Background material: multivariate normal distribution, inference from multivariate normal samples

Indicative module content:

• Principal component and factor analysis, latent variable model, clustering and classification methods

• Likelihood-based analysis such as maximum likelihood, EM algorithm, optimisation, confidence interval construction

• Simulation and sampling methods, bootstrap, permutation tests

• Model building including tests such as the Wald test

• R programming including real-world applications in areas such as biology, ecology, sociology and economics to data that does not always follow standard statistical models.

In addition, for level 7 students: advanced EM algorithm methods, advanced simulation methods, writing R programs for advanced methods and applications.

Find out more about MAST7053

There is no specific mathematical syllabus for this module; students will chose a topic in mathematics, statistics or financial mathematics from a published list on which to base their coursework assessments (different topics for levels 6 and 7). The coursework is supported by a series of workshops covering various forms of written and oral communication. These may include critically evaluating the following: a research article in mathematics, statistics or finance; a survey or magazine article aimed at a scientifically-literate but non-specialist audience; a mathematical biography; a poster presentation of a mathematical topic; a curriculum vitae; an oral presentation with slides or board; a video or podcast on a mathematical topic. Guidance will be given on typesetting mathematics using LaTeX.

Find out more about MAST7703

Introduction: Machine learning and data visualisation with R.

Classification and prediction: Generalised linear model (GLM), linear discrimination analysis (LDA), k-nearest neighbors (KNN). R-based worked examples.

Resampling methods: Cross-validation (CV) and bootstrap. R-based worked examples.

Regression tree-based methods: Classification and regression trees (CART), bagging, random forests and boosting. R-based worked examples.

Support vector machines (SVM): Support vector classifier, regression SVM. R-based worked examples.

Machine Learning in Action:

(a) Biomedical and health data analysis;

(b) Bond default data analysis;

(c) Insurance data analysis;

(d) Financial data analysis;

(e) Other big data analysis.

Find out more about MAST9420

Fees

Fees for 2023/24 have not yet been set. As a guide the 2022/23 UK fees for this course are:

  • Home full-time £9250
  • EU full-time £13000
  • International full-time £17400

For details of when and how to pay fees and charges, please see our Student Finance Guide.

For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* 

Your fee status

The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.

Additional costs

Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.

Funding

Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details. 

The Kent Scholarship for Academic Excellence

At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence. 

The scholarship will be awarded to any applicant who achieves a minimum of A*AA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages.

We have a range of subject-specific awards and scholarships for academic, sporting and musical achievement.

Search scholarships

Teaching and assessment

Teaching amounts to typically 16 hours of lectures and classes per week. Modules involving programming or working with computer software packages usually include practical sessions. Lectures are given by a wide variety of lecturers, all with different research backgrounds. 

Assessment is carried out by means of: coursework involving problems; computer assignments; projects; tests; and written examinations. MMath students complete a dissertation as part of their Stage 4 studies. 

Contact hours

For a student studying full time, each academic year of the programme will comprise 1200 learning hours which include both direct contact hours and private study hours.  The precise breakdown of hours will be subject dependent and will vary according to modules.  Please refer to the individual module details under Course Structure.

Methods of assessment will vary according to subject specialism and individual modules.  Please refer to the individual module details under Course Structure.

Programme aims

The programme aims to:

  • provide an excellent quality of mathematical education, informed by research and scholarship
  • equip students with a broad base of knowledge and skills to analyse and solve mathematically based problems, showing a level of originality where necessary
  • ensure students are competent in communicating the knowledge, rationale and conclusions, both orally and by writing
  • ensure students are competent in the use of information technology and can use appropriate software to solve problems
  • develop in students the ability to work independently, with a minimum amount of supervision within agreed guidelines
  • prepare successful students with the depth of mathematical knowledge to enter postgraduate studies at the doctorate level in mathematics and other closely related subjects
  • produce graduates of value to the region and nationally, in possession of key mathematical knowledge and personal skills, with the capacity to learn

Learning outcomes

Knowledge and understanding

You gain knowledge and understanding of:

  • the fundamental concepts and techniques of calculus, algebra, analysis, geometry, differential equations, numerical mathematics, and probability and inference
  • nonlinear phenomena and related mathematical methods
  • applications of mathematical theories, methods and techniques to a range of associated problems
  • the role of logical mathematical argument and deductive reasoning including formal process of mathematical proof
  • more advanced material with mathematical ideas from more than one area
  • project work on an advanced topic based on substantial independent work

Intellectual skills

You develop your intellectual skills in the following areas:

  • the ability to demonstrate a reasonable understanding of mathematics
  • calculation and manipulation of the material within the programme
  • the application of a range of concepts and principles in various contexts
  • the ability to construct and develop mathematical logical argument
  • the ability to solve mathematical problems by various appropriate methods
  • the relevant computer skills
  • the ability to work independently.

Subject-specific skills

You gain subject-specific skills in the following areas:

  • the ability to demonstrate knowledge of key mathematical concepts and topics, both explicitly and by applying them to the solution of problems
  • the ability to comprehend problems, abstract the essentials of problems and formulate them mathematically and in symbolic form so as to facilitate their analysis and solution
  • the use of computational and more general IT facilities as an aid to mathematical processes
  • the presentation of mathematical arguments and conclusions with clarity and accuracy.

Transferable skills

You gain transferable skills in the following areas:

  • problem-solving skills relating to qualitative and quantitative information
  • communication skills
  • numeracy and computational skills
  • information-retrieval skills in relation to primary and secondary information sources, including through online computer searches
  • information technology skills such as word-processing, spreadsheet use and internet communication
  • personal and interpersonal skills needed to work as a member of a team
  • time-management and organisational skills, as shown by the ability to plan and implement effective modes of working
  • study skills needed for continuing professional development.

Independent rankings

Mathematics at Kent scored 86% overall in The Complete University Guide 2022.

Careers

Graduate destinations

Recent graduates have gone on to work in:

  • medical statistics
  • the pharmaceutical industry
  • the aerospace industry
  • software development
  • teaching
  • actuarial work
  • civil service statistics
  • chartered accountancy
  • the oil industry.

Help finding a job

The University has a friendly Careers and Employability Service, which can give you advice on how to:

  • apply for jobs
  • write a good CV
  • perform well in interviews.

Career-enhancing skills

You graduate with an excellent grounding in the fundamental concepts and principles of mathematics. Many career paths can benefit from the numerical and analytical skills you develop during your studies.

To help you appeal to employers, you also learn key transferable skills that are essential for all graduates. These include the ability to:

  • think critically
  • communicate your ideas and opinions
  • manage your time effectively
  • work independently or as part of a team.

You can also gain extra skills by signing up for one of our Kent Extra activities, such as learning a language or volunteering.

Professional recognition

This degree will meet the educational requirements of the Chartered Mathematician designation, awarded by the Institute of Mathematics and its Applications.

Applications

UCAS application cycle for 2023 entry opens on 3 May 2022.

Our Open Days are a great way to discover more about the courses and get a feel for where you'll be studying. Along with campus tours, online chats and virtual events there are lots of other ways to visit us.

Sign up to receive all the latest news and events from Kent. 

Contact us

bubble-text

United Kingdom/EU enquiries

Enquire online for full-time study

T: +44 (0)1227 816410

E: smsasugadmissions@kent.ac.uk

earth

International student enquiries

Enquire online

T: +44 (0)1227 823254
E: internationalstudent@kent.ac.uk

Discover Uni information

Discover Uni is designed to support prospective students in deciding whether, where and what to study. The site replaces Unistats from September 2019.

Discover Uni is jointly owned by the Office for Students, the Department for the Economy Northern Ireland, the Higher Education Funding Council for Wales and the Scottish Funding Council.

It includes:

  • Information and guidance about higher education
  • Information about courses
  • Information about providers

Find out more about the Unistats dataset on the Higher Education Statistics Agency website.