Physics with Astrophysics - MPhys

If you are fascinated by the ‘how and why’ of the material world, as well as underlying physical concepts of the stars and galaxies, which make up the Universe, a degree in Physics with Astrophysics is for you. Studying at Kent you are taught and inspired by academics making the discoveries that shape our world and play a part in this research yourself.

Our focus is on helping you follow your passion as well as giving you the best possible start to your future. You develop a range of scientific and transferable skills and our four-year Integrated Master's gives you the opportunity to work on a research project and gain a valuable postgraduate qualification which can help give you the edge in the job market.

Overview

We have a strong focus on your future career and how to get you there, and to ensure you are equipped with the skills and knowledge needed to succeed in today's job market, our curriculum changes and adapts. You also benefit from our expert careers advice to give you the best possible start when deciding on your future career.

This programme is fully accredited by Institute of Physics (IOP).

Our degree programme

Astrophysics emphasises the underlying physical concepts of the stars and galaxies, which make up the Universe. This provides an understanding of the physical nature of bodies and processes in space and the instruments and techniques used in modern astronomical research.

In your first year, you get to grips with the broad knowledge base on which physical science is built, including electricity and light, mathematics, mechanics, thermodynamics and matter. You also develop your experimental, computational, statistical and analytical skills.

Your second and third years include a broad range of modules such as quantum mechanics, solid state, atomic, nuclear and particle physics, electromagnetism and optics, and mathematical techniques as well as the mulitwavelength universe exoplanets and stars, galaxies and the universe.

The final year of the MPhys programme brings your core knowledge and skills up to an advanced level. This stage concentrates on the in-depth training required for a science-based career, including the practical aspects of the research processes and a major research project in the School's Astrophysics and Planetary Science research group.

Your degree, your way

Our degrees are not only designed to give the best possible start to your career, they are also flexible so that you do the best degree for you. Up until your second year you are able to move between our programmes, including the opportunity to complete a professional placement to put into practice the skills you learnt and make valuable industry contacts or our three-year BSc. You could also opt to include a year abroad with your integrated masters courses - giving you the chance to further broaden your horizons.

If you do not have the grades or scientific background for direct entry, you can take the Physics Foundation Year. Upon successful completion of this year, you are well placed to move onto any of our Physics, Physics with Astrophysics, or Astronomy, Space Science and Astrophysics degrees.

Fantastic facilities

You have access to first-class research facilities in new laboratories. These are equipped with state-of-the-art equipment, including a full characterisation suite for materials, including:

  • three powder diffractometers
  • a single crystal diffractometer
  • x-ray fluorescence
  • instruments to measure magnetic and transport properties
  • a Raman spectrometer
  • scanning electron microscopes
  • optical coherence tomography imaging equipment
  • optical spectrum analysers
  • two-stage light gas gun for impact studies.

Our Beacon Observatory provides a fully automised system with both optical telescope and radio telescope capability. It includes a 17" astrograph from Plane Wave Instruments with a 4k x 4k CCD and a BVRIHa filter set, as well as a 90-frames-per-second camera.

An excellent student experience

As well as a fascinating course with great opportunities to further your career potential, we work hard to give you the best possible wider student experience.

You will be part of an international scientific community of physics and astronomy, chemistry and forensic science, bioscience and medical and sport science students, as well as being able to join a range of student-led societies and groups.

As well as inspiring you to realise your potential, we are here to support this with excellent in-house student support to assist with pastoral issues and careers experts with specialist knowledge as well as Academic advisors and peer mentors to help with your studies.

Professional networks

You are encouraged to participate in conferences and professional events to build up your knowledge of the science community and enhance your professional development.

The University is a member of the South East Physics Network (SEPnet), which offers a competitive programme of summer internships to Stage 2 and 3 undergraduates.

Our department also has links with:

  • the Home Office
  • optical laboratories
  • local health authorities
  • aerospace/defence industries
  • software and engineering companies
  • Interpol

Featured video

Flexible tariff

You are more than your grades

At Kent we look at your circumstances as a whole before deciding whether to make you an offer to study here. Find out more about how we offer flexibility and support before and during your degree.

Entry requirements

Please also see our general entry requirements.

  • medal-empty

    A level

    ABB including Mathematics and Physics at BB (Use of Mathematics not accepted)

  • medal-empty Access to HE Diploma

    The University will not necessarily make conditional offers to all Access candidates but will continue to assess them on an individual basis. 

    If we make you an offer, you will need to obtain/pass the overall Access to Higher Education Diploma and may also be required to obtain a proportion of the total level 3 credits and/or credits in particular subjects at merit grade or above.

  • medal-empty BTEC Nationals

    The University will consider applicants holding/studying BTEC Extended National Diploma Qualifications (QCF; NQF;OCR) in a relevant Science or Engineering subject at 180 credits or more, on a case by case basis. Please contact us via the enquiries tab for further advice on your individual circumstances.

  • medal-empty International Baccalaureate

    34 points overall or 15 at Higher including Physics and Mathematics 5 at HL or 6 at SL (not Mathematics Studies)

  • medal-empty International Foundation Programme

    N/A

Please contact the School for more information at study-astro@kent.ac.uk.  

The University welcomes applications from international students. Our international recruitment team can guide you on entry requirements. See our International Student website for further information about entry requirements for your country.

If you need to increase your level of science/mathematics ready for undergraduate study, we offer a Foundation Year programme which can help boost your previous scientific experience.

Meet our staff in your country

For more advice about applying to Kent, you can meet our staff at a range of international events. 

English Language Requirements

Please see our English language entry requirements web page.

If you need to improve your English language standard as a condition of your offer, you can attend one of our pre-sessional courses in English for Academic Purposes before starting your degree programme. You attend these courses before starting your degree programme.

Form

Stay connected

Sign up here to receive all the latest news and events from Kent.

Sign up now

This field is required
This field is required
Please enter a valid email address
This field is required

You're almost there...

Just a little more information and we'll keep you up-to-date with everything that's happening at the University of Kent.

This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

View our Privacy Notice

Course structure

Duration: 4 years full-time

The course structure below gives a flavour of the modules and provides details of the content of this programme. This listing is based on the current curriculum and may change year to year in response to new curriculum developments and innovation

Stage 1

Compulsory modules currently include

This module provides an introduction to astronomy, beginning with our own solar system and extending to objects at the limits of the universe. Straightforward mathematics is used to develop a geometrical optics model for imaging with lenses and mirrors, and this is then used to explore the principles of astronomical telescopes.

This module builds on prior knowledge of arithmetic, algebra, and trigonometry. It will cover key areas of mathematics which are widely used throughout undergraduate university physics. In the first part it will look at functions, series, derivatives and integrals. In the second part it will look at vectors, matrices and complex numbers.

This module builds on the Mathematics I module to develop key mathematical techniques involving multiple independent variables. These include the topics of differential equations, multivariate calculus, non-Cartesian coordinates, and vector calculus that are needed for Physics modules in Stages 2 and 3.

In this module the mathematics of vectors and calculus are used to describe motion, the effects of forces in accordance with Newton's laws, and the relation to momentum and energy. This description is extended to rotational motion, and the force of gravity. In addition, the modern topic of special relativity is introduced.

This module examines key physical phenomena of waves and fields which extend over time and space. The first part presents a mathematical description of oscillations and develops this to a description of wave phenomena. The second part is an introduction to electromagnetism which includes electric and magnetic fields before providing an introduction to the topic of electrical circuits.

This module develops the principles of mechanics to describe mechanical properties of liquids and solids. It also introduces the principles of thermodynamics and uses them to describe properties of gases. The module also introduces the modern description of atoms and molecules based on quantum mechanics.

This module gives students experience in using laboratory apparatus and equipment to carry out physics experiments. They will also learn how to record and analyse data and write a report. The module also introduce students to using programming/scripting languages to analyse data, and the mathematics of probability and statistics.

Stage 2

Compulsory modules currently include

This module builds on the students' previous introduction to quantum phenomena taught in stage 1. Students develop and enhance their knowledge of quantum physics through the study of the theory

This module builds on the brief introduction to electromagnetic fields previously taught in earlier stages. Students develop and enhance their knowledge of electromagnetism through the study of the theory, formalism and fundamental principles. This module covers for example the principles of electrostatics, magnetostatics and Maxwell’s equations.

This module builds on the brief introduction to astronomy previously taught in earlier stages. Students enhance their knowledge of astrophysics through the study of the theory

This module introduces and develops students’ understanding of the major subsystems of a spacecraft through the study of the theory, formalism and fundamental principles, as well as the framework to understand spacecraft trajectories and orbits and the basic ideas about management of space missions.

In this module students develop their experience of the practical nature of physics, including developing their ability to execute an experiment, and to use programming scripts to process data. Students also develop their skill in analysis of uncertainties, and comparison with theory. The module strengthens students’ communication skills and knowledge of, and ability to write, all components of laboratory reports.

This module gives students experience of group work in the context of a physics investigation in an unfamiliar area. The module includes workshops for advice about successful group project work, and culminates in each group producing a report and presentation.

This module builds on the mathematics taught in earlier stages. Students will develop and enhance their knowledge of mathematical methods used in the physical sciences. This module covers for example how to solve linear differential equations and Fourier transforms.

Stage 3

Compulsory modules currently include

This module gives the student a brief introduction to the key aspects of optics fields. Students develop an ability to accurately deploy techniques of analysis in optics and photonics through the study of the theory, formalism, and fundamental principles. This enables students to describe, and solve problems with light interference and diffraction, fundamentals of lasers and fibre optics.

This module gives the student a systematic understanding of the key aspects of thermal and statistical physics, building on their previous introduction to thermodynamics. Students develop an ability to accurately deploy techniques of analysis in thermal and statistical physics through the study of the theory, formalism, and fundamental principles. This enables students to describe and solve problems related to advanced statistical concepts in thermodynamics and quantum mechanics.

This module builds on the students' previous introduction to the properties of matter, and electric and magnetic properties. Students develop and enhance their knowledge of condensed matter physics through the study of the theory, formalism and fundamental principles. The module provides foundations for the further study of materials and condensed matter, and detail of solid state electronic and opto-electronic devices. This module covers for example the structure of solids, free electron theory of metals and the study of semiconductors.

This module provides in combination with previous topics a balanced and rigorous course in astrophysics for BSc students, while forming a basis for the more extensive MPhys modules. Students develop and enhance their knowledge of astrophysics through the study of the theory, formalism, and fundamental principles. This module covers for example the enhanced notions on the physics of stars, galaxies, general relativity, and cosmology.

This module aims to develop the ability to undertake investigations where, as part of the exercise, the goals and methods have to be defined by the investigator. It will develop skills to perform literature searches, reviews and to plan, monitor and report on a project. These projects are open ended tasks, with an element of independent learning.

Computational Astrophysics laboratory that provides an overview and practical experience in several distinct topics of astrophysics research and builds on prior programming knowledge.

This module builds on the brief introduction to special relativity and quantum mechanical principles previously taught in earlier stages. Students develop and enhance their knowledge of these topics further through their use in the study of nuclear and particle physics. In this module, students learn their basic theory, formalism and fundamental principles. This module covers for example 4-vector concepts in relativity, nuclear models and reactions and elementary particles.

Optional modules may include

The aim of this module is to provide a primer into this important physics specialisation. Students develop and enhance their knowledge of medical imaging and radiology through the study of the theory, formalism, and fundamental principles. The range of subjects covered is intended to give a balanced introduction to Medical Physics, with emphasis on the core principles of medical imaging, radiation therapy and radiation safety. A small number of lectures is also allocated to the growing field of optical techniques.

Students develop and enhance their skills of solving and discussing general problems in Physics (and its related disciplines of mathematics and engineering). For this module, only physical and mathematical concepts with which the students at this level are already familiar are used and required. Problems are presented and solutions discussed spanning several topics in the undergraduate physics curriculum (mechanics and statics, thermodynamics, and optics, etc). Problems are also discussed that primarily involve the application of formal logic and reasoning, simple probability, statistics, estimation and linear mathematics.

Stage 4

You take all compulsory modules and then choose one from a list of optional modules.

Compulsory modules currently include

All MPhys students undertake a substantial, open-ended, individual, laboratory, theoretical or computationally-based project. The majority of the projects are directly related to the research conducted in the department and are undertaken within the various SPS research teams. Students must undertake a research project in an area relevant to their degree specialism, with project options tailored to the Physics, Physics with Astrophysics and Astronomy Space Science and Astrophysics programmes.

This advanced specialised module will provide students with an understanding of the physics of star formation and galactic structures.

This module provides students with an appreciation of more advanced formulations of classical mechanics, including the Lagrange and Hamiltonian formulations, as well as other topics in mechanics and dynamics, including chaos.

Optional modules may include

This advanced specialist module provides students with in-depth knowledge of astrobiology as well as the science of the solar system’s formation and evolution. This includes the methods by which we explore our solar system, from study of planetary atmospheres and surfaces to missions to comets and asteroids.

This advanced level module provides students with an understanding of two emergent properties of matter: magnetism and superconductivity. In addition to studying the rich physics underpinning these phenomena, students will also gain an appreciation of their important applications in the modern world.

mechanics is the theoretical basis of much of modern physics. Building on the introductory quantum theory studied in earlier stages, this module will review some key foundational ideas before developing more advanced topics of quantum mechanics and quantum field theory.

This module will give students an overarching introduction to quantum information processing (QIP). At the end of the course the students will have a basic understanding of quantum computation, quantum communication, and quantum cryptography; as well as the implications to other fields such as computation, physics, and cybersecurity.  We will take a multi-disciplinary approach that will encourage and require students to engage in topics outside of their core discipline. The module will cover the most essential mathematical background required to understand QIP. This includes: linear algebra, basic elements of quantum theory (quantum states, evolution of closed quantum systems, Born's rule), and basic theory of computing. The module will introduce students to the following theoretical topics: quantum algorithms, quantum cryptography, quantum communication & information. The module will also address experimental quantum computation & cryptography.

Fees

The 2021/22 annual tuition fees for this programme are:

  • Home full-time £9250
  • EU full-time £15400
  • International full-time £20500

For details of when and how to pay fees and charges, please see our Student Finance Guide.

For students continuing on this programme, fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* 

Your fee status

The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.

Additional costs

General additional costs

Find out more about accommodation and living costs, plus general additional costs that you may pay when studying at Kent.

Funding

University funding

Kent offers generous financial support schemes to assist eligible undergraduate students during their studies. See our funding page for more details. 

Government funding

You may be eligible for government finance to help pay for the costs of studying. See the Government's student finance website.

Scholarships

General scholarships

Scholarships are available for excellence in academic performance, sport and music and are awarded on merit. For further information on the range of awards available and to make an application see our scholarships website.

The Kent Scholarship for Academic Excellence

At Kent we recognise, encourage and reward excellence. We have created the Kent Scholarship for Academic Excellence. 

The scholarship will be awarded to any applicant who achieves a minimum of A*AA over three A levels, or the equivalent qualifications (including BTEC and IB) as specified on our scholarships pages.

We have a range of subject-specific awards and scholarships for academic, sporting and musical achievement.

Search scholarships

Teaching and assessment

Teaching is by lectures, practical classes, tutorials and workshops. You have an average of nine one-hour lectures, one or two days of practical or project work and a number of workshops each week. The practical modules include specific study skills in physics and general communication skills. In the MPhys final year, you work with a member of staff on an experimental or computing project.

Assessment is by written examinations at the end of each year and by continuous assessment of practical classes and other written assignments. Your final degree result is made up of a combined mark from the Stage 2/3/4 assessments with a weighting of 20/30/50.

Please note that there are degree thresholds at stages 2 and 3 that you will be required to pass in order to continue onto the next stages.

Contact hours

For a student studying full time, each academic year of the programme will comprise 1200 learning hours which include both direct contact hours and private study hours.  The precise breakdown of hours will be subject dependent and will vary according to modules.  Please refer to the individual module details under Course Structure.

Methods of assessment will vary according to subject specialism and individual modules.  Please refer to the individual module details under Course Structure.

Programme aims

The programme aims to:

  • Foster an enthusiasm for physics by exploring the ways in which it is core to our understanding of nature and fundamental to many other scientific disciplines.
  • Develop an appreciation of the importance of astrophysics and its role in understanding how our universe came about and how it continues to exist and develop.
  • To meet the needs of those students who wish to enter careers as professional research physicists and/or astrophysicists in industrial, university or other settings.
  • To enhance an appreciation of the application of physics in different contexts.
  • Foster an enthusiasm for astrophysics and an appreciation of its application in current research.
  • Involve students in a stimulating and satisfying experience of learning within a research-led environment.
  • Motivate and support a wide range of students in their endeavours to realise their academic potential.
  • Provide students with a balanced foundation of physics knowledge and practical skills and an understanding of scientific methodology.
  • Enable students to undertake and report on an experimental and/or theoretical investigation and base this in part on an extended research project.
  • Develop in students a range of transferable skills of general value.
  • Enable students to apply their skills and understanding to the solution of theoretical and practical problems.
  • Provide students with a knowledge base that allows them to progress into more specialised areas of physics and space science, or into multi-disciplinary areas involving physical principles; the MPhys is particularly useful for those wishing to undertake physics research.
  • Generate in students an appreciation of the importance of physics in the industrial, economic, environmental and social contexts.

Learning outcomes

Knowledge and understanding

MPhys students gain a systematic understanding of most fundamental laws and principles of physics and astrophysics, along with their application to a variety of areas in physics and/or astrophysics, some of which are at the forefront of the discipline.

The areas covered include:

  • Electromagnetism.
  • Classical and quantum mechanics.
  • Statistical physics and thermodynamics.
  • Wave phenomena and the properties of matter as fundamental aspects.
  • Nuclear and particle physics.
  • Condensed matter physics.
  • Materials.
  • Plasmas and fluids.

You also gain an understanding of the theory and practice of astrophysics, and of those aspects upon which it depends – a knowledge of key physics, the use of electronic data processing and analysis, and modern day mathematical and computational tools.

Intellectual skills

You gain intellectual skills in how to:

  • Identify relevant principles and laws when dealing with problems and make approximations necessary to obtain solutions.
  • Solve problems in physics using appropriate mathematical tools.
  • Execute an experiment or investigation, analyse the results and draw valid conclusions.
  • Evaluate the level of uncertainty in experimental results and compare the results to expected outcomes, theoretical predictions or published data in order to evaluate their significance.
  • Use mathematical techniques and analysis to model physical phenomena.
  • An ability to comment critically on how telescopes (operating at various wavelengths) are designed, their principles of operation, and their use in astronomy and astrophysics research.

As an MPhys student, you also develop:

  • An ability to solve advanced problems in physics using mathematical tools, to translate problems into mathematical statements and apply their knowledge to obtain order of magnitude or more precise solutions as appropriate.
  • An ability to interpret mathematical descriptions of physical phenomena.
  • An ability to plan an experiment or investigation under supervision and to understand the significance of error analysis.
  • A working knowledge of a variety of experimental, mathematical and/or computational techniques applicable to current research within physics.
  • An enhanced ability to work within in the astrophysics area that is well matched to the frontiers of knowledge, the science drivers that underpin government funded research and the commercial activity that provides hardware or software solutions to challenging scientific problems in these fields.

Subject-specific skills

You gain subject-specific skills in:

  • The use of communications and IT packages for the retrieval of information and analysis of data.
  • How to present and interpret information graphically.
  • the ability to communicate scientific information, in particular to produce clear and accurate scientific reports.
  • The use of laboratory apparatus and techniques, including aspects of health and safety.
  • The systematic and reliable recording of experimental data.
  • An ability to make use of appropriate texts, research-based materials or other learning resources as part of managing your own learning.

As an MPhys student, you also gain:

  • IT skills which show fluency at the level needed for project work, such as familiarity with a programming language, simulation software or the use of mathematical packages for manipulation and numerical solution of equations.
  • An ability to communicate complex scientific ideas, the conclusion of an experiment, investigation or project concisely, accurately and informatively.
  • Experimental skills showing the competent use of specialised equipment, the ability to identify appropriate pieces of equipment and to master new techniques.
  • An ability to make use of research articles and other primary sources.

Transferable skills

You gain transferable skills in:

  • Problem-solving including the ability to formulate problems in precise terms, identify key issues and have the confidence to try different approaches.
  • Independent investigative skills including the use of textbooks, other literature, databases and interaction with colleagues.
  • Communication skills when dealing with surprising ideas and difficult concepts, including listening carefully, reading demanding texts and presenting complex information in a clear and concise manner.
  • Analytical skills including the ability to manipulate precise and intricate ideas, construct logical arguments, use technical language correctly and pay attention to detail.
  • Personal skills including the ability to work independently, use initiative, organise your time to meet deadlines and interact constructively with other people.

Independent rankings

Physics and Astronomy at Kent scored 89% overall in The Complete University Guide 2021.

Careers

Your future 

You graduate with an excellent grounding in scientific knowledge and extensive laboratory experience. In addition, you also develop the key transferable skills sought by employers, such as: excellent communication skills work independently or as part of a team the ability to solve problems and think analytically time management. This means that our graduates are well equipped for careers across a range of fields and have gone on to work for companies such as BAE, Defence Science and Technology, Rolls Royce, Siemens and IBM. You can read some of their stories, and find out about the range of support and extra opportunities available to further your career potential here.

Professional recognition

Fully accredited by the Institute of Physics

Applications

We are no longer accepting applications for the 2021/22 academic year. Please visit the 2022 entry course pages.

Contact us

bubble-text

United Kingdom/EU enquiries

Enquire online for full-time study

Email: study-astro@kent.ac.uk

earth

International student enquiries

Enquire online

T: +44 (0)1227 823254
E: internationalstudent@kent.ac.uk

network

Discover Uni information

Discover Uni is designed to support prospective students in deciding whether, where and what to study. The site replaces Unistats from September 2019.

Discover Uni is jointly owned by the Office for Students, the Department for the Economy Northern Ireland, the Higher Education Funding Council for Wales and the Scottish Funding Council.

It includes:

  • Information and guidance about higher education
  • Information about courses
  • Information about providers

Find out more about the Unistats dataset on the Higher Education Statistics Agency website.