This programme provides a broad coverage of computer networks, computer security and mobile device technologies. It looks in depth at some of the security issues that fixed and wireless networks are subject to, and the current solutions employed to address these problems.
This course will appeal to computing graduates seeking careers in the network or network security industries, or those who wish to carry on with this topic as an area of research.
While studying a taught Master’s course at the School of Computing, you can gain work experience through our industrial placement scheme. Our dedicated placement team can help you gain a suitable paid position and provide support throughout your placement.
Our world-leading researchers, in key areas such as cyber security, programming languages, computational intelligence and data science, earned us an outstanding result in the recent Research Excellence Framework (REF). Our submission was ranked 12th in the UK for research intensity, with an impressive 98% of our research judged to be of international quality.
Strong links with industry underpin all our work, notably with Cisco Systems Inc, Microsoft, Oracle, IBM, Nvidia, Erlang Solutions, GCHQ and Google.
Our courses are taught by leading researchers who are experts in their fields. The School of Computing at Kent is home to several authors of leading computer science textbooks.
We have a large range of equipment providing both Linux and PC-based systems. Our resources include a multicore enterprise server and a virtual machine server that supports computer security experiments.
The School also has a makerspace, The Shed, which offers exciting teaching and collaboration opportunities. Among other equipment it contains a milling machine, 3D printers, laser cutter and extensive space for building and making digital artefacts.
You are more than your grades
For 2022, in response to the challenges caused by Covid-19 we will consider applicants either holding or projected a 2:2. This response is part of our flexible approach to admissions whereby we consider each student and their personal circumstances. If you have any questions, please get in touch.
A first or second class honours degree or equivalent in computing or a related subject.
All applicants are considered on an individual basis and additional qualifications, professional qualifications and relevant experience may also be taken into account when considering applications.
Please see our International Student website for entry requirements by country and other relevant information. Due to visa restrictions, students who require a student visa to study cannot study part-time unless undertaking a distance or blended-learning programme with no on-campus provision.
The University requires all non-native speakers of English to reach a minimum standard of proficiency in written and spoken English before beginning a postgraduate degree. Certain subjects require a higher level.
For detailed information see our English language requirements web pages.
Please note that if you are required to meet an English language condition, we offer a number of pre-sessional courses in English for Academic Purposes through Kent International Pathways.
Duration: 1 year full-time
The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.
The module will cover a mixture of theoretical and practical topics in the area of mobile devices and the Internet of Things (IoT), that is, the use of Internet technologies to access and interact with objects in the physical world. This will include coverage of the range of sensor and actuator devices available, ways in which they communicate and compute, methods for getting information to and from IoT-enabled devices, ways of visualising and processing data gained from the IoT, and associated privacy and security issues. Application development for mobile devices such as smartphones will also be introduced using a popular mobile platform.
This module provides for well-qualified computer science students entering the MSc programme from a range of backgrounds. These students will have good programming skills but will not necessarily have used Java or another object-oriented language extensively. This module seeks to ensure that students have the Java and object-oriented design skills necessary for the rest of their programme.
Introduction, including a review of network techniques, switching and multiple access. High speed local area networks. Network protocols, including data link, network, transport and application layers and their security issues. Problems of network security and mechanisms used to provide security such as firewalls and network security protocols. Real time data transmission and quality of service. Naming and addressing and related security concerns. Security of IEEE 802.11 networks.
This module starts with the fundamental mathematical concepts to build cryptographic primitives. A key objective is to learn to implement the primitives without using programming libraries, learn the formal security notions and models for the primitives, and the use of the primitives in practical applications like blockchains.
The second part of the module covers the key application areas of authentication, authorisation and accountability (AAA). Included here are foundational topics of user and non-user authentication (including issues with password and biometric authentications), as well as access control and authorisation, along with matters related to accountability.
The project consists primarily of an extended period during which students undertake a substantial piece of work and a report on this in the form of a dissertation. It is usually preceded by an exploratory stage in which students review and summarise relevant literature or other technical background, and gain specific skills relevant to their project via a series of taught workshops. It may be permitted to undertake the work in groups, particularly for projects with a development focus. However, the dissertations are produced individually. The project examines the student's ability to research technical background, to understand and expand on a specific problem commensurate with their programme of study and relate it to other work, to carry out investigations and development (as appropriate), to describe results and draw conclusions from them, and to write a coherent and well organised dissertation demonstrating the student's individual reflection and achieved learning.
A synopsis of the curriculum:
This module introduces students to the functional programming paradigm, using at least one modern functional programming language to put the core concepts into practice. The module will develop both the foundation and theory of this paradigm, as well as the practice and application of the paradigm to solve problems and build systems. The module will core topics, including:
The module will develop practical skills in programming and problem solving using functional programming. There will also be a chance to apply functional programming to help understand better concepts in logic and mathematics.
Later parts of the module will then consider concurrent programming in the context of functional programming, including concurrent programming models and primitives (e.g., message-passing concurrency), parallelism, synchronisation and communication, and properties of deadlock, communication-safety, and starvation.
The module focuses on teaching the foundations of language-based security including but not limited to the use of formal logics, type systems, process calculi and proof carrying code for reasoning about the security properties of programs.
An overview of basic concepts related to eHealth and a perspective on current HIT (Health Information Technology) and innovation. Review of current healthcare related IT systems. The use of information technology for handling clinical data, health systems. Data representation and knowledge management. Security and privacy. Ethics and legal requirements of eHealth systems. Clinical decision support systems. TeleHealth tools for remote diagnosis, monitoring, and disease management. Delivery and monitoring platforms for both hospitals and home environment. Innovation in eHealth systems leading to start-up companies.
This module will give students an overarching introduction to quantum information processing (QIP). At the end of the course the students will have a basic understanding of quantum computation, quantum communication, and quantum cryptography; as well as the implications to other fields such as computation, physics, and cybersecurity.
We will take a multi-disciplinary approach that will encourage and require students to engage in topics outside of their core discipline. The module will cover the most essential mathematical background required to understand QIP. This includes: linear algebra, basic elements of quantum theory (quantum states, evolution of closed quantum systems, Born's rule), and basic theory of computing. The module will introduce students to the following theoretical topics: quantum algorithms, quantum cryptography, quantum communication & information. The module will also address experimental quantum computation & cryptography.
This module will aim to familiarise students with core concepts (e.g. Locard's exchange principle, and legal admissibility of digital evidence) and best practices (e.g. the ACPO Good Practice Guide for Digital Evidence, Contemporaneous Notes taking, and the SWGDE guidelines) underpinning digital forensic investigations. It introduces methodologies that guide the digital investigative process (i.e., collection, interpretation, analysis and reporting), and key techniques that can be applied for interpretation and analysis of digital evidence in the context of digital forensics in general (e.g., hashing, and file carving), computer forensics (e.g., windows registry analysis and metadata analysis), and multimedia forensics (e.g., multimedia source analysis for device identification, and multimedia content analysis for forgery detection).
The module also discusses challenges faced by digital forensics due to the increasing volume and diversity of data sources involved in investigations.
This module aims to familiarise students with general concepts about privacy, privacy issues in selected application contexts of privacy enhancing technologies (e.g., Internet and web, mobile computing, online social networks, IoT), selected privacy enhancing technologies including data anonymisation (e.g., k-anonymity and differential privacy), anonymous communication (e.g., Tor), web and mobile privacy tools, and socio-technical related topics aspects of privacy (e.g., privacy behaviours, privacy policies, usability, and relevant legal issues).
This module covers the basic principles of machine learning and the kinds of problems that can be solved by such techniques. Students will learn about the philosophy of AI, how knowledge is represented and algorithms to search state spaces. The module also provides an introduction to both machine learning and biologically inspired computation.
This module covers the design and implementation of high-quality software, and provides an introduction to software development for Artificial Intelligence (AI). In this module, students will gain an understanding of data analysis and statistics techniques, including effective graphical representations.
Throughout the module, students will learn to embed data analysis and statistics concepts into a programming language which offers good support for AI (e.g., Python). Students will learn to use important AI-purposed libraries and tools, and apply these techniques to data loading, processing, manipulation and visualisation.
This module explores a range of different data mining and knowledge discovery techniques and algorithms. You learn about the strengths and weaknesses of different techniques and how to choose the most appropriate for any particular task. You use a data mining tool, and learn to evaluate the quality of discovered knowledge.
This module investigates the whole process of information security management and associated activities including the concepts used and practices prescribed by relevant standards, such as those defined by ISO/IEC. A holistic view of information security management is taken, including risk management, the formulation of security policies, business continuity and resilience. Selected socio-technical topics that are important for information security management will also be covered. These shall include AAA (authentication, authorisation and accountability), important legal aspects especially data protection and privacy laws, data protection impact assessment, usability analysis and management, wider human factors in cyber security such as social engineering attacks and the importance of a positive cyber security culture for encouraging secure behaviours of employees and users.
In this module you learn what is meant by neural networks and how to explain the mathematical equations that underlie them. You also familiarise yourself with cognitive neural networks using state of the art simulation technology and apply these networks to the solution of problems. In addition, the module discusses examples of computation applied to neurobiology and cognitive psychology. The module also introduces artificial neural networks from the machine learning perspective. You will study the existing machine learning implementations of neural networks, and you will also engage in implementation of algorithms and procedures relevant to neural networks.
There is an increasing use of nature-inspired computational techniques in computer science. These include the use of biology as a source of inspiration for solving computational problems, such as developments in evolutionary algorithms and swarm intelligence. Similarly, there is now also an increasing interest in understanding how biological, chemical and other natural systems compute, and how this could be exploited for practical applications. It is therefore proposed to allow students the opportunity to become exposed to these types of methods for use in their later careers.
The module will explore existing and emerging legal issues in cyber security, cybercrime, privacy and data protection, including the domestic and cross-boundary legal regulatory frames and their associated ethical dimensions. Topics covered include cybercrime, privacy and data protection, Internet and cyber surveillance, cross-border information flows, and legal structures. Students will be challenged to critically examine the ethics and management of cyber data. It will require students to assess emerging legal, regulatory, privacy and data protection issues raised by access to personal information.
Data types: nominal, numerical, ordinal, text, audio, visual, temporal and non-temporal. Basic descriptive statistics: measures of average and spread, different ways of graphing data. Choosing appropriate and valid methods for the analysis and presentation of data, and understanding the limitations of methods. Data at different scales, including big data, and the computational challenges of processing data at scale. The process of discovering useful knowledge from data: including understanding the need for preprocessing and cleaning data, the challenges of gathering relevant data, and the need to present results in a comprehensible and actionable way. Data mining: classification/regression and clustering, and the idea of predictive analytics. Elements of information retrieval from text. Vector representations of text documents. Fairness and ethical issues concerning data.
This module looks into the training of modern deep neural networks: backpropagation, regularisation, automatic differentiation, computational graphs. Introduces different types of deep neural networks, such as, LSTM, convolutional networks, and autoencoders. Presents the theoretical underpinnings of deep learning and its mechanisms. Delves into selected recent advanced topics in deep learning. Examines applications of deep learning.
The module looks at a number of advanced topics in cyber security that are important for understanding, finding, researching and assessing security solutions. Example topics include:
The focus of the module is on the development of the advanced English language competence necessary for post graduate study in scientific disciplines. This includes the ability to interpret and evaluate authentic scientific texts; analyse, discuss and summarise written and visual information both in writing and orally; organise written texts effectively and submit them in grammatically accurate English, and present the results of research orally in a coherent and stimulating way.
Assessment is through a mixture of written examinations and coursework, the relative weights of which vary according to the nature of the module. The final project is assessed by a dissertation.
This programme aims to:
You gain knowledge and understanding of:
You develop intellectual skills in:
You gain subject-specific skills in:
You gain the following transferable skills:
The 2022/23 annual tuition fees for this course are:
Networks and Security - MSc at Canterbury
Networks and Security with an Industrial Placement - MSc at Canterbury
For details of when and how to pay fees and charges, please see our Student Finance Guide.
For students continuing on this programme fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* If you are uncertain about your fee status please contact information@kent.ac.uk.
The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.
Find out more about general additional costs that you may pay when studying at Kent.
Search our scholarships finder for possible funding opportunities. You may find it helpful to look at both:
We have a range of subject-specific awards and scholarships for academic, sporting and musical achievement.
Search scholarshipsIn the Research Excellence Framework (REF) 2021, 100% of our Computer Science and Informatics research was classified as either 'world-leading' and 'internationally excellent' for impact.
Security - of information, systems, and communications - has become a central issue in our society. Interaction between people's personal devices (far beyond just phones and computers) and the rest of the connected world is nearly continuous; and with the advent of the Internet Of Things its scope will only grow.
In that context, so much can go wrong - every communication can potentially be intercepted, modified, or spoofed, and surreptitiously obtained data can be commercially exploited or used for privacy invasions. In fact, data flows in society are such that many people already feel they have lost control over where (their) data goes.
The cyber security research group operates within that context. All members bring a particular technological emphasis - the analysis of particular classes of security problems or their solutions - but are fully aware that it all fits within a wider context of people using systems and communicating data in secure and insecure ways, and how external pressures beyond the mere technology impact on that. The topic of computer security then naturally widens to include topics like privacy, cyber crime, and ethics and law relating to computing, as well as bringing in aspects of psychology, sociology and economics.
From that perspective, the Cyber Security research group played a key role in setting up, and continues to be a core contributor to, the University's Interdisciplinary Cyber Security Research Centre, see www.cybersecurity.kent.ac.uk.
The group has a strong involvement with postgraduate teaching in this area. It teaches most of the core modules in MSc programmes in Computer Security, and Networks and Security. Our MSc Course in Cyber Security has been certified by the National Cyber Security Centre, a part of GCHQ. The group is also involved in undergraduate modules in this area, postgraduate programmes in other schools and UK activities to define curricula in Cyber Security.
Members are engaged in the following areas of research (research areas in more detail) .
Data Ethics and Privacy
Our research involves all aspects of programming languages and systems, from fundamental theory to practical implementation. The Group has interests across a wide range of programming paradigms: object-oriented, concurrent, functional and logic. We research the links between logic and programming languages, the verification of the correctness of programs, and develop tools for refactoring, tracing and testing. We are interested in incorporating safe concurrent programming practices into language design.
The Group is also interested in practical implementation of programming languages, from massively concurrent parallel processing to battery-operated mobile systems. Particular research topics include lightweight multi-threading kernels, highly concurrent operating systems, memory managers and garbage collectors.
Research areas include:
This Group brings together interdisciplinary researchers investigating the interface between computer science and the domains of bioscience and cognition. In terms of applying computation to other domains, we have experts in investigating the modelling of gene expression and modelling of human attention, emotions and reasoning. From the perspective of applying biological metaphors to computation, we research new computational methods such as genetic algorithms and swarm intelligence.
The Group also develops novel techniques for data mining, visualisation and simulation. These use the results of interdisciplinary research for finding solutions to computationally expensive problems.
The Group has strong links with other schools at the University of Kent, as well as with universities, hospitals and scientific research institutes throughout the country and internationally.
Areas of research activity within the group include:
Data Science is about developing new techniques to better understand data and draws on many areas within and outside of computer science. Our research group develops and applies methods to interpret rich information sources.Our research comes under three themes:
Full details of staff research interests can be found on the School's website.
Our programmes of study are designed to equip our graduates with the skills and knowledge that make them highly attractive to potential employers, providing a good balance between theoretical studies and real-life applications. The recent REF indicated that the School's research was in the top quartile of 89 Computing departments across the UK. Our graduates therefore benefit from a first-rate academic experience as well as being prepared to face the demands of the economic environment.
Our graduates have gone on to work in:
Recent graduates have gone on to develop successful careers at leading companies such as:
The University has a friendly Careers and Employability Service, which can give you advice on how to:
You can gain practical work experience as part of your degree through our industrial placements scheme - we have a dedicated Placement Team who can give advice and guidance. All our placements are in paid roles.
In previous years, students have worked at a wide range of large and small organisations, including well-known names such as:
You can take your work placement abroad. Previous destinations include Hong Kong and the USA.
An industrial placement gives you invaluable workplace experience, which greatly enhances your employment prospects and also helps put your academic learning into a real-world context.
While studying on a taught Master’s, you can gain work experience. We have strong links with industry including IBM, Microsoft and Oracle.
The School of Computing has a large range of equipment providing both UNIX (TM) and PC-based systems and a cluster facility consisting of 30 Linux-based PCs for parallel computation. New resources include a multi-core enterprise server with 128 hardware threads and a virtual machine server that supports computer security experiments.
All students benefit from a well-stocked library, giving access to e-books and online journals as well as books, and a high bandwidth internet gateway. The School and its research groups hold a series of regular seminars presented by staff as well as by visiting speakers and our students are welcome to attend.
The School of Computing has a makerspace "The Shed", which offers exciting new teaching and collaboration opportunities. Among other equipment, it contains milling machines, a 3D printer, laser cutter and extensive space for building and making digital artefacts.
Our taught postgraduate students enjoy a high level of access to academic staff and have their own dedicated laboratory and study room. Students whose course includes an industrial placement are supported by a dedicated team which helps them gain a suitable position and provides support throughout the placement.
Staff and research students publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Journal of Artificial Evolution and Applications; International Journal of Computer and Telecommunications Networking; Journal of Visual Languages and Computing; Journal in Computer Virology.
Strong links with industry underpin all our work, notably with Cisco, Microsoft, Oracle, IBM, Agilent Technologies, Erlang Solutions, Hewlett Packard Laboratories, Ericsson and Nexor.
All students registered for a taught Master's programme are eligible to apply for a place on our Global Skills Award Programme. The programme is designed to broaden your understanding of global issues and current affairs as well as to develop personal skills which will enhance your employability.
Learn more about the applications process or begin your application by clicking on a link below.
Once started, you can save and return to your application at any time.
T: +44 (0)1227 823254
E: internationalstudent@kent.ac.uk