Mathematics

Mathematics - MSc, PhD

Next steps

Apply now Stay updated

Studying Mathematics at postgraduate level gives you a chance to begin your own research, develop your own creativity and be part of a long tradition of people investigating analytic, geometric and algebraic ideas.

Overview

You would be joining a vibrant research community of almost 100 postgraduate and postdoctoral researchers and academic staff. You have the opportunity to engage with a very wide range of research topics within a well-established system of support and training, with a high level of contact between staff and research students.

A very active research seminar programme further enhances the Mathematics research experience.

About the School of Mathematics, Statistics and Actuarial Science (SMSAS)

The School has a strong reputation for world-class research. Postgraduate students develop analytical, communication and research skills. Developing computational skills and applying them to mathematical problems forms a significant part of the postgraduate training in the School.

In the Research Excellence Framework (REF) 2021, 93% of our Mathematical sciences research was classified as ‘world-leading’ or ‘internationally excellent’ for outputs.

The Mathematics Group also has an excellent track record of winning research grants from the Engineering and Physical Sciences Research Council (EPSRC), the Royal Society, the EU, the London Mathematical Society and the Leverhulme Trust.

Entry requirements

A first or upper second class honours degree in a subject with a significant mathematical content (or equivalent).

All applicants are considered on an individual basis and additional qualifications, professional qualifications and relevant experience may also be taken into account when considering applications. 

International students

Please see our International Student website for entry requirements by country and other relevant information. Due to visa restrictions, students who require a student visa to study cannot study part-time unless undertaking a distance or blended-learning programme with no on-campus provision.

English language entry requirements

The University requires all non-native speakers of English to reach a minimum standard of proficiency in written and spoken English before beginning a postgraduate degree. Certain subjects require a higher level.

For detailed information see our English language requirements web pages. 

Need help with English?

Please note that if you are required to meet an English language condition, we offer a number of pre-sessional courses in English for Academic Purposes through Kent International Pathways.

Form

Sign up for email updates

Course structure

Duration: MSc 1 year full-time, 2 years part-time

PhD 3 to 4 years full-time, 5 to 6 years part-time

Fees

The 2024/25 annual tuition fees for this course are:

Mathematics - MSc at Canterbury

  • Home full-time TBC
  • EU full-time £18600
  • International full-time £18600
  • Home part-time TBC
  • EU part-time £9300
  • International part-time £9300

Mathematics - PhD at Canterbury

  • Home full-time TBC
  • EU full-time £18600
  • International full-time £18600
  • Home part-time TBC
  • EU part-time £9300
  • International part-time £9300

For details of when and how to pay fees and charges, please see our Student Finance Guide.

For students continuing on this programme fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* If you are uncertain about your fee status please contact information@kent.ac.uk.

Your fee status

The University will assess your fee status as part of the application process. If you are uncertain about your fee status you may wish to seek advice from UKCISA before applying.

Additional costs

General additional costs

Find out more about general additional costs that you may pay when studying at Kent. 

Funding

Search our scholarships finder for possible funding opportunities. You may find it helpful to look at both:

We have a range of subject-specific awards and scholarships for academic, sporting and musical achievement.

Search scholarships

Independent rankings

In the Research Excellence Framework (REF) 2021, 93% of our Mathematical sciences research was classified as ‘world-leading’ or ‘internationally excellent’ for outputs.

Research

Research areas

The research interests of the Mathematics Group cover a wide range of topics following our strategy of cohesion with diversity. The areas outlined provide focal points for these varied interests.

Nonlinear differential equations

The research on nonlinear differential equations primarily studies algorithms for their classification, normal forms, symmetry reductions and exact solutions. Boundary value problems are studied from an analytical viewpoint, using functional analysis and spectral theory to investigate properties of solutions. We also study applications of symmetry methods to numerical schemes, in particular the applications of moving frames.

Painlevé equations

Current research on the Painlevé equations involves the structure of hierarchies of rational, algebraic and special function families of exact solutions, Bäcklund transformations and connection formulae using the isomonodromic deformation method. The group is also studying analogous results for the discrete Painlevé equations, which are nonlinear difference equations.

Mathematical biology

Natural systems are dominated by nonlinear interactions which produce a rich variety of dynamical behaviours. Analysis of these systems provides insight into real world problems such as genetic and infectious diseases and conservation of wild populations. Moreover, these systems provide inspiration for the design of new computer algorithms.

Quantum integrable systems

Current research on quantum integrable systems focuses on powerful exact analytical and numerical techniques, with applications in particle physics, quantum information theory and mathematical physics.

Topological solitons

Topological solitons are stable, finite energy, particle-like solutions of nonlinear wave equations that arise due to the general topological properties of the nonlinear system concerned. Examples include monopoles, skyrmions and vortices. This research focuses on classical and quantum behaviour of solitons with applications in various areas of physics including particle, nuclear and condensed matter physics. The group employs a wide range of different techniques including numerical simulations, exact analytic solutions and geometrical methods.

Algebra and representation theory

A representation of a group is the concrete realisation of the group as a group of transformations. Representation theory played an important role in the proof of the classification of finite simple groups, one of the outstanding achievements of 20th-century algebra. Representations of both groups and algebras are important in diverse areas of mathematics, such as statistical mechanics, knot theory and combinatorics.

Algebraic topology

In topology, geometry is studied with algebraic tools. An example of an algebraic object assigned to a geometric phenomenon is the winding number: this is an integer assigned to a map of the n-dimensional sphere to itself. The methods used in algebraic topology link in with homotopy theory, homological algebra and modern category theory.

Invariant theory

Invariant theory has its roots in the classical constructive algebra of the 19th century and motivated the development of modern algebra by Hilbert, Noether, Weyl and others. There are natural applications and interactions with algebraic geometry, algebraic topology and representation theory. The starting point is an action of a group on a commutative ring, often a ring of polynomials on several variables. The ring of invariants, the subring of fixed points, is the primary object of study. We use computational methods to construct generators for the ring of invariants, and theoretical methods to understand the relationship between the structure of the ring of invariants and the underlying representation.

Financial mathematics

Research includes work on financial risk management, asset pricing and optimal asset allocation, along with models to improve corporate financial management.

Careers

A postgraduate degree in Mathematics is a flexible and valuable qualification that gives you a competitive advantage in a wide range of mathematically oriented careers. Our programmes enable you to develop the skills and capabilities that employers are looking for including problem-solving, independent thought, report-writing, project management, leadership skills, teamworking and good communication.

Many of our graduates have gone on to work in international organisations, the financial sector, and business. Others have found postgraduate research places at Kent and other universities.

Study support

Postgraduate resources

The University’s Templeman Library houses a comprehensive collection of books and research periodicals. Online access to a wide variety of journals is available through services such as ScienceDirect and SpringerLink. The School has licences for major numerical and computer algebra software packages. Postgraduates are provided with computers in shared offices in the School. The School has two dedicated terminal rooms for taught postgraduate students to use for lectures and self-study.

Support

The School has a well-established system of support and training, with a high level of contact between staff and research students. There are two weekly seminar series: The Mathematics Colloquium at Kent attracts international speakers discussing recent advances in their subject; the Friday seminar series features in-house speakers and visitors talking about their latest work. These are supplemented by weekly discussion groups. The School is a member of the EPSRC-funded London Taught Course Centre for PhD students in the mathematical sciences, and students can participate in the courses and workshops offered by the Centre. The School offers conference grants to enable research students to present their work at national and international conferences.

Dynamic publishing culture

Staff publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Advances in Mathematics; Algebra and Representation Theory; Journal of Physics A; Journal of Symbolic Computations; Journal of Topology and Analysis. Details of recently published books can be found within the staff research interests section.

Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subject-specific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills.

Apply now

Learn more about the application process or begin your application by clicking on a link below.

You will be able to choose your preferred year of entry once you have started your application. You can also save and return to your application at any time.

Apply for entry to:

Contact us

bubble-text

United Kingdom/EU enquiries

MSc at Canterbury

PhD at Canterbury

Admissions enquiries

T: +44 (0)1227 768896

E: information@kent.ac.uk

Subject enquiries

T: +44 (0)1227 824133

E: smsaspgadmin@kent.ac.uk

earth

International student enquiries

Enquire online

T: +44 (0)1227 823254
E: internationalstudent@kent.ac.uk