Students preparing for their graduation ceremony at Canterbury Cathedral

Mathematics and its Applications with an Industrial Placement - MSc

2019

Studying Mathematics at postgraduate level gives you a chance to begin your own research, develop your own creativity and be part of a long tradition of people investigating analytic, geometric and algebraic ideas.

2019

Overview

This programme allows you to further enhance your knowledge, creativity and computational skills in core mathematical subjects and their applications giving you a competitive advantage in a wide range of mathematically based careers. The modules, which are designed and taught by internationally known researchers, are accessible, relevant, interesting and challenging.

 

About the School of Mathematics, Statistics and Actuarial Science (SMSAS)

The School has a strong reputation for world-class research as indicated by our results in the latest Research Excellence Framework (REF). Postgraduate students develop analytical, communication and research skills. Developing computational skills and applying them to mathematical problems forms a significant part of the postgraduate training in the School.

The Research Excellence Framework (REF) 2014 rated 72% of the School's research output as International Quality or above. The School is in the top 25 in the UK when considered on weighted GPA.

The Mathematics Group also has an excellent track record of winning research grants from the Engineering and Physical Sciences Research Council (EPSRC), the Royal Society, the EU, the London Mathematical Society and the Leverhulme Trust.

National ratings

In the Research Excellence Framework (REF) 2014, research by the School of Mathematics, Statistics and Actuarial Science was ranked 25th in the UK for research power and 100% or our research was judged to be of international quality.

An impressive 92% of our research-active staff submitted to the REF and the School’s environment was judged to be conducive to supporting the development of world-leading research.

Course structure

At least one modern application of mathematics is studied in-depth by each student. Mathematical computing and open-ended project work forms an integral part of the learning experience. There are opportunities for outreach and engagement with the public on mathematics.

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

  1. Applications of mathematical theories, methods and techniques
  2. The power of generalisation, abstraction and logical argument
  3. Nonlinear and noncommutative phenomena
  4. Geometric, algebraic and analytic thinking
  5. Mathematical computation

Your placement

Placements normally commence shortly after completion of Stage 1 of the MSc (June) or after completion of the short dissertation (August) and vary in length from three months to 50 weeks, extending the MSc programme to between 15 and 24 months.  The start date and duration depend on the employer. Students on a longer placement module (i.e. 6, 9 or 12 months) can transfer to a shorter module if the placement arrangement changes unavoidably once the student has embarked on it, but if a student cannot complete the minimum of three months placement he/she will be required to transfer to the MSc programme without a placement. Placements may be undertaken in the UK or overseas (the University does not guarantee every student will find a placement.  Those who do not secure a placement will be transferred to the MSc programme without a placement).

The placement consists of two modules: Industrial Placement Experience and Industrial Placement Report. Four versions of the Experience module exist to cover placements of different lengths. The Experience module is assessed as pass/fail only and the Report module is graded on a categorical scale.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation.  Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Compulsory modules currently include Credits

The short dissertation represents the culmination of the student's academic work in the programme. It offers students the opportunity to carry out a piece of extended independent scholarship, and to show their ability to organise and present their ideas in a coherent and convincing fashion.

The topic of the dissertation will depend on the mutual interests of the student and the student's chosen supervisor.

View full module details
30

Students spend a period doing paid work in an organisation outside the University, usually in an industrial or commercial environment, applying and enhancing the skills and techniques they have developed and studied earlier during their degree programme. Employer evaluation, personal and professional reviews and on-line blogs are assessed.

View full module details
30

Students spend a period of time doing paid work in an organisation outside the University, usually in an industrial or commercial environment, applying and enhancing the skills and techniques they have developed and studied in the earlier stages of their MSc programme.

The work they do is entirely under the direction of their industrial supervisor, but support is provided by the SMSAS Placement Officer or a member of the academic team. This support includes ensuring that the work they are being expected to do is such that they can meet the learning outcomes of the module.

Participation in this module is dependent on students obtaining an appropriate placement, for which support and guidance is provided through the School in the year leading up to the placement. It is also dependent on students completing the taught component of their studies. The University does not guarantee that every student will find a placement.

Students who do not obtain a placement will be required to transfer to the appropriate programme without an Industrial Placement.

View full module details
120

There is no specific mathematical syllabus for this module; students will chose a topic in mathematics, statistics or financial mathematics from a published list on which to base their coursework assessments (different topics for levels 6 and 7). The coursework is supported by a series of workshops covering various forms of written and oral communication. These may include critically evaluating the following: a research article in mathematics, statistics or finance; a survey or magazine article aimed at a scientifically-literate but non-specialist audience; a mathematical biography; a poster presentation of a mathematical topic; a curriculum vitae; an oral presentation with slides or board; a video or podcast on a mathematical topic. Guidance will be given on typesetting mathematics using LaTeX.

View full module details
15
Optional modules may include Credits

Metric spaces: Examples of metrics and norms, topology in metric spaces, sequences and convergence, uniform convergence, continuous maps, compactness, completeness and completions, contraction mapping theorem and applications.

Normed spaces: Examples, including function spaces, Banach spaces and completeness, finite and infinite dimensional normed spaces, continuity of linear operators and spaces of bounded linear operators, compactness in normed spaces, Arzela-Ascoli theorem, Weierstrass approximation theorem.

Additional topics, especially for level 7, may include:

• Tietze extension theorem and Urysohn's lemma

• Baire category theorem and applications

• Cantor sets, attractors and chaos

View full module details
15

The module is intended to serve as an introduction to point-set topology, focusing on examples and applications. This will also enhance other modules by providing examples and concepts relevant to Functional Analysis, Algebra and Mathematical Physics.

The syllabus will include but is not restricted to topics from the following list:

• Basic definitions and examples (Euclidean and discrete spaces and non-metrizable examples such as the finite complement topology)

• Continuity and convergence in general topological spaces (especially related to the examples above)

• Product topology, subspace topology, quotient topology (including real and complex projective spaces)

• Compactness, including comparing different characterisations of compactness

• Homotopy and paths

• Homeomorphisms and homotopy equivalence, contractibility

• Connectedness and path-connectedness

• Winding number

• Fixed point theorems

In addition, for level 7 students:

• Advanced topic such as a topological proof of the Fundamental Theorem of Algebra; simply connected spaces.

View full module details
15

• Scalar autonomous nonlinear first-order ODEs. Review of steady states and their stability; the slope fields and phase lines.

• Autonomous systems of two nonlinear first-order ODEs. The phase plane; Equilibra and nullclines; Linearisation about equilibra; Stability analysis; Constructing phase portraits; Applications. Nondimensionalisation.

• Stability, instability and limit cycles. Liapunov functions and Liapunov's theorem; periodic solutions and limit cycles; Bendixson's Negative Criterion; The Dulac criterion; the Poincare-Bendixson theorem; Examples.

• Dynamics of first order difference equations. Linear first order difference equations; Simple models and cobwebbing: a graphical procedure of solution; Equilibrium points and their stability; Periodic solutions and cycles. The discrete logistic model and bifurcations.

Level 7 Students only:

• Further applications of phase portraits and the Poincare-Bendixson theorem; Higher order difference equations.

View full module details
15

Linear PDEs. Dispersion relations. Review of d'Alembert's solutions of the wave equation.

Quasi-linear first-order PDEs. Total differential equations. Integral curves and integrability conditions. The method of characteristics.

Shock waves. Discontinuous solutions. Breaking time. Rankine-Hugoniot jump condition. Shock waves. Rarefaction waves. Applications of shock waves, including traffic flow.

General first-order nonlinear PDEs. Charpit's method, Monge Cone, the complete integral.

Nonlinear PDEs. Burgers' equation; the Cole-Hopf transformation and exact solutions. Travelling wave and scaling solutions of nonlinear PDEs. Applications of travelling wave and scaling solutions to reaction-diffusion equations. Exact solutions of nonlinear PDEs. Applications of nonlinear waves, including to ocean waves (e.g. rogue waves, tsunamis).

Level 7 Students only. Further applications of shock waves and nonlinear waves.

View full module details
15

The lectures will introduce students to asymptotic and perturbation methods for the approximate evaluation of integrals and to obtaining approximations for solutions of ordinary differential equations. These methods are widely used in the study of physically significant differential equations which arise in Applied Mathematics, Physics and Engineering. The material is chosen so as to demonstrate a range of the Mathematical techniques available and to illustrate some different applications which are amenable to such analysis.

The indicative syllabus is:

• Asymptotics. Ordering symbols. Asymptotic sequences, expansions and series. Differentiation and integration of asymptotic expansions. Dominant balance. Solution of algebraic and transcendental equations.

• Asymptotic evaluation of integrals. Integration by parts. Laplace's method and Watson's lemma. Method of stationary phase.

• Approximate solution of linear differential equations. Classification of singular points. Local behaviour at irregular singular points. Asymptotic expansions in the complex plane. Stokes phenomena: Stokes and anti-Stokes lines, dominance and sub-dominance. Connections between sectors of validity. Airy functions.

• Matched asymptotic expansions. Regular and singular perturbation problems. Asymptotic matching. Boundary layer theory: inner, outer and intermediate expansions and limits.

• WKB method. Schrödinger equation and Sturm-Liouville problems. Turning points.

• Multiple scales analysis and related methods. Secular terms. Multiple scales method. Method of strained coordinates (Lindstedt--Poincaré method).

Level 7 Students will study selected topics in greater depth than level 6 students.

View full module details
15

There is growing interest in applying the methods of algebraic topology to data analysis, sensor networks, robotics, etc. The module will develop the necessary elements of algebra and topology, and investigate how these techniques are used in various applications. The syllabus will include: an introduction to manifolds, CW complexes and simplicial complexes; an investigation of the elements of homotopy theory; an exploration of homological and computational methods; applications such as homological sensor networks and topological data analysis.

View full module details
15

In this module we will study plane algebraic curves and the way that they arise in applications to other parts of mathematics and physics. Examples include the use of elliptic functions to solve problems in mechanics (e.g. the pendulum, or Euler's equations for rigid body motion), spectral curves of separable Hamiltonian systems, and algebraic curves over finite fields that are used in cryptography. The geometrical properties of a curve are not altered by coordinate transformations, so it is important to identify quantities that are invariant under such transformations. For curves, the most basic invariant is the genus, which is most easily understood in terms of the topology of the associated Riemann surface: it counts the number of handles or "holes". The case of genus zero (corresponding to the Riemann sphere) is well understood, but curves of genus one (also known as elliptic curves) lead to some of the most interesting and difficult problems in modern number theory.

View full module details
15

Combinatorics is a field in mathematics that studies discrete, usually finite, structures, such as graphs. It not only plays an important role in numerous parts of mathematics, but also has real world applications. In particular, it underpins a variety of computational processes used in digital technologies and the design of computing hardware.

Among other things, this module provides an introduction to graph theory. Graphs are discrete objects consisting of vertices that are connected by edges. We will discuss a variety of concepts and results in graph theory, and some fundamental graph algorithms. Topics may include, but are not restricted to: trees, shortest paths problems, walks on graphs, graph colourings and embeddings, flows and matchings, and matrices and graphs.

In addition for level 7 students, the module will cover an advanced topic in combinatorics such as: problems in extremal set theory; enumerative problems; Principle of Inclusion and Exclusion; Ramsey theory; computational complexity; the P versus NP problem.

View full module details
15

Lie groups and their associated Lie algebras are studied by both pure and applied mathematicians and by physicists; this is a topic renowned for both its mathematical beauty and its immense utility. Lie groups include translation, rotation and scaling groups as well as unitary, symplectic and special linear matrix groups.  We will study in detail the lower dimensional groups that arise in many applications, and more general theory such as the structure of their associated Lie algebras. Special topics include a look at the lowest dimensional exceptional Lie group G2, and Lie group actions and their invariants.

View full module details
15

This module provides a rigorous foundation for the solution of systems of polynomial equations in many variables. In the 1890s, David Hilbert proved four ground-breaking theorems that prepared the way for Emmy Nöther's famous foundational work in the 1920s on ring theory and ideals in abstract algebra. This module will echo that historical progress, developing Hilbert's theorems and the essential canon of ring theory in the context of polynomial rings. It will take a modern perspective on the subject, using the Gröbner bases developed in the 1960s together with ideas of computer algebra pioneered in the 1980s. The syllabus will include

• Multivariate polynomials, monomial orders, division algorithm, Gröbner bases;

• Hilbert's Nullstellensatz and its meaning and consequences for solving polynomials in several variables;

• Elimination theory and applications;

• Linear equations over systems of polynomials, syzygies.

View full module details
15

Most differential equations which arise from physical systems cannot be solved explicitly in closed form, and thus numerical solutions are an invaluable way to obtain information about the underlying physical system. The first half of the module is concerned with ordinary differential equations. Several different numerical methods are introduced and error growth is studied. Both initial value and boundary value problems are investigated. The second half of the module deals with the numerical solution of partial differential equations. The syllabus includes: initial value problems for ordinary differential equations; Taylor methods; Runge-Kutta methods; multistep methods; error bounds and stability; boundary value problems for ordinary differential equations; finite difference schemes; difference schemes for partial differential equations; iterative methods; stability analysis.

View full module details
15

In this module we study the fundamental concepts and results in game theory. We start by analysing combinatorial games, and discuss game trees, winning strategies, and the classification of positions in so called impartial combinatorial games. We then move on to discuss two-player zero-sum games and introduce security levels, pure and mixed strategies, and prove the famous von Neumann Minimax Theorem. We will see how to solve zero-sum two player games using domination and discuss a general method based on linear programming. Subsequently we analyse arbitrary sum two-player games and discuss utility, best responses, Nash equilibria, and the Nash Equilibrium Theorem. The final part of the module is devoted to multi-player games and cooperation; we analyse coalitions, the core of the game, and the Shapley value.

View full module details
15

Teaching and Assessment

Coursework involving complex problems testing numerical, analytical, geometric, algebraic and logical skills; Computer assignments using specific mathematical software packages discussed in the computing classes; written unseen examinations; Independent dissertation and project.

Continuation to Industrial Placement

Commencement of the placement is conditional on progression to Stage 2, as determined at the interim examination board in June under the same rules as for the programme without a placement.

The placement consists of two modules: Industrial Placement Experience and Industrial Placement Report. Four versions of the Experience module exist to cover placements of different lengths. The Experience module is assessed as pass/fail only and the Report module is graded on a categorical scale.

Programme aims

This programme aims to:

  • provide a Master’s level mathematical education of excellent quality, informed by research and scholarship
  • provide an opportunity to enhance your mathematical creativity, problem-solving skills and advanced computational skills
  • provide an opportunity for you to enhance your oral communication, project design and basic research skills
  • provide an opportunity for you to experience and engage with a creative, research-active professional mathematical environment
  • produce graduates of value to the region and nation by offering you opportunities to learn about mathematics in the context of its application.

Learning outcomes

Knowledge and understanding

You will gain knowledge and understanding of:

  • the applications of mathematical theories, methods and techniques
  • the power of generalisation, abstraction and logical argument
  • the processes and pitfalls of mathematical approximation 
  • nonlinear phenomena
  • geometric thinking
  • non-commutative phenomena
  • algebraic thinking
  • analytic thinking
  • mathematical computation.

Intellectual skills

You develop intellectual skills in:

  • problem solving: the ability to work with self-direction and originality in tackling and solving problems, as well as an ability to provide an analytic approach to mathematical problem-solving
  • independent critical reading of technical material
  • independent creative mathematical inquiry: to develop an understanding of how techniques of research and enquiry are used to create and interpret mathematical knowledge, to show initiative in the application of knowledge
  • logical argument: the ability to formulate detailed rigorous arguments and to deal with complex issues both systematically and creatively.

Subject-specific skills

You gain subject-specific skills in:

  • using mathematical typesetting (LaTeX)
  • the ability to communicate with clarity to both a mathematian and a non-specialist audience
  • carrying out symbolic computation (eg Maple) for deriving further conclusions
  • carrying out numerical computation (eg Matlab) for acquiring further information.

Transferable skills

You will gain the following transferable skills:

  • oral and written communication: the ability to communicate technical material, ideas and results to specialist and non-specialist audiences
  • project design: to independently plan, implement and complete a project to professional level
  • basic research: to be able to select and critically evaluate appropriate material from a variety of sources, be able to use appropriate IT tools, be able to write a literature survey, to investigate a mathematical topic in-depth
  • organisational, decision-making, self-management and time-management skills, including the ability to manage your own learning and self-development, and to plan and implement tasks autonomously
  • practical experience of the application in a working environment of knowledge and skills gained through academic study.

Careers

A postgraduate degree in Mathematics is a flexible and valuable qualification that gives you a competitive advantage in a wide range of mathematically oriented careers. Our programmes enable you to develop the skills and capabilities that employers are looking for including problem-solving, independent thought, report-writing, project management, leadership skills, teamworking and good communication.

Many of our graduates have gone on to work in international organisations, the financial sector, and business. Others have found postgraduate research places at Kent and other universities.

Study support

Postgraduate resources

The University’s Templeman Library houses a comprehensive collection of books and research periodicals. Online access to a wide variety of journals is available through services such as ScienceDirect and SpringerLink. The School has licences for major numerical and computer algebra software packages. Postgraduates are provided with computers in shared offices in the School. The School has two dedicated terminal rooms for taught postgraduate students to use for lectures and self-study.

Support

The School has a well-established system of support and training, with a high level of contact between staff and research students. There are two weekly seminar series: The Mathematics Colloquium at Kent attracts international speakers discussing recent advances in their subject; the Friday seminar series features in-house speakers and visitors talking about their latest work. These are supplemented by weekly discussion groups. The School is a member of the EPSRC-funded London Taught Course Centre for PhD students in the mathematical sciences, and students can participate in the courses and workshops offered by the Centre. The School offers conference grants to enable research students to present their work at national and international conferences.

Dynamic publishing culture

Staff publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Advances in Mathematics; Algebra and Representation Theory; Journal of Physics A; Journal of Symbolic Computations; Journal of Topology and Analysis. Details of recently published books can be found within the staff research interests.

Global Skills Award

All students registered for a taught Master's programme are eligible to apply for a place on our Global Skills Award Programme. The programme is designed to broaden your understanding of global issues and current affairs as well as to develop personal skills which will enhance your employability.  

Entry requirements

A first or second class honours degree in a subject with a significant mathematical content (or equivalent). Students not meeting the entry requirement may take the two year full-time International Master’s in Mathematics and its Applications.

All applicants are considered on an individual basis and additional qualifications, professional qualifications and experience will also be taken into account. 

International students

Please see our International Student website for entry requirements by country and other relevant information for your country.  Please note that international fee-paying students cannot undertake a part-time programme due to visa restrictions.

English language entry requirements

The University requires all non-native speakers of English to reach a minimum standard of proficiency in written and spoken English before beginning a postgraduate degree. Certain subjects require a higher level.

For detailed information see our English language requirements web pages. 

Need help with English?

Please note that if you are required to meet an English language condition, we offer a number of pre-sessional courses in English for Academic Purposes through Kent International Pathways.

Research areas

Nonlinear differential equations

The research on nonlinear differential equations primarily studies algorithms for their classification, normal forms, symmetry reductions and exact solutions. Boundary value problems are studied from an analytical viewpoint, using functional analysis and spectral theory to investigate properties of solutions. We also study applications of symmetry methods to numerical schemes, in particular the applications of moving frames.

Painlevé equations

Current research on the Painlevé equations involves the structure of hierarchies of rational, algebraic and special function families of exact solutions, Bäcklund transformations and connection formulae using the isomonodromic deformation method. The group is also studying analogous results for the discrete Painlevé equations, which are nonlinear difference equations.

Mathematical biology

Artificial immune systems use nonlinear interactions between cell populations in the immune system as the inspiration for new computer algorithms. We are using techniques of nonlinear dynamical systems to analyse the properties of these systems.

Quantum integrable systems

Current research on quantum integrable systems focuses on powerful exact analytical and numerical techniques, with applications in particle physics, quantum information theory and mathematical physics.

Topological solitons

Topological solitons are stable, finite energy, particle-like solutions of nonlinear wave equations that arise due to the general topological properties of the nonlinear system concerned. Examples include monopoles, skyrmions and vortices. This research focuses on classical and quantum behaviour of solitons with applications in various areas of physics including particle, nuclear and condensed matter physics. The group employs a wide range of different techniques including numerical simulations, exact analytic solutions and geometrical methods.

Algebra and representation theory

A representation of a group is the concrete realisation of the group as a group of transformations. Representation theory played an important role in the proof of the classification of finite simple groups, one of the outstanding achievements of 20th-century algebra. Representations of both groups and algebras are important in diverse areas of mathematics, such as statistical mechanics, knot theory and combinatorics.

Algebraic topology

In topology, geometry is studied with algebraic tools. An example of an algebraic object assigned to a geometric phenomenon is the winding number: this is an integer assigned to a map of the n-dimensional sphere to itself. The methods used in algebraic topology link in with homotopy theory, homological algebra and modern category theory.

Invariant theory

Invariant theory has its roots in the classical constructive algebra of the 19th century and motivated the development of modern algebra by Hilbert, Noether, Weyl and others. There are natural applications and interactions with algebraic geometry, algebraic topology and representation theory. The starting point is an action of a group on a commutative ring, often a ring of polynomials on several variables. The ring of invariants, the subring of fixed points, is the primary object of study. We use computational methods to construct generators for the ring of invariants, and theoretical methods to understand the relationship between the structure of the ring of invariants and the underlying representation.

Financial mathematics

Research includes work on financial risk management, asset pricing and optimal asset allocation, along with models to improve corporate financial management.

Staff research interests

Full details of staff research interests can be found on the School's website.

Professor Peter A Clarkson: Professor of Mathematics

Soliton theory, in particular the Painlevé equations, and Painlevé analysis. Asymptotics, Bäcklund transformations, connection formulae and exact solutions for nonlinear ordinary differential and difference equations, in particular the Painlevé equations and discrete Painlevé equations. Orthogonal polynomials and special functions, in particular nonlinear special functions such as the Painlevé equations. Symmetry reductions and exact solutions of nonlinear partial differential equations, in particular using nonclassical and generalized techniques.

View Profile

Dr Clare Dunning: Senior Lecturer in Applied Mathematics

Exactly solvable models in mathematical physics; integrable quantum field theory and spectral theory of ordinary differential equations.

View Profile

Professor Peter Fleischmann: Professor of Pure Mathematics

Representation theory and structure theory of finite groups; constructive invariant theory; applied algebra and discrete mathematics.

View Profile

Dr Steffen Krusch: Lecturer in Applied Mathematics

Topological solitons in mathematical physics, in particular the classical and quantum behaviour of Skyrmions.

View Profile

Dr Stephane Launois: Reader in Pure Mathematics

Non-commutative algebra and non-commutative geometry, in particular, quantum algebras and links with their (semi-)classical counterparts: enveloping algebras and Poisson algebras.

View Profile

Dr Bas Lemmens: Senior Lecturer in Mathematics

Nonlinear (functional) analysis, dynamical systems theory and metric geometry. In particular, the theory of monotone dynamical systems and its applications, and the geometry of Hilbert's metric spaces.

View Profile

Dr Ana F. Loureiro: Lecturer in Mathematics

Orthogonal polynomials; special functions and integral transforms; some aspects of combinatorics and approximation theory.

View Profile

Professor Elizabeth L Mansfield: Professor of Mathematics

Nonlinear differential and difference equations; variational methods; moving frames and geometric integration.

View Profile

Dr Jaideep S Oberoi: Lecturer in Finance

Identification and quantification of liquidity risk in financial markets and the implications of incomplete information for asset price co-variation.

View Profile

Dr Rowena E Paget: Lecturer in Pure Mathematics

Representation theory of groups and algebras, with emphasis on algebras possessing a quasihereditary or cellular structure, such as the group algebras of symmetric groups, Brauer algebras and other diagram algebras.

View Profile

Dr Constanze Roitzheim: Lecturer in Mathematics

Stable homotopy theory, in particular model categories and chromatic homotopy theory; homological algebra; A-infinity algebras.

View Profile

Dr R James Shank: Reader in Mathematics

The invariant theory of finite groups and related aspects of commutative algebra, algebraic topology and representation theory.

View Profile

Dr Huamao Wang: Lecturer in Finance

Developing mathematical models; numerical methods and practical application of portfolio optimisation; derivative pricing and hedging; risk management based on stochastic calculus, optimal control, filtering and simulation.

View Profile

Dr Jing Ping Wang: Reader in Applied Mathematics

Geometric and algebraic properties of nonlinear partial differential equations; test and classification of integral systems and asymptotic normal forms of partial differential equations.

View Profile

Dr Ian Wood: Lecturer in Mathematics

Analysis of PDEs and spectral theory, in particular, the study of spectral properties of non-self adjoint operators via boundary triples and M-functions (generalised Dirichlet-to-Neumann maps), regularity to solutions of PDEs in Lipschitz domains and waveguides in periodic structures.

View Profile

Dr Chris F Woodcock: Senior Lecturer in Pure Mathematics

P-adic analogues of classical functions; commutative algebra; algebraic geometry; modular invariant theory.

View Profile

Fees

The 2019/20 annual tuition fees for this programme are:

Mathematics and its Applications with an Industrial Placement - MSc at Canterbury:
UK/EU Overseas
Full-time £10740 £15700

For students continuing on this programme fees will increase year on year by no more than RPI + 3% in each academic year of study except where regulated.* If you are uncertain about your fee status please contact information@kent.ac.uk

General additional costs

Find out more about general additional costs that you may pay when studying at Kent. 

Funding

Search our scholarships finder for possible funding opportunities. You may find it helpful to look at both: