
Symmetries and �rst integrals of ordinarydi�eren
e equationsBy P. E. HydonDept. of Mathemati
s and Statisti
sUniversity of SurreyGuildford GU2 7XH, UKemail: P.Hydon�surrey.a
.ukThis paper des
ribes a new symmetry-based approa
h to solving a given ordi-nary di�eren
e equation. By studying the lo
al stru
ture of the set of solutions, wederive a systemati
 method for determining one-parameter Lie groups of symme-tries in 
losed form. Su
h groups 
an be used to a
hieve su

essive redu
tions oforder. If there are enough symmetries, the di�eren
e equation 
an be 
ompletelysolved. Several examples are used to illustrate the te
hnique for transitive and in-transive symmetry groups. It is also shown that every linear se
ond-order ordinarydi�eren
e equation has a Lie algebra of symmetry generators that is isomorphi
 tosl(3). The paper 
on
ludes with a systemati
 method for 
onstru
ting �rst integralsdire
tly, whi
h 
an be used even if no symmetries are known.Keywords: Di�eren
e equations, Symmetry analysis, Lie groups, Firstintegrals1. Introdu
tionOver a 
entury ago, Sophus Lie introdu
ed symmetry-based te
hniques for solvingordinary di�erential equations (ODEs). Lie's approa
h enables the user to determineLie groups of symmetries of a given ODE. If a suÆ
iently large symmetry group
an be found, it may be used to solve the ODE. For an introdu
tion to symmetrymethods for ODEs, see Olver (1993), Bluman & Kumei (1989), Stephani (1989), orHydon (2000).Maeda (1987) has shown that autonomous systems of �rst-order ordinary dif-feren
e equations (O�Es) 
an be simpli�ed or solved using an extension of Lie'smethod. Maeda also showed that the linearized symmetry 
ondition for su
h O�Esamounts to a set of fun
tional equations. In general, these are hard to solve, butMaeda des
ribed two examples for whi
h a very restri
tive ansatz yields Lie sym-metries. Gaeta (1993) uses formal series expansions to derive some symmetries ofthose systems of O�Es that are dis
retizations of 
ontinuous systems. Given anODE with known Lie point symmetries, one may ask whether it is possible todis
retize the ODE in a way that preserves at least some of the symmetries. Dorod-nitsyn (1994) des
ribes how this 
an be a
hieved, and lists some 
lasses of O�Esthat have a given Lie group. Dorodnitsyn et al. (2000) uses the same te
hnique todis
retize the se
ond-order ODEs that arise from the 
lassi�
ation of Lie groupsa
ting on the real plane.Arti
le submitted to Royal So
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2 P. E. HydonMaeda's ideas have been extended to nonautonomous systems and higher-orderO�Es by Quispel & Sahadevan (1993) and Levi et al. (1997). These papers de-s
ribe di�erent series-based methods for obtaining some solutions of the linearizedsymmetry 
ondition. Series expansions 
an be 
al
ulated if the symmetry 
onditionhas a �xed point, although it is usually not obvious how to sum the series to obtainsolutions in 
losed form. Unfortunately, the well-known method for 
al
ulating in-variants requires the symmetry generator to be in 
losed form. This is a substantiallimitation on the usefulness of series-based te
hniques.In the 
urrent paper, we introdu
e a systemati
 method for obtaining Lie sym-metries (in 
losed form) of a given O�E. For ODEs, the most general 
lass of lo
alsymmetries is the 
lass of dynami
al (or internal) symmetries (see Stephani, 1989;Anderson et al., 1993). This 
lass in
ludes the trivial symmetries, whi
h map everysolution of the ODE to itself and 
annot be used to solve the ODE. It is usual tofa
tor out the trivial symmetries by restri
ting attention to those dynami
al sym-metries that leave the independent variable un
hanged (whi
h are 
alled verti
al orevolutionary symmetries). Two symmetries are said to be equivalent if they di�erby a trivial symmetry, so every lo
al symmetry of an ODE is equivalent to a verti
alsymmetry. In x2 we study the a
tion of symmetries on the set of solutions of a givenO�E. We prove that every lo
al symmetry is equivalent to a symmetry that leavesthe independent variable un
hanged. This result immediately frees us from a mazeof te
hni
al 
ompli
ations that are asso
iated with the fa
t that the independentvariable takes dis
rete values.Every ODE has in�nitely many independent one-parameter Lie groups of ver-ti
al symmetries. However, they 
an only be found by looking for generators of arestri
ted form. For example, all one-parameter Lie groups of verti
al symmetriesof the se
ond-order ODE u00 = !(x; u; u0) (1:1)have generators of the form X = Q(x; u; u0) ��u : (1:2)(These symmetries are equivalent to 
onta
t symmetries.) The set of all generators(1.2) 
annot be found until the general solution of (1.1) is known. However, theone-parameter Lie groups of point symmetries are equivalent to verti
al symmetrieswhose generators (1.2) have Q linear in u0. By pla
ing this restri
tion on Q, it isusually possible to obtain the Lie point symmetries systemati
ally. In x3 we show,using various examples, how to use the same idea to 
onstru
t Lie symmetries ofO�Es (in 
losed form). Starting from the linearized symmetry 
ondition, whi
h is afun
tional equation, we derive an asso
iated system of linear di�erential equations.This system is similar to the system of determining equations for Lie symmetriesof a given ODE. Moreover, having set up the mathemati
al framework for the newmethod, we �nd that it enables us to transfer the main symmetry methods forODEs a
ross to O�Es. Some minor modi�
ations are needed, whi
h are des
ribedin x4.A re
ent paper by An
o & Bluman (1998) des
ribes a 
onstru
tive method forobtaining �rst integrals of ODEs dire
tly, without using Lie symmetries. Instead,the method uses the adjoint of the linearized symmetry 
ondition. In x5 we introdu
eArti
le submitted to Royal So
iety



Symmetries of di�eren
e equations 3a similar te
hnique for obtaining �rst integrals of O�Es dire
tly. This makes itpossible to solve some O�Es for whi
h no Lie symmetries 
an be found.2. Symmetries of ordinary di�eren
e equationsWe begin by 
onsidering the stru
ture of the set of solutions of the N th-order O�Eun+N = ! (n; un; un+1; : : : ; un+N�1) ; �!�un 6= 0; (2:1)where ! is a given fun
tion. We restri
t attention to regions in whi
h ! is a smoothfun
tion of its arguments. The independent variable n is an integer. Some authorsprefer to use xn as the independent variable (parti
ularly if the O�E arises as a dis-
retization of an ODE). There is no essential di�eren
e between these formulations,provided that there is a bije
tion that maps n to xn. (Note that the meshpoints,xn, need not be uniformly spa
ed.)Our obje
tive is to obtain the general solution of (2.1). If the values un0+k,k = 0; : : : ; N � 1; are known for one parti
ular n0, then the O�E (2.1) determinesun re
ursively for n � n0+N . Therefore the general solution depends onN arbitrary
onstants, 
i, and 
an be written (in prin
iple) in the formun = F (n; 
1; : : : ; 
N ): (2:2)Furthermore, be
ause the arbitrary 
onstants are independent, it is possible to solvethe system un+k = F (n+ k; 
1; : : : ; 
N ); k = 0; : : : ; N � 1; (2:3)to obtain ea
h 
i in the form
i = �i(n; un; : : : ; un+N�1); i = 1; : : : ; N: (2:4)The N fun
tions �i are fun
tionally-independent �rst integrals of the O�E (2.1).Here we use the same terminology as for ODEs: a �rst integral is a fun
tion thatis not identi
ally 
onstant, but is 
onstant on all solutions of the given O�E. Theterm \fun
tionally independent" means that the Ja
obian does not vanish, that is,�(�1; : : : ; �N )�(un; : : : ; un+N�1) 6= 0: (2:5)Throughout this paper, we shall work in the spa
e of variables n; un; : : : ; un+N�1;the 
ondition (2.5) enables us to use n; �1; : : : ; �N as an alternative set of (lo
al)
oordinates. Therefore any fun
tion g(n; un; : : : ; un+N�1) 
an be rewritten in theform g(n; un; : : : ; un+N�1) = G �n; �1; : : : ; �N �for some fun
tion G. In parti
ular, every �rst integral �(n; un; : : : ; un+N�1) is afun
tion of the �rst integrals �i only.It is useful to introdu
e the shift operator, whi
h a
ts on the independent variablen as follows: S : n 7! n+ 1: (2:6)Arti
le submitted to Royal So
iety



4 P. E. HydonThe a
tion of this operator on any given fun
tion of n only, g(n), is de�ned by thea
tion on the fun
tion's arguments:S (g(n)) = g(S(n)) = g(n+ 1): (2:7)By applying the shift operator to any solution (2.2) of the O�E, we 
an use (2.3)and (2.7) to obtain S(un) = F �S(n); 
1; : : : ; 
N ) � = un+1;be
ause ea
h 
i is independent of n. Similarly,S(un+k) = un+k+1; k = 0; : : : ; N � 2: (2:8a)Equation (2.8a) also holds for k = N � 1, but be
ause un is a solution of the O�E,we 
an repla
e un+N by the right-hand side of (2.1):S(un+N�1) = ! (n; un; un+1; : : : ; un+N�1) : (2:8b)From here on, we restri
t attention to solutions of the O�E, and so we regard Sas an operator on n and un+k; k = 0; : : : ; N � 1; whose a
tion is de�ned by (2.6)and (2.8a,b). From (2.7), the a
tion of S on fun
tions of these variables isS ( g(n; un; : : : ; un+N�2; un+N�1) ) = g (n+ 1; un+1; : : : ; un+N�1; ! ) : (2:9)If � is a �rst integral, it is 
onstant on the solutions of the O�E, and hen
eS� = � : (2:10)Therefore, from (2.9), the �rst integrals of (2.1) are the non-
onstant solutions of� (n+ 1; un+1; : : : ; !(n; un; : : : ; un+N�1) ) = �(n; un; : : : ; un+N�1) : (2:11)This 
ondition holds as an identity in all variables. In x5, we shall use it to developa 
onstru
tive te
hnique for obtaining �rst integrals.A symmetry, �, of (2.1) maps the set of solutions to itself. Therefore, if� : (n; �1; : : : ; �N ) 7! (n̂; �̂1; : : : ; �̂N ); (2:12)ea
h �̂i is a fun
tion of �1; : : : ; �N only. At this point, it is ne
essary to ask what
lass of maps � respe
t the stru
ture of an O�E, and how these di�er from thesymmetries of an ODE.Dynami
al symmetries of a given N th-order ODE are de�ned similarly to (2.12),but with the independent variable x repla
ing n. It is helpful to regard the �rstintegrals �1; : : : ; �N as lo
al 
oordinates on an N -dimensional �bre over ea
h basepoint x. Dynami
al symmetries of the ODE are (lo
ally) di�eomorphisms of thetrivial �bre bundle R � RN , with the property that ea
h �̂i is independent of x.(The base spa
e spanned by the independent variable x is lo
ally isomorphi
 to R;ea
h �bre is lo
ally isomorphi
 to RN .)The �rst integrals of the O�E (2.1) also form an N -dimensional �bre over ea
hbase point; just as for ODEs, the �bre is lo
ally isomorphi
 to RN . However, theArti
le submitted to Royal So
iety



Symmetries of di�eren
e equations 5independent variable n takes only integer values, so the base points are dis
rete. The�bres are not 
onne
ted, and symmetries of the O�E must preserve this disjointstru
ture. Hen
e they are required to be �bre-preserving (that is, they map �bres to�bres), the 
onsequen
e of whi
h is that n̂ is a fun
tion of n only. Moreover, the setof base points have the natural ordering inherited from Z, and so the a
tion of anysymmetry on the base points should be 
onsistent with this ordering. In other words,�bres must not be shu�ed; symmetries are required to be neighbour-preserving. This
an happens in one of two ways: either a symmetry is order-preserving, in whi
h
ase n̂(n+ 1) = n̂(n) + 1;or else the symmetry is order-reversing, in whi
h 
ase its a
tion on n is equivalentto a re
e
tion. Dis
rete symmetries are not investigated in this paper, so we needonly 
onsider the order-preserving symmetries (whi
h in
lude all one-parameter Liegroups of symmetries). Just as for ODEs, the fun
tions �̂i(�1; : : : ; �N ) in (2.12) arerequired to be di�eomorphisms (at least, lo
ally).A symmetry is trivial if every solution is mapped to itself, that is, if�̂i = �i; i = 1; : : : ; N: (2:13)Lemma 2.1. For ea
h k 2 Z, the transformation generated by Sk is a trivial sym-metry of (2.1). (Note: if k is negative, Sk denotes (S�1)�k.)Proof. For k � 0, apply S repeatedly to obtainSk : (n; �1; : : : ; �N ) 7! (n+ k; �1; : : : ; �N ): (2:14)Hen
e every solution �i = 
i is mapped to itself. Equation (2.14) also holds fork < 0, be
ause (2.10) implies that S�1�i = �i. The a
tion of the operator S�1 onun is obtained by �rst using (2.1) to write un as a fun
tion of n; un+1; : : : ; un+N ,then repla
ing n by n� 1; the 
ondition �!�un 6= 0 ensures that this is possible.One 
onsequen
e of Lemma 2.1 is that every nontrivial order-preserving sym-metry 
an be regarded as the 
omposition of a verti
al (or evolutionary) symmetry,whi
h a
ts only on the �rst integrals �i (leaving n un
hanged), and a trivial sym-metry. Just as for ODEs, it is only the nontrivial symmetries that 
an be used tosolve O�Es, so we lose nothing by 
on
entrating on verti
al symmetries.Lemma 2.2. Every order-preserving symmetry (2.12) is equivalent to a verti
alsymmetry, ~� : (n; �1; : : : ; �N ) 7! (n; ~�1; : : : ; ~�N ):Proof. The proof is by 
onstru
tion:~� = Sn�n̂(n)�is the unique verti
al symmetry that is equivalent to �. (The 
ondition that � isorder-preserving ensures that n� n̂(n) is independent of n.)Arti
le submitted to Royal So
iety



6 P. E. HydonIn view of Lemma 2.2, we shall 
onsider only verti
al symmetries from nowon. A

ordingly we seek symmetries (2.12) with n̂ = n. In terms of the originalvariables, � : (n; un; : : : ; un+N�1) 7! (n; ûn; : : : ; ûn+N�1): (2:15)The a
tion of � on the variables un+k is determined by the a
tion on un. To seethis, suppose thatûn = g(n; un; : : : ; un+N�1) = G(n; �1; : : : ; �N ):Then, on the set of solutions of the O�E (2.1),ûn+k = G(n+ k; �1; : : : ; �N ) = Skûn; k = 1; : : : ; N: (2:16)The 
onditions (2.16) are analogous to the prolongation formulae for dynami
alsymmetries of ODEs, whi
h re
e
t the ne
essity for 
onta
t 
onditions to be satis�edon the set of solutions.The symmetry 
ondition for the O�E (2.1) isûn+N = ! (n; ûn; : : : ; ûn+N�1) ; when (2:1) holds: (2:17)Lie symmetries are obtained by linearizing the symmetry 
ondition about the iden-tity, as follows. We seek one-parameter (lo
al) Lie groups of symmetries of theform ûn = un + �Q(n; un; : : : ; un+N�1) +O(�2):The fun
tion Q is 
alled the 
hara
teristi
 of the one-parameter group. From theprolongation formulae (2.16), we obtainûn+k = un+k + �SkQ+O(�2); k = 1; : : : ; N:Expanding (2.17) to �rst order in � yields the linearized symmetry 
onditionSNQ�X! = 0; (2:18)where X = Q ��un + (SQ) ��un+1 + � � �+ (SN�1Q) ��un+N�1 : (2:19)Note that when the symmetry generator X is written in terms of the �rst integrals,it has the formX = F 1(�1; : : : ; �N ) ���1 + � � �+ FN (�1; : : : ; �N ) ���N ; (2:20)be
ause ea
h �̂i is a fun
tion of � = (�1; : : : ; �N ) only. From (2.20), we 
an dedu
ethat X and S 
ommute as operators on fun
tions. Given any suÆ
iently smoothfun
tion, g(n; un; : : : ; un+N�1) = G(n;�);(2.20) implies thatS(XG) = S �F i(�) �G��i (n;�)� = F i(�) �G��i (n+ 1;�) = X(SG):Arti
le submitted to Royal So
iety



Symmetries of di�eren
e equations 7Therefore S(Xg) = X(Sg): (2:21)In x4, we use (2.21) to derive symmetry redu
tions of O�Es.Just as for ODEs, the linearized symmetry 
ondition is both ne
essary andsuÆ
ient to obtain the lo
al Lie group of symmetries generated by X . To �ndsolutions of (2.18), we must impose some 
onstraint upon Q, in order to be ableto split (2.18) into an overdetermined system of equations. For example, if we seek
hara
teristi
s that are independent of un+N�1, it may be possible to split thelinearized symmetry 
ondition by equating powers of un+N�1. Before this 
an bea
hieved, some work is needed to transform (2.18) from a fun
tional equation into adi�erential equation for Q. The next se
tion introdu
es a method for a

omplishingthis transformation.3. How to 
onstru
t the determining equationsBefore des
ribing the method for determining Lie symmetries of a general O�E,we examine its main features in the 
ontext of a fairly simple example. Considerthe O�E un+2 = unun+12un � un+1 : (3:1)As this is a se
ond-order equation, let us seek point symmetries, whose 
hara
-teristi
s are of the form Q = Q(n; un). The linearized symmetry 
ondition (2.18)isQ(n+ 2; !)� 2u2n(2un � un+1)2 Q(n+ 1; un+1) + u2n+1(2un � un+1)2 Q(n; un) = 0; (3:2)where ! denotes the right-hand side of (3.1). The 
hief diÆ
ulty with (3.2) is thatthe fun
tion Q takes three separate pairs of arguments. To over
ome this diÆ
ulty,di�erentiate (3.2) with respe
t to un, keeping ! �xed. Here un+1 is regarded as afun
tion of n, un, and !. A standard result from multivariable 
al
ulus yields�un+1(n; un; !)�un = � �!�un�!�un+1 = u2n+12u2n :Therefore we apply the di�erential operator ��un + u2n+12u2n ��un+1 to (3.2), and obtain� u2n+1(2un � un+1)2 Q0(n+ 1; un+1) + 2un+1(2un � un+1)2 Q(n+ 1; un+1)+ u2n+1(2un � un+1)2 Q0(n; un)� 2u2n+1un(2un � un+1)2 Q(n; un) = 0;where 0 denotes a derivative with respe
t to the 
ontinuous variable. This simpli�esto �Q0(n+ 1; un+1) + 2un+1 Q(n+ 1; un+1) +Q0(n; un)� 2un Q(n; un) = 0: (3:3)Arti
le submitted to Royal So
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8 P. E. HydonNow di�erentiate (3.3) with respe
t to un, this time keeping un+1 �xed, to obtainthe ODE ddun �Q0(n; un)� 2un Q(n; un)� = 0: (3:4)Note that n appears only as a parameter at this stage. The general solution of (3.4)is Q(n; un) = A(n)un +B(n)u2n: (3:5)Substituting (3.5) into (3.3) yields the O�EA(n+ 1) = A(n);whose general solution is A(n) = 
1:The remaining unknown fun
tion, B(n), is determined by substituting (3.5) intothe original linearized symmetry 
ondition (3.2). This leads to the simple linearO�E B(n+ 2)� 2B(n+ 1) +B(n) = 0;whose general solution is B(n) = 
2n+ 
3:Summarizing these results, we have found a three-dimensional Lie algebra of sym-metry generators, whose 
hara
teristi
s are linear 
ombinations ofQ1 = un; Q2 = nu2n; Q3 = u2n: (3:6)The method used above exploits the fa
t that ea
h of the unknown fun
tionsin the linearized symmetry 
ondition is invariant under a �rst-order di�erentialoperator. The same method 
an be used to ta
kle any O�E (2.1), although the
omplexity of the 
al
ulations in
reases with N . For simpli
ity, we fo
us mainly onse
ond-order O�Es:un+2 = !(n; un; un+1); �!�un 6= 0; �!�un+1 6= 0: (3:7)[N.B. The 
ondition �!�un+1 6= 0 ensures that the O�E is genuinely se
ond-order,not equivalent to a �rst-order problem with step length 2.℄ The linearized symmetry
ondition for point symmetries isQ(n+ 2; !)� �!�un+1 Q(n+ 1; un+1)� �!�un Q(n; un) = 0: (3:8)By eliminating Q(n+2; !) and Q(n+1; un+1), we 
an use (3.8) to derive an ODEfor Q(n; un) that is of order three or less. First, di�erentiate (3.8) with respe
t toun, keeping ! �xed, to obtain (after simpli�
ation)Q0(n+ 1; un+1) + ���un+1 Q(n+ 1; un+1)�Q0(n; un) + ���un Q(n; un) = 0; (3:9)where � = ln ���� �!�un+1 ����� ln ���� �!�un ���� :Arti
le submitted to Royal So
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Symmetries of di�eren
e equations 9Di�erentiating (3.9) with respe
t to un, keeping un+1 �xed, we obtain�2��un�un+1 Q(n+ 1; un+1)�Q00(n; un) + ���un Q0(n; un) + �2��un�un Q(n; un) = 0:(3:10)If �2��un�un+1 = 0, equation (3.10) is a se
ond-order ODE for Q(n; un). Otherwise,we must divide (3.10) by �2��un�un+1 and di�erentiate on
e more with respe
t toun (keeping un+1 �xed) to obtain a third-order ODE for Q(n; un). Typi
ally, the
oeÆ
ients in the redu
ed ODE depend upon un+1. If this o

urs, the ODE 
an besplit by gathering together all terms with the same dependen
e upon un+1.The solution of the redu
ed ODE 
ontains arbitrary fun
tions of n. It is substi-tuted into the linearized symmetry 
ondition, whi
h 
an then be split into a systemof determining O�Es for the arbitrary fun
tions (by grouping together all termswith the same dependen
e upon un and un+1). These determining equations areusually very easy to solve.So far, we have imposed the restri
tion that Q is independent of un+1. Thiskeeps the 
al
ulations fairly simple, but many O�Es have no symmetries of thisform. Lie point symmetries of ODEs have a 
hara
teristi
 Q that is linear in the�rst derivative of the dependent variable. This suggests that a similar ansatz maybe useful for O�Es. If Q = a(n; un)un+1 + b(n; un) (3:11)for some fun
tions a; b, the linearized symmetry 
ondition (2.18) amounts toa(n+ 2; !)S! + b(n+ 2; !)� �!�un+1 fa(n+ 1; un+1)! + b(n+ 1; un+1)g� �!�un fa(n; un)un+1 + b(n; un)g = 0: (3:12)This is redu
ed to a set of ODEs for a(n; un) and b(n; un) in essentially the sameway as before. First di�erentiate with respe
t to un, keeping ! �xed, to eliminateb(n + 2; !). Then multiply the result by whatever fa
tor is needed to obtain anequation of the form a(n+ 2; !) + other terms = 0:Di�erentiate this with respe
t to un, keeping ! �xed, to eliminate a(n+2; !). Next,eliminate all terms 
ontaining a(n+1; un+1), b(n+ 1; un+1), and their derivatives.This is a
hieved by �rst multiplying the equation by whatever fa
tor is neededto isolate one of these fun
tions, then di�erentiating with respe
t to un (keepingun+1 �xed). The pro
ess is repeated until all undesirable terms have been removed.Finally, the resulting ODE is split into a set of ODEs (by equating terms with thesame dependen
e upon un+1). This approa
h readily generalizes to any other ansatzfor Q and to higher-order O�Es. The 
al
ulations rapidly be
ome too lengthy tobe done by hand, but 
an be done with the aid of 
omputer algebra. For theremainder of this paper, we shall state symmetries without des
ribing the detailsof their derivation.The method des
ribed above is 
apable of yielding more symmetries than havebeen found previously by �xed point summations. For example, Quispel & Sahade-Arti
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10 P. E. Hydonvan (1993) used a �xed-point method to look for symmetries ofun+2 = 2un+1 � un(1� u2n+1)1� u2n+1 + 2unun+1 :They found two independent 
hara
teristi
s of the form Q = Q(n; un), namelyQ1 = u2n + 1; Q2 = n(u2n + 1):However, the new method yields Q1; Q2, and a third independent 
hara
teristi
:Q3 = (u2n + 1) tan�1(un):The ansatz Q = Q(n; un) yields only a few independent 
hara
teristi
s forse
ond-order O�Es. For instan
e, every linear homogeneous O�E,un+2 = p(n)un+1 + q(n)un; (3:13)has pre
isely three su
h 
hara
teristi
s, namelyQ1 = un; Q2 = U1(n); Q3 = U2(n); (3:14)where un = U1(n) and un = U2(n) are linearly independent solutions of (3.13).Consequently, every O�E that is linearizable by a point transformationT : (n; un) 7! (n; ~un(n; un)) (3:15)also has three 
hara
teristi
s of the form Q = Q(n; un). By 
ontrast, every se
ond-order ODE that is linear or linearizable by a point transformation has an eight-parameter Lie algebra of point symmetry generators, whi
h is isomorphi
 to sl(3).However, for linear O�Es, the `missing' 
hara
teristi
s are all of the form (3.11).Theorem 3.1. Every se
ond-order linear homogeneous ordinary di�eren
e equa-tion has an eight-dimensional Lie algebra of symmetry generators whose 
hara
ter-isti
s are linear in un+1. This Lie algebra is isomorphi
 to sl(3).Proof. A given linear homogeneous O�E (3.13), with two linearly independentsolutions, un = U1(n) and un = U2(n), has two fun
tionally independent �rstintegrals that are linear in un and un+1:�1(n; un; un+1) = unSU2 � U2un+1U1SU2 � U2SU1 ; �2(n; un; un+1) = U1un+1 � unSU1U1SU2 � U2SU1 :(3:16)From (2.20), every symmetry generatorX = Q ��un + SQ ��un+1
an be rewritten in the formX = F 1(�1; �2) ���1 + F 2(�1; �2) ���2 ; (3:17)Arti
le submitted to Royal So
iety



Symmetries of di�eren
e equations 11where, for the �rst integrals (3.16),F i(�1; �2) = X(�i(n; un; un+1)) = �i(n;Q;SQ):In parti
ular, setting Q = Uj(n) givesX = ���j :Therefore every one-parameter Lie group of symmetries of (3.13) has a 
hara
teristi
of the form Q(n; un; un+1) = F 1(�1; �2)U1(n) + F 2(�1; �2)U2(n): (3:18)To �nd all 
hara
teristi
s that are linear in un+1, di�erentiate (3.18) twi
e withrespe
t to un+1 and (using the fa
t that U1(n) and U2(n) are independent) obtain
onstraints on the fun
tions F i. A basis for the spa
e of su
h 
hara
tisti
s isQ1 = U1(n); Q2 = U2(n); Q3 = �1U1(n);Q4 = �2U1(n); Q5 = �1U2(n); Q6 = �2U2(n);Q7 = ��1�2 U1 + �1�2U2 = �1un; Q8 = �1�2U1 + ��2�2 U2 = �2un:It is easy to 
he
k that the 
orresponding generators form a Lie algebra isomorphi
to sl(3).N.B. It is not true that every O�E that is linearizable by a point transformationhas an eight-dimensional Lie algebra whose 
hara
teristi
s are linear in un+1. Forexample, the O�E (3.1) 
an be linearized by the point transformation (3.15) with~un = 1=un. However, there are no 
hara
teristi
s that are linear in un+1 otherthan those that we found earlier, whi
h are independent of un+1. Byrnes et al.(1995) have derived ne
essary and suÆ
ient 
onditions for a di�eren
e equation tobe linearizable.Theorem 3.1 generalizes a result of Levi et al. (1997), who showed thatun+2 = 2un+1 � unhas a Lie algebra that is isomorphi
 to sl(3).Just as for ODEs, it usually not easy to �nd more than one 
hara
teristi
 of agiven se
ond-order linear homogeneous O�E, namelyQ = un = Q3 +Q6:To obtain any other 
hara
teristi
, one must �nd at least one solution of the O�E(or its adjoint). This severely limits the usefulness of symmetry methods for linearequations. For nonlinear O�Es, however, symmetries of a given form 
an usuallybe found without too mu
h diÆ
ulty, if they exist. The main problem is to 
hoosea useful restri
tion on Q. For example, 
onsider the O�Eun+2 = �un+1 � un + nun+1 ; (3:19)Arti
le submitted to Royal So
iety



12 P. E. Hydonwhi
h is a dis
rete Painlev�e I equation (see Its et al., 1990). The linearized symmetry
ondition isQ(n+ 2; !;S!) + �1 + nu2n+1�Q(n+ 1; un+1; !) +Q(n; un; un+1) = 0; (3:20)where ! is the right-hand side of (3.19). It turns out that (3.20) has no solutionsfor whi
h Q(n; un; un+1) is linear in un+1, just as the 
ontinuous Painlev�e ODEshave no Lie point symmetries.For simpli
ity, we have 
on
entrated on se
ond-order O�Es. However, the samemethod 
an also be used to obtain symmetries of higher-order O�Es. If one uses amore general ansatz, su
h as Q = Q(n; un; un+1), the method leads to a system ofpartial di�erential equations for Q. So far, we have 
hosen to eliminate SkQ; k � 1,to obtain a system that involves only Q and its derivatives. This is not always thebest strategy; sometimes it is better to obtain a system for Sk0Q for some k0 > 0.For example, un+4 = u2n+1un + unhas only one 
hara
teristi
 of the form Q = Q(n; un; un+1), namely Q = 
1un.This result is easy to obtain if di�erential elimination is used to derive a system forS4Q, whereas the system for Q appears intra
table. This demonstrates that someexperimentation may be needed if the standard redu
tion in favour of Q leads to asystem that is too hard to solve.4. How to use symmetries of O�EsRemarkably, it seems that almost any symmetry method for ODEs has a 
oun-terpart for O�Es. Usually, only slight modi�
ation is needed to obtain the O�Emethods. Here we use se
ond-order O�Es to demonstrate various methods. Thegeneralization to higher-order problems is straightforward.Given a symmetry generator for a se
ond-order O�E,X = Q ��un + SQ ��un+1 ; (4:1)there exists an invariant, vn = v(n; un; un+1); (4:2)satisfying Xvn = 0; �vn�un+1 6= 0: (4:3)This invariant is found by the method of 
hara
teristi
s; it is a �rst integral ofdunQ = dun+1SQ :Moreover, every invariant fun
tion of n, un, and un+1 is a fun
tion of n and vnonly. For later use, we shall suppose that (4.2) 
an be inverted to obtainun+1 = w(n; un; vn) (4:4)Arti
le submitted to Royal So
iety



Symmetries of di�eren
e equations 13for some fun
tion w.From (2.21), X(Svn) = S(Xvn) = 0;so Svn is invariant: it is a fun
tion of n and vn only. Thus the solutions ofun+2 = !(n; un; un+1) (4:5)satisfy a �rst-order O�E of the formvn+1 = Svn = 
(n; vn): (4:6)If (4.6) 
an be solved (perhaps by exploiting further symmetries of (4.5) { see below)then the general solution, vn = v(n; un; un+1) = f(n; 
1); (4:7)is equivalent to the �rst-order O�Eun+1 = w(n; un; f(n; 
1)); (4:8)whi
h admits the symmetries generated by X . To solve (4.8), we need to obtain a
anoni
al 
oordinate, sn = s(n; un); (4:9)that satis�es Xsn = 1:The most obvious 
hoi
e of 
anoni
al 
oordinate is (see Joshi & Vassiliou, 1995)s(n; un) = Z dunQ(n; un; w(n; un; f(n; 
1))) : (4:10)Note that Xsn+1 = X(Ssn) = S(Xsn) = S(1) = 1 = Xsn;so sn+1 � sn is an invariant. Consequentlysn+1 = sn + g(n; vn)for some fun
tion g, and therefore (4.8) is equivalent tosn+1 = sn + g(n; f(n; 
1)): (4:11)The general solution of (4.11) issn = 
2 + n�1Xr=n0 g(r; f(r; 
1)); (4:12)where n0 is any 
onvenient integer.If an O�E has an N -dimensional solvable Lie (sub)algebra of symmetry gener-ators, the solvable stru
ture 
an be exploited in exa
tly the same way as for ODEs.Consider the nonlinear O�E un+2 = 2u3n+1u2n � un+1: (4:13)Arti
le submitted to Royal So
iety



14 P. E. HydonThe set of 
hara
teristi
s that are linear in un+1 is spanned byQ1 = un+1un ; Q2 = un: (4:14)The 
ommutator [X1; X2℄ has the 
hara
teristi
[Q1; Q2℄ � X1Q2 �X2Q1 = un+1un = Q1:Therefore the generators X1, X2, form a basis for a (transitive) nonabelian solvableLie algebra, whose derived subalgebra is spanned by X1. Consequently X1 shouldbe used for the �rst redu
tion of order, so that the redu
ed O�E inherits thesymmetries generated byX2. The invariant vn of the group generated byX1 satis�esX1vn = �un+1un ��un +�2u2n+1u2n � 1� ��un+1� vn = 0:Using the method of 
hara
teristi
s, we obtainvn = (u2n+1 � u2n)u4n : (4:15)This redu
es the O�E (4.13) to vn+1 = 4vn; (4:16)whi
h inherits the s
aling symmetry generated byX2. The general solution of (4.16)is vn = 
14n; (4:17)whi
h is equivalent to un+1 = �unp1 + 
14nu2n : (4:18)However, the negative root is in
onsistent with (4.13). Therefore the 
anoni
al
oordinate is sn = Z dunp1 + 
14nu2n = 1p
1 2n sinh�1 �p
1 2nun� : (4:19)Then (4.18) is equivalent to sn+1 = sn;whose general solution is sn = 
2: In the original variables, the general solution of(4.13) is un = 1p
1 2n sinh�
2p
1 2n� : (4:20)The above te
hnique fails if X2 is a s
alar multiple of X1, in whi
h 
ase thesymmetry group generated byX1 andX2 is intransitive. Then if vn satis�esX1vn =0, it also satis�es X2vn = 0. A single redu
tion of order 
an be a
hieved, but theremaining one-parameter Lie group a
ts trivially on the redu
ed O�E and 
annotbe used to solve it.Arti
le submitted to Royal So
iety



Symmetries of di�eren
e equations 15Intransitive two-dimensional Lie subgroups of point symmetries also o

ur forsome se
ond-order ODEs. They are of little 
onsequen
e, be
ause there is alwaysa transitive two-dimensional subgroup of point symmetries as well (see Stephani,1989). However, for se
ond-order O�Es, the usual ans�atze may not yield a transitivegroup. The group generated by X1 and X2 is intransitive ifQ2Q1 = SQ2SQ1 = S �Q2Q1� ;that is, if the ratio of the 
hara
teristi
s is a �rst integral:Q2Q1 = � :We now show how to 
onstru
t another (fun
tionally independent) �rst integral.The method depends upon whether or not X1 and X2 
ommute.For now, it is most 
onvenient to write the generators in terms of �rst integrals,with X1 in normal form. ThusX1 = ���1 ; X2 = � ���1 ; (4:21)for some �rst integral �1, and there is an independent �rst integral, �2, that ismapped to itself by the group a
tion. From (4.21), we obtain[X1; X2℄ = ����1X1:Hen
e, if [X1; X2℄ 6= 0, then � depends nontrivially on �1. Now 
onstru
t an invari-ant vn of X1 as des
ribed earlier, so that the O�E amounts tovn+1 = 
(n; vn):Clearly, vn is a fun
tion of n and �2 only, so�2 = G(n; vn);for some fun
tion G. To obtain �2, we must �nd a solution of the fun
tional di�er-en
e equation G(n+ 1;
(n; vn)) = G(n; vn):(In pra
ti
e, this is often quite easy.) Then � and �2 are fun
tionally independent�rst integrals.If X1 and X2 
ommute then � is a fun
tion of �2 only. Indeed, without loss ofgenerality, we 
an set �2 = � :To obtain �1, �rst note that X1�1 = 1;and so �1 is a 
anoni
al 
oordinate. Therefore�1 = Z dunQ1 (n; un; un+1(n; un; �2)) +G(n; �2); (4:22)Arti
le submitted to Royal So
iety



16 P. E. Hydonfor some fun
tion G. To obtain G (up to an arbitrary fun
tion of �2), we apply the
ondition S�1 � �1 = 0;and solve the resulting �rst-order linear O�E using the standard method.To illustrate this te
hnique, 
onsider the O�Eun+2 = u2n+1un + un+1: (4:23)The symmetry generators whose 
hara
teristi
s are linear in un+1 form an abelianLie algebra; the 
hara
teristi
s are linear 
ombinations ofQ1 = un; Q2 = un+1 � nun: (4:24)It is easy to verify that S �Q2Q1� = Q2Q1 ;and be
ause the generators 
ommute, we 
hoose�2 = Q2Q1 = un+1un � n: (4:25)From (4.22), �1 = ln junj+G(n; �2);where G(n+ 1; �2)�G(n; �2) = ln junj � ln jun+1j = � ln ��n+ �2�� : (4:26)The general solution of (4.26) isG(n; �2) = A(�2)� ln ���(n+ �2)�� ;where �(z) is the Gamma fun
tion and A is an arbitrary fun
tion. Without loss ofgenerality, we 
an set A(�2) = 0 and repla
e �1 by its exponential,~�1 = un�(n+ �2) :Therefore the general solution of (4.23) isun = 
1�(n+ 
2): (4:27)5. Dire
t 
onstru
tion of �rst integralsA re
ent paper by An
o & Bluman (1998) des
ribes a method for obtaining �rstintegrals of a given ODE dire
tly, whether or not any Lie symmetries are known.A simpli�ed version of this method is given in Hydon (2000).It is also possible to 
onstru
t �rst integrals of O�Es dire
tly, even if no sym-metries are known. The starting point for this approa
h is the equationS� = �; ���un+N�1 6= 0: (5:1)Arti
le submitted to Royal So
iety



Symmetries of di�eren
e equations 17For se
ond-order O�Es, (5.1) amounts to�(n+ 1; un+1; !(n; un; un+1)) = �(n; un; un+1); ���un+1 6= 0: (5:2)(For brevity, we shall 
onsider only se
ond-order problems; the generalization tohigher-order O�Es is entirely straightforward.)It is 
onvenient to introdu
e the fun
tionsP1(n; un; un+1) = ���un (n; un; un+1); (5:3)P2(n; un; un+1) = ���un+1 (n; un; un+1): (5:4)By di�erentiating (5.2) with respe
t to un and un+1 in turn, we obtainP1 = �!�un SP2; (5:5)P2 = SP1 + �!�un+1 SP2: (5:6)Therefore P2 satis�es the se
ond-order linear fun
tional equationS � �!�un�S2P2 + �!�un+1 SP2 � P2 = 0: (5:7)Just as for the linearized symmetry 
ondition, we obtain solutions of (5.7) by �rst
hoosing an ansatz, then di�erentiating repeatedly to obtain a di�erential equationfor P2. Given a solution P2 of (5.7), it is straightforward to 
onstru
t P1. At thisstage, it is ne
essary to 
he
k that the integrability 
ondition�P1�un+1 = �P2�un (5:8)is satis�ed. (This is be
ause some solutions of (5.7) are not derived from any �rstintegral.) If (5.8) holds then the �rst integral � is of the form� = Z (P1 dun + P2 dun+1) +G(n); (5:9)where G(n) is determined (up to an arbitrary 
onstant) by substituting (5.9) into(5.2) and solving the resulting �rst-order linear O�E.To illustrate the method, 
onsider the O�Eun+2 = nn+ 1 un + 1un+1 : (5:10)We use the ansatz P2 = P2(n; un); then (5.7) amounts ton+ 1n+ 2 P2(n+ 2; !)� 1u2n+1 P2(n+ 1; un+1)� P2(n; un) = 0: (5:11)Arti
le submitted to Royal So
iety



18 P. E. HydonUsing the symmetry-�nding algorithm of x3, we obtain a single solution (up to anarbitrary 
onstant fa
tor): P2 = nun: (5:12)Therefore P1 = nun+1; (5:13)and the integrability 
ondition is satis�ed. From (5.9),� = nunun+1 +G(n);and hen
e S� � � = G(n+ 1)�G(n) + n+ 1 = 0:(N.B. No matter how 
ompli
ated the original O�E is, the fun
tion G alwayssatis�es a �rst-order linear O�E that is easily solved.) In this example,G(n) = � n(n+ 1)2 ;(up to an irrelevant 
onstant). Therefore we have obtained the �rst integral� = nunun+1 � n(n+ 1)2 : (5:14)The general solution to this parti
ular problem 
an be found by rewriting � = 
1as a �rst-order linear O�E for vn = ln junj:vn+1 + vn = ln ���� n+ 12 + 
1n ���� :By using the standard method for su
h O�Es, we obtain the general solution,vn = (�1)n 
2 + nXk=n0(�1)k ln ���� k2 + 
1k � 1 ����! ;here n0 is a suitably-
hosen integer.Just as for symmetries, the need to restri
t P2 means that it is not always pos-sible to �nd solutions of (5.7). Furthermore, for some O�Es, in
luding the dis
retePainlev�e I equation (3.19), the fun
tional equations for P2 and Q are identi
al. Thenit is equally diÆ
ult to �nd symmetries and �rst integrals. This o

urs when theO�E arises from a variational prin
iple, whi
h will be treated in a separate paper.Maeda (1980) dis
usses the Lagrangian and Hamiltonian frameworks for �rst-ordersystems of O�Es.To solve a se
ond-order O�E, one usually needs either two independent 
har-a
teristi
s Q or two fun
tions P2 that satisfy the integrability 
ondition. However,any pair of fun
tions (P1; P2) satisfying (5.5) and (5.6) 
an be 
ombined with 
har-a
teristi
s of Lie symmetries to obtain �rst integrals, as follows.Theorem 5.1. Given a se
ond-order ordinary di�eren
e equation (3.7), supposethat (P1; P2) solves (5.5), (5.6), and that Q is the 
hara
teristi
 of a one-parameterLie group of symmetries. Then � = P1Q+ P2SQ (5:15)is either a �rst integral or a 
onstant.Arti
le submitted to Royal So
iety



Symmetries of di�eren
e equations 19Proof. We use the linearized symmetry 
ondition to show that S� = �, as follows:S� = (SP1)(SQ) + (SP2)(S2Q)= (SP1)(SQ) + (SP2)� �!�un+1 SQ+ �!�un Q�= P1Q+ P2SQ= �:Note that Theorem 5.1 does not require the integrability 
ondition (5.8) tohold. However, if (5.8) is satis�ed, it may be possible to 
onstru
t two fun
tionallyindependent �rst integrals from one pair (P1; P2) and one 
hara
teristi
.6. Dis
ussion and 
on
lusionsIn this paper, we have developed new methods for �nding and using symmetriesof a given O�E. Maeda (1980, 1987) was the �rst to dervive a restri
ted versionof the linearized symmetry 
ondition (LSC) for �rst-order O�Es (on the assump-tion that the 
hara
teristi
 is independent of n). Maeda pointed out the diÆ
ultyof solving the LSC, whi
h is a fun
tional equation. He gave some examples forwhi
h symmetries 
an be found by adopting a very limited ansatz. Sin
e then, sev-eral di�erent approa
hes have been proposed for solving the LSC for higher-orderdi�eren
e equations. We now 
ompare these approa
hes with ours.Quispel & Sahadevan (1993) used a Laurent series expansion about a �xed pointat in�nity to obtain point symmetries. This approa
h works if there is su
h a �xedpoint, but there is no guarantee that the user will be able to sum the series to obtainthe symmetries in 
losed form. (This is ne
essary in order to 
al
ulate invariantsand 
anoni
al 
oordinates.) Our method provides the symmetries in 
losed form,irrespe
tive of the existen
e and lo
ation of �xed points. Furthermore, it enables theuser to deal with symmetries other than point symmetries (with the aid of 
omputeralgebra, if ne
essary). Quispel & Sahadevan imposed the additional restri
tion thatsymmetries should 
ommute in order to obtain a double redu
tion of order. Thisis unne
essary; we have shown that Lie's method for se
ond-order ODEs 
an beadapted to O�Es with a two-parameter symmetry group, whether or not the groupis abelian or transitive. Quispel & Sahadevan studied di�eren
e equations in whi
hthe independent variable n is 
ontinuous. They pointed out that for equations inwhi
h n is an integer, one need only repla
e the arbitrary unit-periodi
 fun
tionsin their symmetries by arbitrary 
onstants. The 
onverse is also true: our approa
his generalized to equations with 
ontinuous n by repla
ing arbitrary 
onstants witharbitrary unit-periodi
 fun
tions. Furthermore, if n is 
ontinuous, our method 
anbe extended to determine symmetries whose 
hara
teristi
 depends on derivativesof u with respe
t to n. For example, every O�E that is autonomous (i. e. thatdoes not expli
itly involve n) is invariant under the one-parameter Lie group whose
hara
teristi
 is Q = dundn :(This group is equivalent to the group of translations in n.)Arti
le submitted to Royal So
iety



20 P. E. HydonLevi et al. (1997) also 
onsider di�eren
e equations for whi
h the independentvariable is 
ontinuous. They des
ribe a slightly di�erent approa
h for dealing withdi�eren
e equations that arise as dis
retizations of di�erential equations with knownsymmetries. They expand the LSC as a series in powers of u(n), and seek symme-tries that are more general than point symmetries by allowing 
oeÆ
ients that arefun
tions of n and the shift operator. Various extra restri
tions are imposed byrequiring that the symmetries should be 
onsistent with those of the dis
retizeddi�erential equation in the appropriate limit. Generally speaking, the expressionsderived by Levi et al. are far more 
ompli
ated than ours. For example, the O�Eun+2 = 2un+1 � unhas the sl(3) Lie algebra given in the proof of Theorem 3.1, withU1(n) = 1; U2(n) = n:Equations (3.38) and (3.39) of Levi et al. (1997) 
ontain this result in a more
ompli
ated form.If an O�E arises as a dis
retization of an ODE, it will 
ontain the step lengthsas parameters. Sometimes it is advantageous to treat su
h parameters as separatevariables, and to 
onsider symmetries that a
t on the step lengths as well as onu(n). This idea was suggested by Dorodnitsyn, who used it to 
onstru
t dis
retiza-tions having given symmetries (see Dorodnitsyn, 1994; Dorodnitsyn et al., 2000).Conversely, to �nd out whether a given dis
retization has any su
h symmetries,we 
an adapt the method outlined in the 
urrent paper, as the following exampleshows. Levi et al. (1997) 
onsidered the O�Eun+2 = 2un+1 � un + �2(un+1)2;whi
h is a 
entred-di�eren
e approximation, with uniform step length �, to theODE u00 = u2:The ODE is invariant under translations in the independent variable, x, and unders
alings in x and u. Levi et al. found a dis
rete analogue of the translation symme-tries, by treating n as a 
ontinuous variable. However, they were unable to obtaina dis
rete analogue of the s
alings. The reason for this is apparent from the O�E:s
alings in x are repla
ed by s
alings in �. In fa
t, the s
aling group 
an be foundusing our method with the ansatzX = Q(n; un) ��un + q(�) ��� :(More generally, Q may depend upon all parameters.) The s
aling symmetries aregenerated by X = 2un ��un � � ��� :The 
hief diÆ
ulty in �nding symmetries of O�Es lies in 
hoosing appropriaterestri
tions on Q. In this paper, we have looked mainly at se
ond-order examples,
hoosing Q(n; un; un+1) to be linear in un+1. Our method also works for higher-order O�Es, and for other restri
tions { we only need ea
h unknown fun
tion to beArti
le submitted to Royal So
iety



Symmetries of di�eren
e equations 21invariant under a �rst-order di�erential operator. Nevertheless, just as for ODEs,it is often not possible to obtain symmetries using a simple restri
tion.For brevity, we have restri
ted our dis
ussion to O�Es. However, mu
h workhas been done on partial di�eren
e equations (see Floreanini & Vinet, 1995; Leviet al., 1997), and on di�erential-di�eren
e equations (see Quispel et al., 1992; Levi& Winternitz, 1993, 1996). For partial di�eren
e equations, the LSC is a fun
tionalequation. A modi�ed version of our method 
an be used to �nd symmetries, aswill be des
ribed in a separate paper. (The 
hief obsta
le to obtaining symmetriesis the 
omplexity of the 
al
ulations in the di�erential elimination stage.) Havingfound Lie symmetries, they may be used in prin
iple to obtain group-invariantredu
tions. However, one signi�
ant diÆ
ulty is that is often not possible to solvethe invariant surfa
e 
ondition, whi
h is typi
ally a quasi-linear �rst-order partialdi�eren
e equation. At present, there does not seem to be general agreement onwhat is the best way to determine group-invariant solutions.Our method 
an also be adapted for use with di�erential-di�eren
e equations.However, mu
h progress has already been made with su
h equations by equatingpowers of derivatives in the LSC, whi
h is the same te
hnique that is used to obtainLie symmetries of di�erential equations. Therefore, it seems that our te
hnique ismost needed for dealing with symmetries of pure di�eren
e equations.Referen
esAn
o, S. C. & Bluman, G. 1998 Integrating fa
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