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This paper describes a new symmetry-based approach to solving a given ordi-
nary difference equation. By studying the local structure of the set of solutions, we
derive a systematic method for determining one-parameter Lie groups of symme-
tries in closed form. Such groups can be used to achieve successive reductions of
order. If there are enough symmetries, the difference equation can be completely
solved. Several examples are used to illustrate the technique for transitive and in-
transive symmetry groups. It is also shown that every linear second-order ordinary
difference equation has a Lie algebra of symmetry generators that is isomorphic to
s[(3). The paper concludes with a systematic method for constructing first integrals
directly, which can be used even if no symmetries are known.
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1. Introduction

Over a century ago, Sophus Lie introduced symmetry-based techniques for solving
ordinary differential equations (ODEs). Lie’s approach enables the user to determine
Lie groups of symmetries of a given ODE. If a sufficiently large symmetry group
can be found, it may be used to solve the ODE. For an introduction to symmetry
methods for ODEs, see Olver (1993), Bluman & Kumei (1989), Stephani (1989), or
Hydon (2000).

Maeda (1987) has shown that autonomous systems of first-order ordinary dif-
ference equations (OAESs) can be simplified or solved using an extension of Lie’s
method. Maeda also showed that the linearized symmetry condition for such OAEs
amounts to a set of functional equations. In general, these are hard to solve, but
Maeda described two examples for which a very restrictive ansatz yields Lie sym-
metries. Gaeta (1993) uses formal series expansions to derive some symmetries of
those systems of OAEs that are discretizations of continuous systems. Given an
ODE with known Lie point symmetries, one may ask whether it is possible to
discretize the ODE in a way that preserves at least some of the symmetries. Dorod-
nitsyn (1994) describes how this can be achieved, and lists some classes of OAEs
that have a given Lie group. Dorodnitsyn et al. (2000) uses the same technique to
discretize the second-order ODEs that arise from the classification of Lie groups
acting on the real plane.

Article submitted to Royal Society TEX Paper



2 P. E. Hydon

Maeda’s ideas have been extended to nonautonomous systems and higher-order
OAEs by Quispel & Sahadevan (1993) and Levi et al. (1997). These papers de-
scribe different series-based methods for obtaining some solutions of the linearized
symmetry condition. Series expansions can be calculated if the symmetry condition
has a fixed point, although it is usually not obvious how to sum the series to obtain
solutions in closed form. Unfortunately, the well-known method for calculating in-
variants requires the symmetry generator to be in closed form. This is a substantial
limitation on the usefulness of series-based techniques.

In the current paper, we introduce a systematic method for obtaining Lie sym-
metries (in closed form) of a given OAE. For ODEs, the most general class of local
symmetries is the class of dynamical (or internal) symmetries (see Stephani, 1989;
Anderson et al., 1993). This class includes the trivial symmetries, which map every
solution of the ODE to itself and cannot be used to solve the ODE. It is usual to
factor out the trivial symmetries by restricting attention to those dynamical sym-
metries that leave the independent variable unchanged (which are called vertical or
evolutionary symmetries). Two symmetries are said to be equivalent if they differ
by a trivial symmetry, so every local symmetry of an ODE is equivalent to a vertical
symmetry. In §2 we study the action of symmetries on the set of solutions of a given
OAE. We prove that every local symmetry is equivalent to a symmetry that leaves
the independent variable unchanged. This result immediately frees us from a maze
of technical complications that are associated with the fact that the independent
variable takes discrete values.

Every ODE has infinitely many independent one-parameter Lie groups of ver-
tical symmetries. However, they can only be found by looking for generators of a
restricted form. For example, all one-parameter Lie groups of vertical symmetries
of the second-order ODE

' = w(z,u,u') (1.1)
have generators of the form
X =Q(z,u u')2 (1.2)
- ) ) au . *

(These symmetries are equivalent to contact symmetries.) The set of all generators
(1.2) cannot be found until the general solution of (1.1) is known. However, the
one-parameter Lie groups of point symmetries are equivalent to vertical symmetries
whose generators (1.2) have @ linear in u'. By placing this restriction on @, it is
usually possible to obtain the Lie point symmetries systematically. In §3 we show,
using various examples, how to use the same idea to construct Lie symmetries of
OAEs (in closed form). Starting from the linearized symmetry condition, which is a
functional equation, we derive an associated system of linear differential equations.
This system is similar to the system of determining equations for Lie symmetries
of a given ODE. Moreover, having set up the mathematical framework for the new
method, we find that it enables us to transfer the main symmetry methods for
ODEs across to OAEs. Some minor modifications are needed, which are described
in §4.

A recent paper by Anco & Bluman (1998) describes a constructive method for
obtaining first integrals of ODEs directly, without using Lie symmetries. Instead,
the method uses the adjoint of the linearized symmetry condition. In §5 we introduce

Article submitted to Royal Society



Symmetries of difference equations 3

a similar technique for obtaining first integrals of OAEs directly. This makes it
possible to solve some OAEs for which no Lie symmetries can be found.

2. Symmetries of ordinary difference equations

We begin by considering the structure of the set of solutions of the N*'-order OAE

L)

S 70 (2.1)

Una N = W (1, Up, Upt1y - -5 Unt N—1) 5
where w is a given function. We restrict attention to regions in which w is a smooth
function of its arguments. The independent variable n is an integer. Some authors
prefer to use x, as the independent variable (particularly if the OAE arises as a dis-
cretization of an ODE). There is no essential difference between these formulations,
provided that there is a bijection that maps n to z,. (Note that the meshpoints,
Zn, need not be uniformly spaced.)

Our objective is to obtain the general solution of (2.1). If the values w4k,
k=0,...,N —1, are known for one particular ng, then the OAE (2.1) determines
Uy recursively for n > ng+N. Therefore the general solution depends on IV arbitrary
constants, ¢!, and can be written (in principle) in the form

u, = F(n,c',....cV). (2.2)

Furthermore, because the arbitrary constants are independent, it is possible to solve
the system
Upir = F(n+k,ct,...,cN), k=0,...,N -1, (2.3)

to obtain each ¢! in the form
= Nyt U N 1), i=1,...,N. (2.4)

The N functions ¢! are functionally-independent first integrals of the OAE (2.1).
Here we use the same terminology as for ODEs: a first integral is a function that
is not identically constant, but is constant on all solutions of the given OAE. The
term “functionally independent” means that the Jacobian does not vanish, that is,

o(et,...,oN)

a(una tee 7un+N71)

£0. (2.5)

Throughout this paper, we shall work in the space of variables n, uy,, ..., up+N—1;
the condition (2.5) enables us to use n,¢',..., ¢~ as an alternative set of (local)
coordinates. Therefore any function g(n,u,,...,u,+n—1) can be rewritten in the
form

g(nvuna"'auThLN*l) :G(n7¢17"'7¢N)

for some function G. In particular, every first integral ¢(n,un,...,Uptn—1) IS a
function of the first integrals ¢! only.
It is useful to introduce the shift operator, which acts on the independent variable
n as follows:
S:n—n+l (2.6)

Article submitted to Royal Society
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The action of this operator on any given function of n only, g(n), is defined by the
action on the function’s arguments:

S(g(n) =g(Sn)) = g(n +1). (2.7)

By applying the shift operator to any solution (2.2) of the OAE, we can use (2.3)
and (2.7) to obtain

S(up)=F (S(n),cl, .. .7cN)) = Upt1,
because each ¢! is independent of n. Similarly,
S(un+k) = Un+k+1, k= 07 ce 7AN- — 2. (283,)

Equation (2.8a) also holds for £ = N — 1, but because u,, is a solution of the OAE,
we can replace u,4+n by the right-hand side of (2.1):

S(UnyN—1) =W (N Upy Ung1y .oy UnyN_1) - (2.8b)

From here on, we restrict attention to solutions of the OAE, and so we regard S
as an operator on n and U4+, k =0,...,N — 1, whose action is defined by (2.6)
and (2.8a,b). From (2.7), the action of S on functions of these variables is

S(gn,up, - uptN—2,UntN-1)) =g(n+ 1, unt1, ., UptN1,W). (2.9)

If ¢ is a first integral, it is constant on the solutions of the OAE, and hence

Sp=¢. (2.10)
Therefore, from (2.9), the first integrals of (2.1) are the non-constant solutions of

d(n+Lupgr,. -, w(nyUp, .. UpyN=1)) = (N, Upn,y ..., UptN—1) - (2.11)

This condition holds as an identity in all variables. In §5, we shall use it to develop
a constructive technique for obtaining first integrals.
A symmetry, T', of (2.1) maps the set of solutions to itself. Therefore, if

T:(n,é', ..., 6N) = (A, d',...,oN), (2.12)

each gﬁ’ is a function of ¢',..., oY only. At this point, it is necessary to ask what
class of maps I respect the structure of an OAE, and how these differ from the
symmetries of an ODE.

Dynamical symmetries of a given N*"-order ODE are defined similarly to (2.12),
but with the independent variable x replacing n. It is helpful to regard the first
integrals ¢!, ..., ¢" as local coordinates on an N-dimensional fibre over each base
point z. Dynamical symmetries of the ODE are (locally) diffeomorphisms of the
trivial fibre bundle R x RV, with the property that each ¢’ is independent of z.
(The base space spanned by the independent variable z is locally isomorphic to R;
each fibre is locally isomorphic to RV )

The first integrals of the OAE (2.1) also form an N-dimensional fibre over each
base point; just as for ODEs, the fibre is locally isomorphic to RY . However, the
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independent variable n takes only integer values, so the base points are discrete. The
fibres are not connected, and symmetries of the OAE must preserve this disjoint
structure. Hence they are required to be fibre-preserving (that is, they map fibres to
fibres), the consequence of which is that 7 is a function of n only. Moreover, the set
of base points have the natural ordering inherited from Z, and so the action of any
symmetry on the base points should be consistent with this ordering. In other words,
fibres must not be shuffled; symmetries are required to be neighbour-preserving. This
can happens in one of two ways: either a symmetry is order-preserving, in which
case

aln+1) =naln) + 1,

or else the symmetry is order-reversing, in which case its action on n is equivalent
to a reflection. Discrete symmetries are not investigated in this paper, so we need
only consider the order-preserving symmetries (which include all one-parameter Lie
groups of symmetries). Just as for ODEs, the functions gﬁi(q&l, o, M) in (2.12) are
required to be diffeomorphisms (at least, locally).

A symmetry is trivial if every solution is mapped to itself, that is, if

é=¢', i=1,...,N. (2.13)

Lemma 2.1. For each k € 7, the transformation generated by S* is a trivial sym-
metry of (2.1). (Note: if k is negative, S* denotes (S~1)~*.)

Proof. For k > 0, apply S repeatedly to obtain
Sk, oty o) = (n+ kot o). (2.14)

Hence every solution ¢' = ¢! is mapped to itself. Equation (2.14) also holds for
k < 0, because (2.10) implies that S~™1¢* = ¢'. The action of the operator S~* on
U is obtained by first using (2.1) to write u,, as a function of n, up41,. .., Unt N,
then replacing n by n — 1; the condition gT“’n # 0 ensures that this is possible. [

One consequence of Lemma 2.1 is that every nontrivial order-preserving sym-
metry can be regarded as the composition of a vertical (or evolutionary) symmetry,
which acts only on the first integrals ¢¢ (leaving n unchanged), and a trivial sym-
metry. Just as for ODEs, it is only the nontrivial symmetries that can be used to
solve OAEs, so we lose nothing by concentrating on vertical symmetries.

Lemma 2.2. Every order-preserving symmetry (2.12) is equivalent to a vertical
symmetry,

f : (n7¢17"'7¢N) H (n7&17"'7éN)'
Proof. The proof is by construction:
P = §nnnr
is the unique vertical symmetry that is equivalent to I'. (The condition that I is

order-preserving ensures that n — 7.(n) is independent of n.)
O
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6 P. E. Hydon

In view of Lemma 2.2, we shall consider only vertical symmetries from now
on. Accordingly we seek symmetries (2.12) with 7 = n. In terms of the original
variables,

T:(n,un, - Untn—1) > (N, Uny -y GprN—1)- (2.15)

The action of T’ on the variables ;4 is determined by the action on u,. To see
this, suppose that
ﬁ/n = g(naunv' . 7U’n+N*1) = G(n7¢17' . 7¢N)
Then, on the set of solutions of the OAE (2.1),
N _ 1 Ny _ ok _
Uper =G(n+k, 0 ,...,0" ) =Sy, k=1,...,N. (2.16)

The conditions (2.16) are analogous to the prolongation formulae for dynamical
symmetries of ODEs, which reflect the necessity for contact conditions to be satisfied
on the set of solutions.

The symmetry condition for the OAE (2.1) is

UpiN = w (N, Gy, ooy U N=1) , when (2.1) holds. (2.17)

Lie symmetries are obtained by linearizing the symmetry condition about the iden-
tity, as follows. We seek one-parameter (local) Lie groups of symmetries of the
form

lip = Un + €Q(n, Up, ..., UniN_1) + O(€).

The function @ is called the characteristic of the one-parameter group. From the
prolongation formulae (2.16), we obtain

lipik = Ungr + €SFQ + O(€?), k=1,...,N.

Expanding (2.17) to first order in € yields the linearized symmetry condition

SNQ - Xw=0, (2.18)
where 9 9 9
o —_— —_— . e N71 —
X = QaUn + (SQ)au”+1 +--+ (S Q)aunw_1 . (2.19)

Note that when the symmetry generator X is written in terms of the first integrals,
it has the form

0 0
X=FY¢",....,¢0N )=+ -+ FN(¢",..., 0" ) = 2.2
(¢7 7¢ )a¢1+ + (¢7 7¢ )8¢N7 ( 0)
because each ¢’ is a function of & = (¢',...,0N) only. From (2.20), we can deduce

that X and & commute as operators on functions. Given any sufficiently smooth
function,
g(nvunv s 7u’n+N—1) = G(’I’L, (I))7

(2.20) implies that

oG
Dol

S(XG)=8 <Fi(<1>) (n, <1>)) = F(®) oG (n+1,®) = X(SG).

Dol
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Therefore
S(Xg) =X (Sg). (2.21)

In §4, we use (2.21) to derive symmetry reductions of OAEs.

Just as for ODEs, the linearized symmetry condition is both necessary and
sufficient to obtain the local Lie group of symmetries generated by X. To find
solutions of (2.18), we must impose some constraint upon @, in order to be able
to split (2.18) into an overdetermined system of equations. For example, if we seek
characteristics that are independent of w,yn_1, it may be possible to split the
linearized symmetry condition by equating powers of u,n_1. Before this can be
achieved, some work is needed to transform (2.18) from a functional equation into a
differential equation for . The next section introduces a method for accomplishing
this transformation.

3. How to construct the determining equations

Before describing the method for determining Lie symmetries of a general OAE,
we examine its main features in the context of a fairly simple example. Consider

the OAE I
_nntl (3.1)

Up+2 = D)
Up — Un41

As this is a second-order equation, let us seek point symmetries, whose charac-
teristics are of the form @ = Q(n,u,). The linearized symmetry condition (2.18)
is

2u? u?
n+2w) ————>—Qn+1,u, +—ntt n,uy) =0, (3.2
Q( ) (2un — un+1)2 Q( +1) (2un — un+1)2 Q( ) ( )
where w denotes the right-hand side of (3.1). The chief difficulty with (3.2) is that
the function @) takes three separate pairs of arguments. To overcome this difficulty,
differentiate (3.2) with respect to u,, keeping w fixed. Here wu,1 is regarded as a
function of n, u,, and w. A standard result from multivariable calculus yields

dw 2
8un+1(n7u’n7w) __ Oun Up41
- dw 2
D el

2
Therefore we apply the differential operator % + Z"Tél Buiﬂ to (3.2), and obtain

2Un i1
(2up, — Upa1)?

2
u
_n—HQ Ql(n + ].,’Ll/n+1) +

Lup
(2un_un+1) Q(n+ , U +1)

2
2up

2
U’n+1 !

Ny Up) —

3 @ (7 un) U (2Up — Upy1)?

(2up — Una1)

Q(na un) =0,

where ’ denotes a derivative with respect to the continuous variable. This simplifies
to

—Q'(n+ 1, uptr) + Qn+ 1, uny1) + Q' (n,un) — ui Qn,u,) =0.  (3.3)

Un+1
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8 P. E. Hydon

Now differentiate (3.3) with respect to w,,, this time keeping u,4+; fixed, to obtain

the ODE d , 5
——(Qﬁmm%"—Qmwm>=0 (3.4

duy, Up,

Note that n appears only as a parameter at this stage. The general solution of (3.4)

1S
Q(n,un) = A(n)un + B(n)u2. (3.5)

Substituting (3.5) into (3.3) yields the OAE
An+1) = A(n),

whose general solution is
A(n) = c'.

The remaining unknown function, B(n), is determined by substituting (3.5) into
the original linearized symmetry condition (3.2). This leads to the simple linear
OAE

B(n+2)—-2B(n+1)+ B(n) =0,

whose general solution is
B(n) = ®n + .

Summarizing these results, we have found a three-dimensional Lie algebra of sym-
metry generators, whose characteristics are linear combinations of

Ql = Up, Q2 = nu%u Q3 = u721 (36)

The method used above exploits the fact that each of the unknown functions
in the linearized symmetry condition is invariant under a first-order differential
operator. The same method can be used to tackle any OAE (2.1), although the
complexity of the calculations increases with V. For simplicity, we focus mainly on
second-order OAEs:

ow ow

. 70 £0. (3.7)

Up42 = w(nvunauThLl)a T
n+1

[N.B. The condition af“ # 0 ensures that the OAE is genuinely second-order,
n41

not equivalent to a first-order problem with step length 2.] The linearized symmetry
condition for point symmetries is

ow

Q(n+27w)_ W

Qn+ Lupt1) — Q(n,un) = 0. (3.8)

8un+1
By eliminating Q(n + 2,w) and Q(n + 1, up11), we can use (3.8) to derive an ODE
for Q(n,u,) that is of order three or less. First, differentiate (3.8) with respect to
Un, keeping w fixed, to obtain (after simplification)

Q-+ Lini) = Q') + 5 Q) =0, (39)

Q' (n+1,uns1) + 3
Un+1

where

Ow
8un+1

v |

A=1
n Oun,
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Differentiating (3.9) with respect to w,, keeping u,+1 fixed, we obtain

) z N o e
Q(n+1,unt1) — Q"(n,un) + 5— Q'(n,un) + Oty Ay

D, Q(n,up) =0.

(3.10)
If 22 — 0, equation (3.10) is a second-order ODE for Q(n,u,). Otherwise,

Oup OUup 41
we must divide (3.10) by #:‘n“ and differentiate once more with respect to
un (keeping uny1 fixed) to obtain a third-order ODE for Q(n,u,). Typically, the
coefficients in the reduced ODE depend upon wy,1. If this occurs, the ODE can be
split by gathering together all terms with the same dependence upon 1.

The solution of the reduced ODE contains arbitrary functions of n. It is substi-
tuted into the linearized symmetry condition, which can then be split into a system
of determining OAEs for the arbitrary functions (by grouping together all terms
with the same dependence upon u, and u,4+1). These determining equations are
usually very easy to solve.

So far, we have imposed the restriction that @ is independent of w,41. This
keeps the calculations fairly simple, but many OAEs have no symmetries of this
form. Lie point symmetries of ODEs have a characteristic @) that is linear in the
first derivative of the dependent variable. This suggests that a similar ansatz may
be useful for OAEs. If

8un8un+1

Q = a(naun)un+1 + b(nyun) (311)

for some functions a, b, the linearized symmetry condition (2.18) amounts to

a(n +2,w)Sw +b(n + 2,w) — {a(n + 1L, upt1)w+d(n+ 1, ups1)}

6Un+1

- :Tw {a(n,up)tps1 + b(n,u,)} =0. (3.12)

This is reduced to a set of ODEs for a(n,u,) and b(n,u,) in essentially the same
way as before. First differentiate with respect to u,, keeping w fixed, to eliminate
b(n 4+ 2,w). Then multiply the result by whatever factor is needed to obtain an
equation of the form

a(n + 2,w) + other terms = 0.

Differentiate this with respect to u,,, keeping w fixed, to eliminate a(n+2,w). Next,
eliminate all terms containing a(n + 1, u,+1), b(n + 1, upy1), and their derivatives.
This is achieved by first multiplying the equation by whatever factor is needed
to isolate one of these functions, then differentiating with respect to u, (keeping
tn+1 fixed). The process is repeated until all undesirable terms have been removed.
Finally, the resulting ODE is split into a set of ODEs (by equating terms with the
same dependence upon u,41). This approach readily generalizes to any other ansatz
for @ and to higher-order OAEs. The calculations rapidly become too lengthy to
be done by hand, but can be done with the aid of computer algebra. For the
remainder of this paper, we shall state symmetries without describing the details
of their derivation.

The method described above is capable of yielding more symmetries than have
been found previously by fixed point summations. For example, Quispel & Sahade-
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van (1993) used a fixed-point method to look for symmetries of

2Upg1 — un(l — u%w-l)
L —u2 ) 4 2uptingr

Up+2 =

They found two independent characteristics of the form Q = Q(n, uy), namely
Q1 =u+1, Q2 = n(u2 +1).
However, the new method yields @1, @2, and a third independent characteristic:
Q3 = (u2 + 1) tan™" (uy,).

The ansatz @ = Q(n,u,) yields only a few independent characteristics for
second-order OAEs. For instance, every linear homogeneous OAE,

Upt2 = P(N)tnt1 + q(n)uy, (3.13)

has precisely three such characteristics, namely

Q1 = U, Q2 =Ui(n), Q3 = Us(n), (3.14)

where u,, = Uy(n) and u,, = Us(n) are linearly independent solutions of (3.13).
Consequently, every OAE that is linearizable by a point transformation

T:(n,up) = (n,tn(n,uy)) (3.15)

also has three characteristics of the form @ = Q(n, u,). By contrast, every second-
order ODE that is linear or linearizable by a point transformation has an eight-
parameter Lie algebra of point symmetry generators, which is isomorphic to sI(3).
However, for linear OAEs, the ‘missing’ characteristics are all of the form (3.11).

Theorem 3.1. Every second-order linear homogeneous ordinary difference equa-
tion has an eight-dimensional Lie algebra of symmetry generators whose character-
istics are linear in upt1. This Lie algebra is isomorphic to s[(3).

Proof. A given linear homogeneous OAE (3.13), with two linearly independent
solutions, u, = Uj(n) and u, = Us(n), has two functionally independent first
integrals that are linear in wu, and w,41:

u SU2 — UQU 1
¢1 (nvunvu'rH-l) = nt ¢2(n7un7un+1) =

- U SUy — UsSU,

Ulun_H — unSUl
U, 8U; — UsSU;

(3.16)
From (2.20), every symmetry generator
0 0
X=Q—
Q 6Un + SQ BunH
can be rewritten in the form
X = FI(8!,6%) = + F2(8!,6%) - (3.17)
b 8¢1 b 8¢27 -
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Symmetries of difference equations 11

where, for the first integrals (3.16),

Fi(¢",6%) = X(¢'(n,un, unt1)) = ¢'(n, Q, SQ).
In particular, setting @ = Uj(n) gives

0
X=—.
o

Therefore every one-parameter Lie group of symmetries of (3.13) has a characteristic
of the form

Q(n, un, unt1) = F1 (¢, 6°)Ur(n) + F*(¢", ") Ua(n). (3.18)

To find all characteristics that are linear in u,11, differentiate (3.18) twice with
respect to up11 and (using the fact that Uy (n) and Us(n) are independent) obtain
constraints on the functions F*. A basis for the space of such charactistics is

Q1 =Ui(n), Q2 = Us(n), Q3 = ¢'Ui(n),
Q4 = ¢’Ui(n), Qs = ¢'Us(n), Qs = ¢°Us(n),
Qr = (6") Ui +6'6°Us = dlun, Qs = 6'6°Us + (¢°)7 Uz = d%uy.

It is easy to check that the corresponding generators form a Lie algebra isomorphic
to sl(3). O

N.B. It is not true that every OAE that is linearizable by a point transformation
has an eight-dimensional Lie algebra whose characteristics are linear in ;4. For
example, the OAE (3.1) can be linearized by the point transformation (3.15) with
@, = 1/u,. However, there are no characteristics that are linear in w,1; other
than those that we found earlier, which are independent of w,41. Byrnes et al.
(1995) have derived necessary and sufficient conditions for a difference equation to
be linearizable.
Theorem 3.1 generalizes a result of Levi et al. (1997), who showed that

Un+2 = 2un+1 — Unp

has a Lie algebra that is isomorphic to s[(3).
Just as for ODEs, it usually not easy to find more than one characteristic of a
given second-order linear homogeneous OAE, namely

Q =u, = Q3 + Qs.

To obtain any other characteristic, one must find at least one solution of the OAE
(or its adjoint). This severely limits the usefulness of symmetry methods for linear
equations. For nonlinear OAESs, however, symmetries of a given form can usually
be found without too much difficulty, if they exist. The main problem is to choose
a useful restriction on Q. For example, consider the OAE

n
Upto = —Upt1 — Up + , (3.19)
Un+1
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12 P. E. Hydon

which is a discrete Painlevé I equation (see Its et al., 1990). The linearized symmetry
condition is

Q(n+2,w,Sw)+ (1 + u2n > Qn+ 1, upt1,w) + Q(n,up,upr1) =0, (3.20)
n+1

where w is the right-hand side of (3.19). It turns out that (3.20) has no solutions
for which Q(n, Uy, upy1) is linear in wup11, just as the continuous Painlevé ODEs
have no Lie point symmetries.

For simplicity, we have concentrated on second-order OAEs. However, the same
method can also be used to obtain symmetries of higher-order OAEs. If one uses a
more general ansatz, such as Q = Q(n, Uy, Un+1), the method leads to a system of
partial differential equations for Q. So far, we have chosen to eliminate S*¥Q, k > 1,
to obtain a system that involves only @ and its derivatives. This is not always the
best strategy; sometimes it is better to obtain a system for S*0Q for some ko > 0.

For example,
2
un+1

Unp

Up44 = + up

has only one characteristic of the form Q@ = Q(n,un,Uny+1), namely Q = clu,.
This result is easy to obtain if differential elimination is used to derive a system for
S*Q, whereas the system for () appears intractable. This demonstrates that some
experimentation may be needed if the standard reduction in favour of @) leads to a
system that is too hard to solve.

4. How to use symmetries of OAEs

Remarkably, it seems that almost any symmetry method for ODEs has a coun-
terpart for OAEs. Usually, only slight modification is needed to obtain the OAE
methods. Here we use second-order OAEs to demonstrate various methods. The
generalization to higher-order problems is straightforward.

Given a symmetry generator for a second-order OAE,

L.

X = S 4.1
Q@un+ Qaun+17 (4.1)

there exists an invariant,
Un = U(nvu’nvun+1)7 (42)

satisfying
vy,

Xv, =0, 0. 4.3
Bunes # (4.3)

This invariant is found by the method of characteristics; it is a first integral of

du,  dups

Q  SQ
Moreover, every invariant function of n, wu,, and u,4; is a function of n and v,
only. For later use, we shall suppose that (4.2) can be inverted to obtain

Unt1 = w(n, Un, Up) (4.4)
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Symmetries of difference equations 13

for some function w.
From (2.21),
X (Svp) = S(Xwvy,) =0,

so Svy, is invariant: it is a function of n and v, only. Thus the solutions of

Unta = W(N, Uy, Upt1) (4.5)
satisfy a first-order OAE of the form

Unt1 = Svp, = Q(n,vy). (4.6)

If (4.6) can be solved (perhaps by exploiting further symmetries of (4.5) — see below)
then the general solution,

Vn = V(N Up, Unt1) = f(n; Cl)a (4.7)
is equivalent to the first-order OAE
Un+1 = ’U}(TL7 Un, f(n7 Cl))v (48)

which admits the symmetries generated by X. To solve (4.8), we need to obtain a
canonical coordinate,
Sp = §(n, uy), (4.9)

that satisfies
Xs, =1.

The most obvious choice of canonical coordinate is (see Joshi & Vassiliou, 1995)

duy,

S(H,Un) - / Q(naunaw(nvunaf(n§cl))) .

(4.10)

Note that
Xspt1 = X(Ssp) =S(Xsp) =8(1) =1 = Xs,,

SO Sp+1 — Sy is an invariant. Consequently

Sna1 = Sn + g(n,vy)

for some function g, and therefore (4.8) is equivalent to
Spt+1 = Sp + g(’I’L, f(na Cl))' (411)

The general solution of (4.11) is

Sp = A+ Z g(’l‘7f(’l“;cl)), (412)

r=nNo

where ng is any convenient integer.

If an OAE has an N-dimensional solvable Lie (sub)algebra of symmetry gener-
ators, the solvable structure can be exploited in exactly the same way as for ODEs.
Consider the nonlinear OAE

2u3
U T (4.13)

2
n

Un+2 =
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14 P. E. Hydon

The set of characteristics that are linear in u,1 is spanned by

u
Q= =L Q2 = Up. (4.14)

Un

The commutator [X;, X»] has the characteristic

[Q1,Q2] = X1Q2 — X2Q1 = UZH =Q1.

n

Therefore the generators X;, X», form a basis for a (transitive) nonabelian solvable
Lie algebra, whose derived subalgebra is spanned by X;. Consequently X; should
be used for the first reduction of order, so that the reduced OAE inherits the
symmetries generated by X». The invariant v, of the group generated by X; satisfies

Up41 6 2U?H_1 } 6 >
Xiv, = — + -1 v, = 0.
! ( up Oup { u Oyt

Using the method of characteristics, we obtain

(Ui —tn) (4.15)

4
Up,

Uy =
This reduces the OAE (4.13) to
Upt1 = 4up, (4.16)

which inherits the scaling symmetry generated by X». The general solution of (4.16)
is
vp = ct4", (4.17)

which is equivalent to
Upt1 = Fup/1 + ct4ru2 . (4.18)

However, the negative root is inconsistent with (4.13). Therefore the canonical
coordinate is

dun 1 . —1
Sp = = sinh Vel 2%, ) . 4.19
" / V14 ctdru2 /el 2n ( n> ( )

Then (4.18) is equivalent to
Sn4+1 = Sn,

whose general solution is s, = c®. In the original variables, the general solution of
(4.13) is

1
Up = sinh (02\/ cl 2”) . (4.20)
cl 2n

The above technique fails if X5 is a scalar multiple of X, in which case the
symmetry group generated by X; and X is intransitive. Then if v,, satisfies Xjv,, =
0, it also satisfies Xsv,, = 0. A single reduction of order can be achieved, but the
remaining one-parameter Lie group acts trivially on the reduced OAE and cannot
be used to solve it.
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Symmetries of difference equations 15

Intransitive two-dimensional Lie subgroups of point symmetries also occur for
some second-order ODEs. They are of little consequence, because there is always
a transitive two-dimensional subgroup of point symmetries as well (see Stephani,
1989). However, for second-order OAEs, the usual ansétze may not yield a transitive
group. The group generated by X; and Xs is intransitive if

Q2 SQ» _8<Q2>7

Qi SQi T\
that is, if the ratio of the characteristics is a first integral:
Q2
22— 4.
Q1

We now show how to construct another (functionally independent) first integral.
The method depends upon whether or not X; and X5 commute.

For now, it is most convenient to write the generators in terms of first integrals,
with X in normal form. Thus

0 0

X1:87§1’ X2:¢8751’

(4.21)

for some first integral ¢', and there is an independent first integral, ¢, that is
mapped to itself by the group action. From (4.21), we obtain

[X1,Xo] = %Xl.

Hence, if [ X1, X5] # 0, then ¢ depends nontrivially on ¢'. Now construct an invari-
ant v, of X as described earlier, so that the OAE amounts to
Upat1 = Q(n, vp)-
Clearly, v, is a function of n and ¢? only, so
¢ = G(n,vy),

for some function G. To obtain ¢?, we must find a solution of the functional differ-
ence equation

G(n +1, Q(nvvn)) = G(nvvn)'

(In practice, this is often quite easy.) Then ¢ and ¢? are functionally independent
first integrals.

If X; and X, commute then ¢ is a function of ¢ only. Indeed, without loss of
generality, we can set

¢’ =¢.
To obtain ¢!, first note that
Xi¢' =1,

and so ¢! is a canonical coordinate. Therefore

duy,

1 _
¢ _/Ql (naunaun+1(nvunv¢2))

+ G(n, %), (4.22)
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16 P. E. Hydon

for some function G. To obtain G' (up to an arbitrary function of ¢?), we apply the
condition
So' —¢' =0,
and solve the resulting first-order linear OAE using the standard method.
To illustrate this technique, consider the OAE

u2+1
Upt2 = Z + Up1- (423)

n

The symmetry generators whose characteristics are linear in u, 1, form an abelian
Lie algebra; the characteristics are linear combinations of

Q1 = Uy, Qs = Upir1 — Ny, (4.24)

Q:\ _Q
8<@>_QJ

and because the generators commute, we choose

It is easy to verify that

¢ = % = “Z—:l —n. (4.25)
From (4.22),
6" =1n|un| +G(n, 6%,
where
Gn+1,6*) —Gn,¢*) =In|u,| —In|uyi| = —In | n+ ¢2| . (4.26)

The general solution of (4.26) is
G(n,¢%) = A(¢*) —In|T(n + ¢%)],

where I'(2) is the Gamma function and A is an arbitrary function. Without loss of
generality, we can set A(¢?) = 0 and replace ¢* by its exponential,

~1 _ un
P T T+
Therefore the general solution of (4.23) is

up = c'T'(n + ). (4.27)

5. Direct construction of first integrals

A recent paper by Anco & Bluman (1998) describes a method for obtaining first
integrals of a given ODE directly, whether or not any Lie symmetries are known.
A simplified version of this method is given in Hydon (2000).

It is also possible to construct first integrals of OAEs directly, even if no sym-
metries are known. The starting point for this approach is the equation

9¢

3Un+N—1

S6 = o, #0. (5.1)
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For second-order OAEs, (5.1) amounts to

9¢

aun+1

¢(n+ 1v“n+1aw(naunvun+1)) = ¢(naunaun+1)v ?é 0. (52)
(For brevity, we shall consider only second-order problems; the generalization to
higher-order OAEs is entirely straightforward.)

It is convenient to introduce the functions

9

Pyt 1) = 2 1), (3
9

Py(n,tn, Upy1) = 8u—¢+1(n,un,un+1)- (5.4)

By differentiating (5.2) with respect to u, and u,4+; in turn, we obtain

Ow
P =58P, (5.5)
Ow
aU/n+1

Therefore P> satisfies the second-order linear functional equation

Ow N Ow .
S (8—%> S°P, + Junns SP,— P, =0. (5.7)

Just as for the linearized symmetry condition, we obtain solutions of (5.7) by first
choosing an ansatz, then differentiating repeatedly to obtain a differential equation
for P,. Given a solution P of (5.7), it is straightforward to construct P;. At this
stage, it is necessary to check that the integrability condition

on__ 0P
Opy1  Oup

(5.8)

is satisfied. (This is because some solutions of (5.7) are not derived from any first
integral.) If (5.8) holds then the first integral ¢ is of the form

o= / (Pr dup + Py dupyr) + G(n), (5.9)

where G(n) is determined (up to an arbitrary constant) by substituting (5.9) into
(5.2) and solving the resulting first-order linear OAE.
To illustrate the method, consider the OAE

n 1
= . 5.10
Un+-2 — Up + Uit ( )
We use the ansatz P> = Py(n,u,); then (5.7) amounts to
n+1 1
Py(n+2,w) — —— P2(n + 1,ups1) — P2(n,u,) = 0. (5.11)
+2 un+1
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18 P. E. Hydon

Using the symmetry-finding algorithm of §3, we obtain a single solution (up to an
arbitrary constant factor):
Py = nuy,. (5.12)

Therefore
Py = nupy, (5.13)

and the integrability condition is satisfied. From (5.9),
¢ = nupupy1 + G(n),

and hence
Sp—op=Gn+1)—Gn)+n+1=0.
(N.B. No matter how complicated the original OAE is, the function G always
satisfies a first-order linear OAE that is easily solved.) In this example,
_n(n+1)
2 )

(up to an irrelevant constant). Therefore we have obtained the first integral

Gn) =

n(n+1
O = NUpUpt1 — % . (5.14)
The general solution to this particular problem can be found by rewriting ¢ = c'

as a first-order linear OAE for v, = In |uy|:

n+l ¢t

2+n

Upt1 +0p =1n

By using the standard method for such OAEs, we obtain the general solution,

- k ct
vn:(—l)n<c2+ Z(_l)kln §+k—1‘>;
here ng is a suitably-chosen integer.

k=ngo

Just as for symmetries, the need to restrict P, means that it is not always pos-
sible to find solutions of (5.7). Furthermore, for some OAEs, including the discrete
Painlevé I equation (3.19), the functional equations for P, and @) are identical. Then
it is equally difficult to find symmetries and first integrals. This occurs when the
OAE arises from a variational principle, which will be treated in a separate paper.
Maeda (1980) discusses the Lagrangian and Hamiltonian frameworks for first-order
systems of OAEs.

To solve a second-order OAE, one usually needs either two independent char-
acteristics @@ or two functions P, that satisfy the integrability condition. However,
any pair of functions (P;, Py) satisfying (5.5) and (5.6) can be combined with char-
acteristics of Lie symmetries to obtain first integrals, as follows.

Theorem 5.1. Given a second-order ordinary difference equation (3.7), suppose
that (Py, P2) solves (5.5), (5.6), and that Q is the characteristic of a one-parameter
Lie group of symmetries. Then

¢ =PQ+ PRSQ (5.15)

is either a first integral or a constant.
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Proof. We use the linearized symmetry condition to show that S¢ = ¢, as follows:

So = (SP)(SQ) + (SP)(S*Q)

ow Ow
— (SRISQ) + 6P (o350 + 52Q)
PQ+ PSQ

O

Note that Theorem 5.1 does not require the integrability condition (5.8) to
hold. However, if (5.8) is satisfied, it may be possible to construct two functionally
independent first integrals from one pair (P, P») and one characteristic.

6. Discussion and conclusions

In this paper, we have developed new methods for finding and using symmetries
of a given OAE. Maeda (1980, 1987) was the first to dervive a restricted version
of the linearized symmetry condition (LSC) for first-order OAEs (on the assump-
tion that the characteristic is independent of n). Maeda pointed out the difficulty
of solving the LSC, which is a functional equation. He gave some examples for
which symmetries can be found by adopting a very limited ansatz. Since then, sev-
eral different approaches have been proposed for solving the LSC for higher-order
difference equations. We now compare these approaches with ours.

Quispel & Sahadevan (1993) used a Laurent series expansion about a fixed point
at infinity to obtain point symmetries. This approach works if there is such a fixed
point, but there is no guarantee that the user will be able to sum the series to obtain
the symmetries in closed form. (This is necessary in order to calculate invariants
and canonical coordinates.) Our method provides the symmetries in closed form,
irrespective of the existence and location of fixed points. Furthermore, it enables the
user to deal with symmetries other than point symmetries (with the aid of computer
algebra, if necessary). Quispel & Sahadevan imposed the additional restriction that
symmetries should commute in order to obtain a double reduction of order. This
is unnecessary; we have shown that Lie’s method for second-order ODEs can be
adapted to OAEs with a two-parameter symmetry group, whether or not the group
is abelian or transitive. Quispel & Sahadevan studied difference equations in which
the independent variable n is continuous. They pointed out that for equations in
which n is an integer, one need only replace the arbitrary unit-periodic functions
in their symmetries by arbitrary constants. The converse is also true: our approach
is generalized to equations with continuous n by replacing arbitrary constants with
arbitrary unit-periodic functions. Furthermore, if n is continuous, our method can
be extended to determine symmetries whose characteristic depends on derivatives
of u with respect to n. For example, every OAE that is autonomous (i. e. that
does not explicitly involve n) is invariant under the one-parameter Lie group whose

characteristic is
Q="2
n

(This group is equivalent to the group of translations in n.)

Article submitted to Royal Society



20 P. E. Hydon

Levi et al. (1997) also consider difference equations for which the independent
variable is continuous. They describe a slightly different approach for dealing with
difference equations that arise as discretizations of differential equations with known
symmetries. They expand the LSC as a series in powers of u(n), and seek symme-
tries that are more general than point symmetries by allowing coefficients that are
functions of n and the shift operator. Various extra restrictions are imposed by
requiring that the symmetries should be consistent with those of the discretized
differential equation in the appropriate limit. Generally speaking, the expressions
derived by Levi et al. are far more complicated than ours. For example, the OAE

Up42 = 2un+1 — Unp
has the s[(3) Lie algebra given in the proof of Theorem 3.1, with
Ui(n) =1, Us(n) = n.

Equations (3.38) and (3.39) of Levi et al. (1997) contain this result in a more
complicated form.

If an OAE arises as a discretization of an ODE, it will contain the step lengths
as parameters. Sometimes it is advantageous to treat such parameters as separate
variables, and to consider symmetries that act on the step lengths as well as on
u(n). This idea was suggested by Dorodnitsyn, who used it to construct discretiza-
tions having given symmetries (see Dorodnitsyn, 1994; Dorodnitsyn et al., 2000).
Conversely, to find out whether a given discretization has any such symmetries,
we can adapt the method outlined in the current paper, as the following example
shows. Levi et al. (1997) considered the OAE

2 2
Unt2 = 2Unt1 — Up + 0 (Upy1)”,

which is a centred-difference approximation, with uniform step length o, to the
ODE

The ODE is invariant under translations in the independent variable, z, and under
scalings in x and u. Levi et al. found a discrete analogue of the translation symme-
tries, by treating n as a continuous variable. However, they were unable to obtain
a discrete analogue of the scalings. The reason for this is apparent from the OAE:
scalings in z are replaced by scalings in o. In fact, the scaling group can be found
using our method with the ansatz

0

X = Q(n,un) s+ qf0) o

Ou,
(More generally, Q may depend upon all parameters.) The scaling symmetries are

generated by
0 0

X =2up— —o—.
" Oy, 080
The chief difficulty in finding symmetries of OAEs lies in choosing appropriate
restrictions on . In this paper, we have looked mainly at second-order examples,
choosing Q(n, Uy, upt1) to be linear in wuy,y1. Our method also works for higher-

order OAEs, and for other restrictions — we only need each unknown function to be
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invariant under a first-order differential operator. Nevertheless, just as for ODEs,
it is often not possible to obtain symmetries using a simple restriction.

For brevity, we have restricted our discussion to OAEs. However, much work
has been done on partial difference equations (see Floreanini & Vinet, 1995; Levi
et al., 1997), and on differential-difference equations (see Quispel et al., 1992; Levi
& Winternitz, 1993, 1996). For partial difference equations, the LSC is a functional
equation. A modified version of our method can be used to find symmetries, as
will be described in a separate paper. (The chief obstacle to obtaining symmetries
is the complexity of the calculations in the differential elimination stage.) Having
found Lie symmetries, they may be used in principle to obtain group-invariant
reductions. However, one significant difficulty is that is often not possible to solve
the invariant surface condition, which is typically a quasi-linear first-order partial
difference equation. At present, there does not seem to be general agreement on
what is the best way to determine group-invariant solutions.

Our method can also be adapted for use with differential-difference equations.
However, much progress has already been made with such equations by equating
powers of derivatives in the LSC, which is the same technique that is used to obtain
Lie symmetries of differential equations. Therefore, it seems that our technique is
most needed for dealing with symmetries of pure difference equations.
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