
Discrete point symmetries of ordinary di�erential equationsP E HydonDepartment of Mathematics and StatisticsUniversity of SurreyGuildford, Surrey GU2 5XHEnglandAbstractThis paper describes a method that enables the user to construct systematically theset of all discrete point symmetries of a given ordinary di�erential equation (ODE) of ordertwo or greater, provided that the ODE has at least a one-parameter Lie group of pointsymmetries.The method is easy to use, and is based upon Lie's method of constructing continuoussymmetries. The calculations are simple, and computer algebra is not usually required.Various examples are used to illustrate the method. The paper concludes with a proof thatevery ODE whose Lie group of point symmetries is isomorphic to the unimodular grouphas at least four inequivalent real discrete point symmetries.1. IntroductionSymmetries of all kinds are valuable in the study of ordinary di�erential equations(ODEs). Many ODEs of physical importance have (local) Lie groups of point symmetriesthat can be found systematically (see Olver 1986; Bluman & Kumei 1989; Stephani 1989).These continuous symmetries can be used to reduce the order of an ODE or to locateseparatrices and other topologically important solutions (Bluman & Kumei 1989).Discrete point symmetries are commonly used to reduce the domain on which an ODEis solved numerically, thereby increasing computational e�ciency. This is possible if theODE, the computational domain, and the boundary conditions are invariant. For example,the following boundary value problem (BVP) describes the deformation of a loaded elasticbeam on an inhomogeneous elastic support; the beam is simply-supported at its ends.y(iv) + k(x)y = p(x); x 2 (�1; 1); (1:1a)y(�1) = y00(�1) = y(1) = y00(1) = 0: (1:1b)Here y(x) is the deformation at the point x, the loading is described by p(x), and k(x)measures the reaction per unit deformation of the elastic support. If both k and p areeven functions of x, then the BVP (1.1) has a discrete symmetry: it is invariant under thetransformation � : (x; y) 7! (�x; y): (1:2)1



If k(x) is such that there exists a unique solution of (1.1), then that solution is invariantunder the action of �. It can be computed from the reduced problemy(iv) + k(x)y = p(x); x 2 (0; 1); (1:3a)y0(0) = y000(0) = y(1) = y00(1) = 0: (1:3b)Alternatively, the solution of (1.1) can be computed using a spectral method, with trialfunctions that are invariant under �. With either approach, using the discrete symmetrygreatly improves the e�ciency of the computation.Many nonlinear BVPs have more than one solution. If a given BVP is parameterized,bifurcation theory can be used to analyse the variation in the number and nature ofsolutions as the parameter(s) vary. Symmetries of the BVP may have a marked e�ect, andmust be taken into account. This is accomplished by using equivariant bifurcation theory(see Golubitsky et al. 1988), which requires that all symmetries (discrete and continuous)are known. Various applications to physical problems are described in Allgower et al. (1992a,b) and Chadam et al. (1996). Some BVPs have hidden discrete symmetries. These aresymmetries of the di�erential equation that fail to map the original BVP to itself, butwhich leave an extended problem invariant (see Crawford et al. 1991). The system cannotbe analysed correctly unless the hidden discrete symmetries are taken into account. Forthe remainder of the current paper, attention is focussed on di�erential equations ratherthan BVPs. The reason for this approach is that the set of point symmetries (hiddenor otherwise) of a particular BVP is a subset of the set of all point symmetries of thegoverning ODE.Discrete point symmetries are typically much harder to �nd than continuous pointsymmetries. Some progress can be made by using a suitable ansatz (Gaeta & Rodr��guez1996), but this approach does not guarantee that all discrete point symmetries of a givenODE have been found. The main di�culty is that point symmetries of ODEs are determ-ined by a coupled system of nonlinear partial di�erential equations (PDEs). Lie's methodworks by linearizing this system, which is why it is relatively easy to calculate all con-tinuous point symmetries. Reid et al. (1993) used a di�erential analogue of Buchberger'salgorithm to obtain a Gr�obner basis for the nonlinear determining equations for a partic-ular second order ODE. This method is computationally intensive and requires computeralgebra, but when it works, it yields all discrete point symmetries.The current paper outlines a new method that determines all discrete point symmetriesof a given ODE systematically and simply, without the need for computer algebra. It isapplicable to any ODE with an N -parameter Lie group of point symmetries (N � 1), forwhich the Lie symmetry generators can be found by the standard method. Most ODEs ofphysical interest fall into this category, as does the example used by Reid et al. (1993) todemonstrate the Gr�obner basis method.As well as being simple to apply to a given ODE, the new method can be used toprove general results about the existence and nature of discrete point symmetries. Forinstance, we prove the somewhat surprising result that every ODE whose group of Liepoint symmetries is isomorphic to SL(2) has at least four discrete point symmetries thatcannot be mapped to one another by any of the continuous point symmetries. In otherwords, some discrete point symmetries are generic.2



2. Point symmetries of ODEsWe begin by recalling some basic facts about point symmetries of ordinary di�erentialequations. A point symmetry of the ODEy(n) = !(x; y; y0; : : : ; y(n�1)); n � 2; (2:1)is a smooth invertible transformation of the (x; y) plane that maps the set of solutions of(2.1) to itself. Speci�cally, a point symmetry is a di�eomorphism� : (x; y) 7! (x̂(x; y); ŷ(x; y)) (2:2)that is extended to derivatives by the recursive formula� : y(k) 7! ŷ(k) � dŷ(k�1)dx̂ ; where ŷ(0) = ŷ; (2:3)such that ŷ(n) = !(x̂; ŷ; ŷ0; : : : ; ŷ(n�1)) when (2:1) holds: (2:4)The composition of any two point symmetries is a point symmetry.Many ODEs have point symmetries which form (local) Lie groups with one-parameterLie subgroups. These symmetries can be written in the formx̂ = x+ ��(x; y) + O(�2) = e�Xx;ŷ = y + ��(x; y) +O(�2) = e�Xy; (2:5)for each � in some neighbourhood of zero, where X is the in�nitesimal generatorX = �(x; y)@x + �(x; y)@y: (2:6)The set of all in�nitesimal generators of one-parameter Lie groups of point symmetries ofan ODE is a Lie algebra, L. Henceforth, attention is restricted to ODEs (2.1) for which Lis non-trivial. Lie's method is used to construct a basis for the Lie algebra, fXigNi=1; thenthe structure constants, ckij , are obtained from the commutator relations[Xi; Xj] = XiXj �XjXi = ckijXk: (2:7)(The usual summation convention is used in (2.7) and henceforth.) Now suppose that� : (x; y) 7! (x̂; ŷ) is a symmetry of (2.1); then�̂i(�) = �e�Xi��1 (2:8)is also a symmetry for each � in some neighbourhood of zero. By de�nition,�̂i(�) = e��Xi��1 ; (2:9)3



and so �̂i(�) is a one-parameter local Lie group whose in�nitesimal generator isX̂i = �Xi��1: (2:10)Therefore X̂i 2 L for each i. We calculate X̂i explicitly, as follows.X̂i = (X̂ix̂)@x̂ + (X̂iŷ)@ŷ = (�Xix)@x̂ + (�Xiy)@ŷ = �i(x̂; ŷ)@x̂ + �i(x̂; ŷ)@ŷ: (2:11)Hence the generators fX̂igNi=1 are simply the basis generators fXigNi=1 with (x; y) replacedby (x̂; ŷ). Thus they are linearly independent and form a basis for L, and so each Xi canbe written as a linear combination of the X̂i's. Furthermore, the structure constants arepreserved by the transformation Xi 7! X̂i:[X̂i; X̂j] = ckijX̂k when (2:7) holds: (2:12)In other words, the mapping is a symmetry of the Lie algebra. These results are summar-ized in the following lemma.LemmaEvery point symmetry � of (2.1) induces an automorphism of the Lie algebra L ofgenerators of one-parameter local Lie groups of point symmetries of (2.1). For each such�, there exists a constant non-singular N �N matrix (bli) such thatXi = bliX̂l: (2:13)The automorphism preserves all structure constants.The lemma provides a tool for calculating the discrete point symmetries of a givenODE, once the Lie algebra has been calculated. The most direct approach is discussed inthe next section; this approach must be used when L is abelian (i.e. when all structureconstants are zero). A neater version of the method should be used when L is non-abelian;this is introduced in x4.3. The basic methodThe method has two stages. To begin with, apply the lemma to obtain the following�rst-order PDEs which every point symmetry (2.2) of the ODE (2.1) must satisfy.Xix̂ = bliX̂lx̂ = bli�l(x̂; ŷ); i = 1; : : : ; NXiŷ = bliX̂lŷ = bli�l(x̂; ŷ); i = 1; : : : ; N: (3:1)These can be solved by the method of characteristics to obtain (x̂; ŷ) in terms of x; y; bli andsome unknown constants or functions obtained on integration of (3.1). Then ŷ(k) can becalculated using (2.3). Note that the solutions of (3.1) always include the trivial symmetry(x̂; ŷ) = (x; y), which corresponds to bli = �li.Every point symmetry satis�es (3.1), but there may be solutions of (3.1) that are notpoint symmetries. The second stage is to see which of these solutions correspond to point4



symmetries of the ODE, by substituting x̂; ŷ; ŷ0; : : : ; ŷ(n) into (2.4) and checking to seewhether or not (2.1) is satis�ed.This two-stage process gives a complete list of the point symmetries of (2.1). However,we already know about the Lie point symmetries, so the calculations may be simpli�edby factoring them out whenever possible. Then we obtain a list of inequivalent discretesymmetries, that are not related to one another by any point symmetry generated by aone-parameter Lie group.It is usually convenient to work in a canonical co-ordinate system, in which one ofthe generators (X1, say) is a translation. This is especially useful when N = dim(L) = 1:Canonical coordinates r(x; y); s(x; y) satisfyX1r = 0; X1s = 1; (3:2)so that X1 = @s: (3:3)If dim(L) = 1 then, writing r̂ = r(x̂; ŷ) and ŝ = s(x̂; ŷ), we obtain from the lemma thepair of PDEs r̂s = 0; ŝs = b11 6= 0; (3:4)whose general solution is r̂ = f(r); ŝ = b11s+ g(r) (3:5)for some functions f and g. We require that � is a di�eomorphism, and therefore f andg must be smooth, with dfdr 6= 0: The condition that this transformation should be asymmetry determines which functions f , g and constants b11 are allowable.To illustrate the method, consider the ODEy00 = y0x + 4y2x3 (3:6)used by Reid et al. (1993) to demonstrate the application of a di�erential analogue ofBuchberger's algorithm. This ODE has a one-dimensional Lie algebra of point symmetrygenerators, with a basis X1 = x@x + y@y: (3:7)In terms of canonical coordinates r = yx; s = ln jxj; (3:8)the ODE is equivalent to d2rds2 = 4r2 + r: (3:9)The solution (3.5) gives d2r̂dŝ2 = b11( _fr00 + �fr02) + ( �f _g � _f�g)r03(b11 + _gr0)3 ; (3:10)5



where � = ddr and 0 = dds . The symmetry condition is thatd2r̂dŝ2 = 4r̂2 + r̂ when (3:9) holds; (3:11)and therefore b11( _f(4r2 + r) + �fr02) + ( �f _g � _f�g)r03(b11 + _gr0)3 = 4f2 + f: (3:12)Equating powers of r0 and using the fact that b11 and _f are both non-zero gives_g = 0; f = c1r + c2; (c1 6= 0); (3:13)where the ci are constants andc1(b11)2 (4r2 + r) = 4(c1)2r2 + (8c2 + 1)c1r + c2(4c2 + 1): (3:14)The action of the one-parameter Lie group is factored out by taking g = 0: The remainingpossibilities are obtained by equating powers of r in (3.14); they give(r̂; ŝ) 2 �(r; s); (r;�s); (�r� 14 ; is); (�r� 14 ;�is)� : (3:15)Note that these symmetries form a group, generated by �1 : (r; s) 7! (�r � 14 ; is), that isisomorphic to Z4. These discrete symmetries, when written in terms of x, y and composedwith scalings generated by X1 (with complex �) yield the four families of symmetriesdescribed by Reid et al. (1993). Moreover, the above method �nds the complete list ofsymmetries very easily, without the need for computer algebra to reduce a complicatedsystem of nonlinear PDEs to a manageable form. Note that if we restrict attention toreal-valued symmetries and real �, only the �rst two of (3.15) are admissible. However,scalings that multiply x and y by a positive factor are distinguished from scalings by anegative factor. Hence the group of real discrete point symmetries is(x̂; ŷ) 2 �(x; y); (�x;�y); ( 1x; yx2 ); (� 1x;� yx2 )� ; (3:16)which is isomorphic to Z2 � Z2.As a second example, consider the ODEy00 = tan y0; (3:17)whose only Lie point symmetries are translations. Here L is two-dimensional, with a basisX1 = @x; X2 = @y: (3:18)6



Equations (3.1) amount to � x̂x ŷxx̂y ŷy � = � b11 b21b12 b22 � � 1 00 1 � ; (3:19)whose general solution is(x̂; ŷ) = (b11x+ b12y + c1; b21x+ b22y + c2); c1; c2 constant: (3:20)Bearing in mind that det(bli) 6= 0, the action of the translation group generated by X1 andX2 can be factored out by taking c1 = c2 = 0. The transformations are extended to the�rst and second derivatives, yieldingŷ0 = b21 + b22y0b11 + b12y0 ; ŷ00 = y00(b11b22 � b21b12)(b11 + b12y0)3 : (3:21)By equating powers of y0, etc., it is found that the symmetry conditionŷ00 = tan ŷ0 when y00 = tan y0 (3:22)is satis�ed if and only ifB = � 1 k�0 � � ; � 2 f�1; 1g; k 2 Z; (3:23)where B is used henceforth to denote (bli). So the discrete symmetries are all of the form(x̂; ŷ) = (x; �y + k�x); � 2 f�1; 1g; k 2 Z: (3:24)The above examples illustrate the basic method, which is easy to use if L is low-dimensional.However, with increasing N , the determining equations can be complicated, because thereare many unknown constants bli to consider. For non-abelian Lie algebras, it is possible tosimplify the matrix B before solving the determining equations, making the method mucheasier to apply.4. The improved methodIf L is not abelian, then at least some of the equations (2.7) are non-trivial. From(2.11), the generators X̂i satisfy the same commutator relations as Xi, i.e.[X̂i; X̂j] = ckijX̂k: (4:1)Combining (2.7), (2.13) and (4.1) gives the useful resultcnlmblibmj = ckijbnk : (4:2)7



It is su�cient to restrict attention to equations (4.2) with i < j, because the structureconstants are antisymmetric in the two lower indices.Although (4.2) provides some simpli�cation, it is more e�ective when it is used incombination with the adjoint action of the Lie group generated by each Xj . The adjointactionAd(exp(�jXj))Xi = Xi � �j [Xj; Xi] + �2j2! [Xj; [Xj; Xi]]� : : : = api (�j ; j)Xp (4:3)enables us to factor out those symmetries that are equivalent to one another under atransformation e�X , for some X 2 L (see Olver 1986). Speci�cally, the system (2.13) isequivalent to Xi = ~bliX̂l (4:4)under the group generated by Xj , where~bli = api (�j ; j)blp: (4:5)A straightforward calculation shows that (4.2) is invariant under the mapping bli 7! ~bli, andtherefore we will drop tildes as soon as the transformation has been made. By using eachgenerator Xj in turn, we obtain a set of inequivalent matrices B = (bli), without having tosolve any PDEs. This is the set of symmetries of the Lie algebra (up to continuous groupequivalence). It is usually possible to ensure that most of the entries in these matrices arezero.For example, consider the two-dimensional non-abelian Lie algebra a(1). We choosea basis fX1, X2g such that [X1; X2] = X1: The only non-zero structure constants arec112 = �c121 = 1: (4:6)Therefore (4.2) gives b11b22 � b21b12 = b11; 0 = b21; (4:7)and hence B = � b11 0b12 1 � ; b11 6= 0: (4:8)This can be simpli�ed further by factoring out the equivalent symmetries using (4.3) and(4.5). Let A(j) denote the matrix whose components are api (�j ; j). Equation (4.3) gives(after a short calculation)A(1) = � 1 0��1 1 � ; A(2) = � e�2 00 1 � : (4:9)Applying (4.5), �rst with j = 1, �1 = b12b11 , then with j = 2, �2 = � ln jb11j, we obtainB = �� 00 1 � ; where � 2 f�1; 1g: (4:10)8



The reduced form of the matrix B is speci�c to this particular Lie algebra, and is inde-pendent of the ODE whose Lie point symmetries are generated by the algebra.It is important to realise that the order in which the matrices A(j) are used does nota�ect the classi�cation of the matrices B; any ordering gives the same �nal form, providedthat the parameters �j are chosen appropriately.Having found the reduced matrices, it is easy to determine the discrete symmetries ofODEs with this Lie algebra. For example, the ODEy000 = y002x � y00y0 (4:11)has a two-dimensional Lie algebra of point symmetry generators, spanned byX1 = @y; X2 = x2@x + y@y; (4:12)note that [X1; X2] = X1. So the inequivalent discrete symmetries satisfy�X1x̂ X1ŷX2x̂ X2ŷ � = �� 00 1 � � 0 1x̂2 ŷ � = � 0 �x̂2 ŷ � ; (4:13)whose general solution isx̂ = c1x; ŷ = �y + c2x2; ci constant: (4:14)Substituting (4.14) into the ODE, we �nd that �c21 = 1 and c2 = 0 are required for thesymmetry condition to be satis�ed. Therefore the only discrete point symmetries (up toequivalence) are (x̂; ŷ) 2 f(x; y); (ix;�y); (�x; y); (�ix;�y)g ; (4:15)which is isomorphic to Z4, with group generator�1 : (x; y) 7! (ix;�y): (4:16)As another example of the method, consider the Chazy equationy000 = 2yy00 � 3y02 + �(6y0 � y2)2; (4:17)whose symmetries have been studied by Clarkson & Olver (1996). The Chazy equationhas a three-dimensional Lie algebra of Lie point symmetry generators, with a basisX1 = @x; X2 = x@x � y@y; X3 = x2@x � (2xy + 6)@y: (4:18)The commutators of these generators are[X1; X2] = X1; [X1; X3] = 2X2; [X2; X3] = X3; (4:19)9



and therefore L is isomorphic to sl(2), which is not solvable. However each of the two-dimensional subalgebras Span(X1; X2) and Span(X2; X3) are solvable, and so each canbe used to reduce (4.17) to a �rst-order ODE. Surprisingly, each of the subalgebras givesrise to the same �rst order ODE if the most natural di�erential invariants are used forthe reduction of order. Indeed, Clarkson (1995) observed that the one-parameter groupsgenerated by X1 and X3 can be used to reduce the Chazy equation to the same second-order ODE.To explain this result, it is necessary to examine the discrete symmetries of (4.17).First, we identify the inequivalent matrices B associated with sl(2). The non-zero structureconstants are c112 = �c121 = 1; c213 = �c231 = 2; c323 = �c332 = 1; (4:20)and therefore the adjoint action of the Lie point symmetries is given byA(1) = 24 1 0 0��1 1 0�21 �2�1 135 ; A(2) = 24 e�2 0 00 1 00 0 e��2 35 ; A(3) = 24 1 2�3 �230 1 �30 0 1 35 : (4:21)As L is not solvable, it is helpful to begin the classi�cation of matrices B by using theadjoint action.If b11 6= 0, then we can use A(1) to set b12 = 0, by taking �1 = b12b11 . Then the identities(4.2) give B = 24 b11 b21 b310 1 b320 0 1b11 35 : (4:22)Now use A(3) with �3 = �b11b32 to set b32 = 0. Then (4.2) gives b21 = b31 = 0. Finally, useA(2) with �2 = � ln jb11j to obtain two possibilitiesB = 24� 0 00 1 00 0 �35 ; � 2 f�1; 1g: (4:23a)The only remaining possibility is that b11 = 0. Applying a similar procedure to the above,we �nd that in this case B = 24 0 0 �0 �1 0� 0 0 35 ; � 2 f�1; 1g: (4:23b)So there are four distinct matrices B associated with sl(2); in other words, this Lie algebrahas four symmetries (up to equivalence).For the Chazy equation, the system (3.1) is24X1x̂ X1ŷX2x̂ X2ŷX3x̂ X3ŷ 35 = B 24 1 0x̂ �ŷx̂2 �(2x̂ŷ + 6)35 ; (4:24)10



where B is one of the four matrices (4.23). It turns out that there are two solutions of(4.24) for each B. For example, if B is the identity matrix, then(x̂; ŷ) 2 �(x; y); (x+ 6y ;�y)� : (4:25)However, the second of these is not a symmetry of the Chazy equation, and must thereforebe discarded. Each matrix B generates precisely one discrete symmetry of the Chazyequation; the complete list is(x̂; ŷ) 2 �(x; y); (�x;�y); (� 1x; x2y + 6x); ( 1x;�(x2y + 6x))� : (4:26)Each of these symmetries is an involution: it is its own inverse. In particular,(x; y) 7! (x̂; ŷ) = �� 1x ; x2y + 6x� (4:27)exchanges X1 and X3; it corresponds to (4.23b) with � = 1. The fundamental di�erentialinvariants associated with the one-parameter group generated by X1 arer1 = y; v1 = y0; (4:28)in terms of which the Chazy equation is equivalent tov001 = 2r1v01 � (v01)2v1 � 3 + ��6� r21v1�2 : (4:29)The point transformation (4.27) maps (r1; v1) to (r3; v3), wherer3 = ŷ = x2y + 6x; v3 = ŷ0 = x4y0 + 2x3y + 6x2; (4:30)these are fundamental di�erential invariants associated withX3. The above transformationis a symmetry, and thereforev003 = 2r3v03 � (v03)2v3 � 3 + ��6� r23v3�2 : (4:31)Equation (4.31) can also be obtained directly from (4.17). This explains Clarkson's obser-vation that reducing the Chazy equation with invariants either of X1 or of X3 yields thesame second order ODE.Indeed, the result can be generalized as follows. Suppose that an ODE has two one-parameter Lie groups of point symmetries, generated by Xi; i = 1; 2, with correspondingfundamental di�erential invariants ri(x; y) and vi(x; y; y0). Each pair of di�erential invari-ants (r1; v1) or (r2; v2) can be used to reduce the order of the original ODE by one. Supposealso that the reduced ODE has the same form whichever of the pairs is used. Then there11



is a transformation mapping X1 to X2 such that (r1; v1) 7! (r2; v2). This transformationis a symmetry of the original ODE, because it is a symmetry of the reduced ODE.5. Existence of discrete symmetriesThe set of inequivalent discrete symmetries with bli = �li is a normal subgroup, G0, ofthe group G of inequivalent discrete symmetries of an ODE. In this section we consider thefactor group F = G=G0. By construction, each matrix B generates at most one elementof F . Is it possible to state any general results about inequivalent discrete symmetries offamilies of ODEs that share the same Lie algebra?For example, the Chazy equation has one real discrete symmetry corresponding toeach of the four matrices (4.23). We now show that every ODE whose Lie algebra of pointsymmetry generators is isomorphic to sl(2) has at least one real discrete symmetry foreach of the matrices (4.23). The inequivalent actions of SL(2) on the real plane have beencompletely classi�ed (see Clarkson & Olver 1995). Any ODE whose Lie algebra of pointsymmetry generators is sl(2) can be mapped by a real point transformation to an ODEwith one of the following sets of generators.X1 = @x; X2 = x@x; X3 = x2@x; (5:1)X1 = @x; X2 = x@x + y@y; X3 = x2@x + 2xy@y; (5:2)X1 = @x + @y; X2 = x@x + y@y; X3 = x2@x + y2@y; (5:3)X1 = @x; X2 = x@x + y@y; X3 = (x2 � y2)@x + 2xy@y; (5:4)Therefore it is su�cient to restrict attention to ODEs that are invariant under one of thesets of generators (5.1)-(5.4). There are two ways in which an ODE may be invariant:either it can be re-written in terms of the di�erential invariants, or else it is a singularvariety where the orbit dimension drops and the Lie determinant vanishes (see Olver 1995).The latter case is of no interest to us, because the singular variety has Lie point symmetriesother than those generated by one of (5.1)-(5.4). We refer to ODEs not on the singularvariety as non-degenerate.The fundamental di�erential invariants associated with (5.1) areI = y; J = 2y0y000 � 3y0022y04 : (5:5)Every non-degenerate ODE that is invariant under (5.1) can be re-written as an equationinvolving only I, J , and derivatives of J with respect to I. If both I and J are invariantunder a point transformation, then so are all derivatives of J with respect to I, and thusthe transformation is a point symmetry of every non-degenerate ODE whose continuoussymmetries are generated by (5.1). It is straightforward to check, for each B in (4.23),which of the point transformations satisfying (3.1) leave both I and J unchanged. This12



gives a list of four inequivalent symmetries of every non-degenerate ODE that is invariantunder (5.1): (x̂; ŷ) 2 �(x; y); (�x; y); ( 1x; y); (� 1x; y)� : (5:6)The list is minimal; particular ODEs may have additional real discrete symmetries. Forexample, the ODE y000 = 3y0022y0 + y03F (y2) (5:7)has a discrete symmetry (x̂; ŷ) = (x;�y); (5:8)for any smooth function F . This symmetry is not equivalent to any of (5.6). In fact, Jis invariant under this symmetry, but I is not - it is only a relative invariant (see Olver1995).In the same way, a minimal list of inequivalent real discrete symmetries can be con-structed for the remaining actions of SL(2) on the real plane. For brevity, we state onlythe fundamental di�erential invariants and the minimal list in each case.The fundamental di�erential invariants corresponding to (5.2) areI = yy00 � 12y02; J = y2y000; (5:9)and the minimal list is(x̂; ŷ) 2 �(x; y); (�x;�y); ( 1x;� yx2 ); (� 1x; yx2 )� : (5:10)The fundamental di�erential invariants corresponding to (5.3) areI = (y � x)y00 � 2y0(1 + y0)(y0) 32 ; J = (y � x)2(2y0y000 � 3y002)2y03 ; (5:11)and the minimal list is(x̂; ŷ) 2 �(x; y); (�x;�y); ( 1x; 1y ); (� 1x;�1y )� : (5:12)The fundamental di�erential invariants corresponding to (5.4) areI = yy00 + y02 + 1y02 + 1 ; J = y2f(y02 + 1)y000 � 3y0y002g3(y02 + 1)3 ; (5:13)and the minimal list is(x̂; ŷ) 2 �(x; y); (�x;�y); ( xx2+ y2 ;� yx2 + y2 ); (� xx2 + y2 ; yx2 + y2 )� : (5:14)13



These results show that every ODE whose continuous point symmetries are isomorphic toSL(2) has four inequivalent real discrete symmetries.Similar results can be proved for other Lie groups by the same method. It is notgenerally true that every symmetry of the Lie algebra of an ODE generates at least onediscrete symmetry of the ODE. We have seen that discrete symmetries of (3.17) correspondto matrices B of the special form (3.23), whereas any choice of non-singular B preservesthe structure constants in this example.6. Final RemarksThe method introduced in this paper is easy to use, and is widely applicable. Never-theless, it is only applicable to those ODEs that have non-trivial Lie groups of symmetries.For other ODEs, it seems that a reduction of the nonlinear determining equations to adi�erential Gr�obner basis (using computer algebra) o�ers the best prospect of �nding alldiscrete symmetries.The new method can be extended to PDEs, as will be described in a later paper.Furthermore, it can be extended to other types of symmetries, such as contact symmet-ries (Hydon 1997). Contact symmetries can be used in similar ways to point symmetries,but they can be di�cult to �nd and use (see Hydon 1996), and therefore they have beensomewhat under-exploited. Nevertheless, discrete contact symmetries can be found sys-tematically for ODEs of order three or greater. For example, Hydon (1997) demonstratesthat the ODE (4.11) has eight inequivalent discrete contact symmetries. These are thefour symmetries listed in (4.15) - point symmetries are special types of contact symmetries- and four more obtained by composing (4.15) with the Legendre transformation�2 : (x; y) 7! (x̂; ŷ) = (y0; xy0 � y): (6:1)It remains to be seen how much further the method can be extended.ReferencesAllgower, E., B�ohmer, K. & Golubitsky, M. (eds.) 1992 Bifurcation and symmetry. Basel:Birkh�auser.Allgower, E. L., Georg, K. & Miranda, R. (eds.) 1992 Exploiting symmetry in applied andnumerical analysis. Providence: American Mathematical Society.Bluman, G. W. & Kumei, S. 1989 Symmetries and di�erential equations. New York:Springer.Chadham, J. M., Golubitsky, M., Langford, W. & Wetton, B. (eds.) 1996 Pattern forma-tion: symmetry methods and applications. Providence: American Mathematical Society.Clarkson, P. A. 1995 Private communication.Clarkson, P. A. & Olver, P. J. 1996 Symmetry and the Chazy equation. J. Di�. Eqns.124, 225-246. 14
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